人教版七年级数学下册6.1平方根、立方根(1)ppt精品课件
合集下载
人教版七年级数学下册 6.1 第1课时 算术平方根 课件(共20张PPT)

(x≥0)
互为 x a
逆运算 a的算术平方根
平方根号 读作:根号a
被开方数 (a≥0)
1. 一个正数的算术平方根有几个? 一个正数的算术平方根有1个.
2. 0的算术平方有几个? 0的算术平方根有1个,是0.
3. −1有算术平方根吗?负数有算术平方根? 负数没有算术平方根.
考 点 1 求一个数的算术平方根
(3)0.0001. 解:(3)因为0.012 = 0.0001,
所以0.0001的算术平方根是0.01 . 即 0.0001 0.01.
总结:从例题可以看出:被开方数越大,对应的算术 平方根也越大,这个结论对所有正数都成立.
知识点2:算术平方根的非负性 回忆正方形的面积公式: 边长(x) 面积(a)
求下列各数的算术平方根:
(1)100 ;
(2)6449 ;
(3)0.0001.
解:(1)因为 10²= 100 ,
所以100的算术平方根是10 .
即 100=10 .
(2) 49 ; 64
解:(2)因为(7)2 49 , 8 64
所以 49 的算术平方根是 7 .
64
8
即 49 7 .
64 8
一般地,如果一个正数 x 的平方等于 a,即x²= a, 那么这个正数 x 叫做 a 的算术平方根. a的算术平方根记 为 a ,读作“ 根号 a” .
规定:0的算术平方根是0,即 0 0.
(非负数 x )2 = a 非负数 x 是非负数 a 的算术平方根
用符号来表示一个数的算术平方根
x2 a
解:由于正方形的面积 = 边长×边长, 又因为 52 = 25 . 所以这个正方形画布的边长应取 5 dm.
填表:
互为 x a
逆运算 a的算术平方根
平方根号 读作:根号a
被开方数 (a≥0)
1. 一个正数的算术平方根有几个? 一个正数的算术平方根有1个.
2. 0的算术平方有几个? 0的算术平方根有1个,是0.
3. −1有算术平方根吗?负数有算术平方根? 负数没有算术平方根.
考 点 1 求一个数的算术平方根
(3)0.0001. 解:(3)因为0.012 = 0.0001,
所以0.0001的算术平方根是0.01 . 即 0.0001 0.01.
总结:从例题可以看出:被开方数越大,对应的算术 平方根也越大,这个结论对所有正数都成立.
知识点2:算术平方根的非负性 回忆正方形的面积公式: 边长(x) 面积(a)
求下列各数的算术平方根:
(1)100 ;
(2)6449 ;
(3)0.0001.
解:(1)因为 10²= 100 ,
所以100的算术平方根是10 .
即 100=10 .
(2) 49 ; 64
解:(2)因为(7)2 49 , 8 64
所以 49 的算术平方根是 7 .
64
8
即 49 7 .
64 8
一般地,如果一个正数 x 的平方等于 a,即x²= a, 那么这个正数 x 叫做 a 的算术平方根. a的算术平方根记 为 a ,读作“ 根号 a” .
规定:0的算术平方根是0,即 0 0.
(非负数 x )2 = a 非负数 x 是非负数 a 的算术平方根
用符号来表示一个数的算术平方根
x2 a
解:由于正方形的面积 = 边长×边长, 又因为 52 = 25 . 所以这个正方形画布的边长应取 5 dm.
填表:
人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2

0的平方根是( 0 );
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.
【新】人教版七年级数学下册第六章《立方根(一)》公开课课件.ppt

规律:对于任何数a都有 3 a 3 a
3 8 3 8 ( 3 8 )3 -8
3
3
27
27
3
3
27
-27
3 0 3 0 3 5 3 5
规3 律217 : 3对 于271任何数 3 a 2都17 有3
1
27
3a
3
a
课堂练习1:
1.判断下列说法是否正确,并说明理由:
(1)278
数a的立方根 3 a用 表示
1.立方根的概念. 一般地,如果一个数的立方等于a,这个
数就叫做a的立方根(也叫做三次方根). 用式子表示,如果X3 =a,那么X叫做a的立方根.
数a的立方根用符号“3 a ”表示,读作“三次根号a
其中a是被开方数,3是根指数(注意:根指数3不能省略).
如:33=27 则把3叫做27的立方根,即 3 27 3
4、一个正方体的体积变为原来的8倍,它的棱 长变为原来的多少倍?体积变为原来的27倍, 它的棱长变为原来的多少倍?
体积变为原来的1000倍呢?
试一试:一个正方体的体积变为原来的n倍, 它的棱长变为原来的多少倍?
3 n倍
❖ 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/102021/1/10Sunday, January 10, 2021
(3()5 -)28 1 (7)2
解: (1) 0.00360.06
(2) 2 1 ± 3
4
2
(3()5-)28 1(7)25973
问题:要制作一种容积为27m3的正方体
形状的包装箱,这种包装箱的边长应该
(新人教版)七年级数学下册:6.1《平方根》PPT课件

a 与- a 互为相反数; (3) 在± a 中,a≥0.
(4)( a )2=a (a≥0),
a2
| a |
a,a≥0 a. a<0
(5)一个正数有两个平方根,它们互为 相反数.
零的平方根是零.
负数没有平方根.
平方根与算术平方根的 联系与区别:
联系:
1.算术平方根是平方根的一种; 2.只有非负数才有算术平方根和平方根; 3.0的算术平方根和平方根都是0.
所以7900 <v <11200
答: 要使宇宙飞船离开地球进入轨道正常 运行,必须使它的速度大于7900米/秒,小于 11200米/秒.
想一想
要做一张边长是4cm 的方桌面,它的面积是多 少?
这个问题实际上就是 求:42=?的问题.
根据乘方运算,可知 42=16cm2.
4cm
反过来,要做一张面积是16cm2的 桌面,它的边长是多少cm?
新课导入
某教学模具厂要制面积 如下表所示的正方形模具, 你能帮他们计算出这些正方 形模具的边长是多少吗?
面积x2=a 1 1.96 2.25 9 16 25 36 边长x 1 1.4 1.5 3 4 5 6
这些正方形模具的边长和面积是什么 关系呢?
教学目标
知识与能力
1.理解平方根和算术平方根的概念,了解平方 与开平方的关系;
毕达哥拉斯认为“宇宙间的一切现象都能 归结为整数或整数之比,即都可用有理数来描 述.
但后来,这学派的一位年轻成员希伯索斯 发现边长为1的正方形的对角线的长不能用有理 数来表示,这就动摇了毕达哥拉斯学派的信条, 引起了信徒们的恐慌,他们试图封锁这一发现, 然而希伯索斯偷偷将这一发现传播出去,这为 他招来了杀身之祸,在他逃回家的路上,遭到 毕氏成员的围捕,被投入大海.
(4)( a )2=a (a≥0),
a2
| a |
a,a≥0 a. a<0
(5)一个正数有两个平方根,它们互为 相反数.
零的平方根是零.
负数没有平方根.
平方根与算术平方根的 联系与区别:
联系:
1.算术平方根是平方根的一种; 2.只有非负数才有算术平方根和平方根; 3.0的算术平方根和平方根都是0.
所以7900 <v <11200
答: 要使宇宙飞船离开地球进入轨道正常 运行,必须使它的速度大于7900米/秒,小于 11200米/秒.
想一想
要做一张边长是4cm 的方桌面,它的面积是多 少?
这个问题实际上就是 求:42=?的问题.
根据乘方运算,可知 42=16cm2.
4cm
反过来,要做一张面积是16cm2的 桌面,它的边长是多少cm?
新课导入
某教学模具厂要制面积 如下表所示的正方形模具, 你能帮他们计算出这些正方 形模具的边长是多少吗?
面积x2=a 1 1.96 2.25 9 16 25 36 边长x 1 1.4 1.5 3 4 5 6
这些正方形模具的边长和面积是什么 关系呢?
教学目标
知识与能力
1.理解平方根和算术平方根的概念,了解平方 与开平方的关系;
毕达哥拉斯认为“宇宙间的一切现象都能 归结为整数或整数之比,即都可用有理数来描 述.
但后来,这学派的一位年轻成员希伯索斯 发现边长为1的正方形的对角线的长不能用有理 数来表示,这就动摇了毕达哥拉斯学派的信条, 引起了信徒们的恐慌,他们试图封锁这一发现, 然而希伯索斯偷偷将这一发现传播出去,这为 他招来了杀身之祸,在他逃回家的路上,遭到 毕氏成员的围捕,被投入大海.
人教版七年级数学下册6.1第3课时 平方根 课件(共25张PPT)

∴ 3x + 5y = 25. ∴ 3x + 5y 的平方根为±5.
四 课堂小结
➢ 正数有两个平方根,它们互为相反数; ➢ 0 的平方根是 0; ➢ 负数没有平方根.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
5 3
2
25 9
,
因此
25 9
的平方根是
5 3
与
-5 3
.
即±
25 9
=±
5 3
.
(3)1.21. 有两个平方根
解: 由于1.12 1.21,
因此1.21的平方根是1.1与−1.1.
即± 1.21=± 1.1.
知识点2:平方与开方的关系
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
根据上面的研究过程填表:
x2 1 16
0
49
4
25
x ±1 ±4
0
±7 ±2
5
如果我们把±1、±4、0、±7、±2 分别叫做1、
16、0、49、245
5
的平方根,你能类比算术平方根的
概念,给出平方根的概念吗?
如果有一个数 x,使得x2= a,那么我们把 x 叫 作 a 的一个平方根,也叫作二次方根.
2. 判断下列说法是否正确:
(1)75
是
25 的一个平方根;
49
正确.
(2) 6是 6 的算术平方根; 正确.
(3) 16 的值是±4; (4)(-4)2 的平方根是 -4.
不正确,是 4. 不正确,是 ±4.
3. 填一填。 (1)a的一个平方根是3,则另一个平方根是 − 3 ,
四 课堂小结
➢ 正数有两个平方根,它们互为相反数; ➢ 0 的平方根是 0; ➢ 负数没有平方根.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
5 3
2
25 9
,
因此
25 9
的平方根是
5 3
与
-5 3
.
即±
25 9
=±
5 3
.
(3)1.21. 有两个平方根
解: 由于1.12 1.21,
因此1.21的平方根是1.1与−1.1.
即± 1.21=± 1.1.
知识点2:平方与开方的关系
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
根据上面的研究过程填表:
x2 1 16
0
49
4
25
x ±1 ±4
0
±7 ±2
5
如果我们把±1、±4、0、±7、±2 分别叫做1、
16、0、49、245
5
的平方根,你能类比算术平方根的
概念,给出平方根的概念吗?
如果有一个数 x,使得x2= a,那么我们把 x 叫 作 a 的一个平方根,也叫作二次方根.
2. 判断下列说法是否正确:
(1)75
是
25 的一个平方根;
49
正确.
(2) 6是 6 的算术平方根; 正确.
(3) 16 的值是±4; (4)(-4)2 的平方根是 -4.
不正确,是 4. 不正确,是 ±4.
3. 填一填。 (1)a的一个平方根是3,则另一个平方根是 − 3 ,
七年级数学下册 6.1 平方根课件 (新版)新人教版PPT

121, 1 , 4 , 0.36 1 6 8 1
解: 121, 1 , 4 有平方根。 16 81
121 11
11 16 4
42 81 9
-0.36没有平方根,因为负数没有平方根。
例题:说出下列各式的意义,并计算:
(1) 144 (2) 0.81 (3) 196
(4) 9 25
一般地,如果一个数的平方等于a,那么这个数 叫做a的平方根,也叫做a的二次方根。
☞1 请分别说出49,2 5 ,0的平方根
解:∵(±7)2=49 ∴ ±7叫做49的平方根
∵(±
1 5
1
)2= 2 5
∴
±
1 5
1
叫做 2 5 的平方根
∵ 02 = 0
∴ 0叫做0的平方根
知识源于悟
∵ (±1.2)2=1.44 ∴ 1.44的平方根是( ±)1.2
(2)只有④对,因为一个正数有正、负两个平 方根,它们互为相反数;
零的平方根是零; 负数没有平方根。
例1 求下列各数的平方根: 求一个数的平方根的运算叫做
开平方。开平方是平方的逆运算。
(1) 9
1
(2)
(3) 0.36
4
16
(4)
9
解:(1) ∵(±3)²=9
9 的 平 方 根 是 3 , 即 9 3
6
即36/25的平方根是 。
5
要做的面积是9平方厘米的模具,模具的边 长是多少厘米?
实际上就是要求出一个数,
使它的平方等于9,即:
9平方厘米
( )2 9
显然,括号里应是±3,但 我们却要说边长是3。
算术平方根
一个正数有正、负两个平方根,他们互为相反数。因此 知道一个正数的正平方根,就知道它的负平方根。例如一个 正数的一个平方根是 3,那么,它的另一个平方根是 –3,而 零的平方根就是零。所以我们规定:
解: 121, 1 , 4 有平方根。 16 81
121 11
11 16 4
42 81 9
-0.36没有平方根,因为负数没有平方根。
例题:说出下列各式的意义,并计算:
(1) 144 (2) 0.81 (3) 196
(4) 9 25
一般地,如果一个数的平方等于a,那么这个数 叫做a的平方根,也叫做a的二次方根。
☞1 请分别说出49,2 5 ,0的平方根
解:∵(±7)2=49 ∴ ±7叫做49的平方根
∵(±
1 5
1
)2= 2 5
∴
±
1 5
1
叫做 2 5 的平方根
∵ 02 = 0
∴ 0叫做0的平方根
知识源于悟
∵ (±1.2)2=1.44 ∴ 1.44的平方根是( ±)1.2
(2)只有④对,因为一个正数有正、负两个平 方根,它们互为相反数;
零的平方根是零; 负数没有平方根。
例1 求下列各数的平方根: 求一个数的平方根的运算叫做
开平方。开平方是平方的逆运算。
(1) 9
1
(2)
(3) 0.36
4
16
(4)
9
解:(1) ∵(±3)²=9
9 的 平 方 根 是 3 , 即 9 3
6
即36/25的平方根是 。
5
要做的面积是9平方厘米的模具,模具的边 长是多少厘米?
实际上就是要求出一个数,
使它的平方等于9,即:
9平方厘米
( )2 9
显然,括号里应是±3,但 我们却要说边长是3。
算术平方根
一个正数有正、负两个平方根,他们互为相反数。因此 知道一个正数的正平方根,就知道它的负平方根。例如一个 正数的一个平方根是 3,那么,它的另一个平方根是 –3,而 零的平方根就是零。所以我们规定:
人教版数学七年级下册 6.1 平方根 课件
再见
即2 + 1 = 11或2 + 1 = −11.
∴ = 5或 = −6.
2
= 121.
1.下列说法正确的是( )
A.任何数的平方根都有两个
B.一个正数的平方根的平方就是这个数
C.负数也有平方根
D.非负数的平方根都有两个
2.下列说法错误的是()
A.正数有两个平方根,它们互为相反数B. 表示平方根
④平方根的平方等于它本身的数是_______________
.
分析: ① 0的平方根是0;
② 0的平方根是0,0的算术平方根是0;
③ 0的算术平方根是0,1的算术平方根是1;
④ 当 ≥ 0时,
2
= .
【例题3】已知一个正数的平方根是2m+1和5-3m,求m的值和这个正数.
解: ∵正数的平方根有两个,它们互为相反数,
∴2m+2= ±4 2 ,3m+ + 1 = ±5 2 .
解得 = 7, = 3.
∴m+2n = 7 + 2 × 3 = 13.
【例题5】已知 2 + 1
解: 由 2 + 1
2
2
− 121 = 0,求的值.
− 121 = 0,得 2 + 1
∴2 + 1是121的平方根.
∴2 + 1 = ± 121 = ±11,
而 ±1
2
∴2 + 3 = −1,5 − 3 = 1.
= 1.
的值是−2,这个正数是1.
如果一个数的平方等于,那么这个数叫做的平方根(或二次方根),
即如果 2 = ,那么这个数叫做的平方根.
人教版数学七年级下册第六章实数教学课件
(2)在探索知识的过程中,你积累了哪些经验?
• 思维方法:求一个正数的算术平方根运算和开平方求 一个正数的二次幂运算互为逆运算.
• 探究策略:由特殊到一般,再由一般到特殊,是发现 问题和解决 问题的基本方法和途径.
第六章 实 数
6.1 平方根
第2课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
负数没有算术平方根.
典例精析 例1 分别求下列各数的算术平方根:
(1)100, (2)1265, (3) 0.49 .
解:(1)由于102=100,
因此 100 10;
(2)由于
4 5
2=1265
,
因此
16 4 ;
25 5
(3)由于0.72=0.49,
不难看出:被 开方数越大, 对应的算术平 方根也越大.这 个结论对所有 正数都成立.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
(3)0的平方根和算术平方根都是0.
平方根与算术平方根的区别: (1)定义不同:如果一个数x的平方等于a,那么这个
数x叫做 a的平方根,如果一个正数x的平方等于a, 即x2 =a,那么这个正数x叫做a的算术平方根. (2)个数不同:一个正数有两个平方根,而一个正
• 思维方法:求一个正数的算术平方根运算和开平方求 一个正数的二次幂运算互为逆运算.
• 探究策略:由特殊到一般,再由一般到特殊,是发现 问题和解决 问题的基本方法和途径.
第六章 实 数
6.1 平方根
第2课时 平方根
导入新课
讲授新课
当堂练习
课堂小结
学习目标
负数没有算术平方根.
典例精析 例1 分别求下列各数的算术平方根:
(1)100, (2)1265, (3) 0.49 .
解:(1)由于102=100,
因此 100 10;
(2)由于
4 5
2=1265
,
因此
16 4 ;
25 5
(3)由于0.72=0.49,
不难看出:被 开方数越大, 对应的算术平 方根也越大.这 个结论对所有 正数都成立.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1.所 以这个数为(2a+1)2=(2+1)2=9.
方法归纳:一个正数有两个平方根,它们互为 相反数
回顾平方的概念
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
二、开平方的概念 反之,已知一个数的平方,求这个数的运算是什么?
(3)0的平方根和算术平方根都是0.
平方根与算术平方根的区别: (1)定义不同:如果一个数x的平方等于a,那么这个
数x叫做 a的平方根,如果一个正数x的平方等于a, 即x2 =a,那么这个正数x叫做a的算术平方根. (2)个数不同:一个正数有两个平方根,而一个正
【新】人教版七年级数学下册第六章《平方根(1)》优质公开课课件.ppt
5 25
2、已知一个正方形的边长为3㎝, 则这个正方形的面积为 9 ㎝2;
若该正方形的边长为 a, 则其面积为 a。2
2.情境导入
学校要举行美术作品比赛, 小鸥想裁出一块面积为25 dm2的 正方形画布,画上自己的得意之 作参加比赛。要想裁出这块正方 形画布你需要知道什么?那么这 个正方形的边长应取多少?
A、a 0
B、a≥ 0
C、a4 D、a≥ 4
4、估计 30 的值( C )
A、在3到4之间 B、在4到5之间 C、在5到6之间 D、在6到7之间
8.拓展训练
5、如果一个数存在算术平方根,那么( C )
A、它的算术平方根只有一个,并且是正数 B、它的算术平方根一定小于它本身 C、它的算术平方根必是一个非负数 D、它的算术平方根不可能等于它本身
平方根. 的a 算术平方根记为 ,a读作 “根号 a”, 叫a做被开方数.
规定:0的算术平方根是0 . 例如,由于 52 25 ,5是25的算术平方根,
(也可以说成“25的算术平方根是5”) 即 25 5.
思考: -4有算术平方根吗?什么数才有 算术平方根?
负数没有算术平方根,非负数有算术平方根 一个数的算术平方根可能是什么数?
补充:如果一个正方形的面积是625m2,它 的
边长是
。
10.课堂检测
1、求下列各数的算术平方根:
(1)0.0025(2)121
(3)1 0 2 (4) 1 9
100
16
2、填空:
(1) 9__-__3(__2__)
(3) 52 ___5___
25 16
1 1 ___8____
64
10.课堂检测
• 10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 1:11:36 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020 • 13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020
2、已知一个正方形的边长为3㎝, 则这个正方形的面积为 9 ㎝2;
若该正方形的边长为 a, 则其面积为 a。2
2.情境导入
学校要举行美术作品比赛, 小鸥想裁出一块面积为25 dm2的 正方形画布,画上自己的得意之 作参加比赛。要想裁出这块正方 形画布你需要知道什么?那么这 个正方形的边长应取多少?
A、a 0
B、a≥ 0
C、a4 D、a≥ 4
4、估计 30 的值( C )
A、在3到4之间 B、在4到5之间 C、在5到6之间 D、在6到7之间
8.拓展训练
5、如果一个数存在算术平方根,那么( C )
A、它的算术平方根只有一个,并且是正数 B、它的算术平方根一定小于它本身 C、它的算术平方根必是一个非负数 D、它的算术平方根不可能等于它本身
平方根. 的a 算术平方根记为 ,a读作 “根号 a”, 叫a做被开方数.
规定:0的算术平方根是0 . 例如,由于 52 25 ,5是25的算术平方根,
(也可以说成“25的算术平方根是5”) 即 25 5.
思考: -4有算术平方根吗?什么数才有 算术平方根?
负数没有算术平方根,非负数有算术平方根 一个数的算术平方根可能是什么数?
补充:如果一个正方形的面积是625m2,它 的
边长是
。
10.课堂检测
1、求下列各数的算术平方根:
(1)0.0025(2)121
(3)1 0 2 (4) 1 9
100
16
2、填空:
(1) 9__-__3(__2__)
(3) 52 ___5___
25 16
1 1 ___8____
64
10.课堂检测
• 10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 1:11:36 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020 • 13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020
【新】人教版七年级数学下册第六章《平方根(1)》公开课课件.ppt
【预习导学】
②被开方数越大,对应的算术平方根 越大 。 a(a ≥ 0)表示求 a 的算术平方根, a ≥0。
2、自学2:自学教材P41-42页,完成“探究 1”与“探究2”。5分钟
归纳总结:无限不循环小数是指 小数倍数无限,且小数部 分 不循环 的小数。
【预习导学】
二、自学检测:学生自主完成,小组内展示、点评,教师巡视。10分钟 1、25的算术平方根是 5 ,_3_是9的算术平方根;的算术平方根是 2 。 2、切一块面积为16cm2的正方形钢板,它的边长是多少?
自学检测
二、跟踪练习:学生独立确定解题思路,小组内交 流,上台展示并讲解思路。5分钟
1、求下列各式的值:
自学检测
点拨精讲:求一个代分数的算术平方根,应先将代
分数化成假分数,再求其算术平方根。
自学检测
9、①如图,平移线段AB,使点B移到点B′,画出平移后的线 段A′B′。
②如图,平移△ABC,使点C移动到点C′,画出平移后的△
谢谢观看
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 1:12:35 PM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020 13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020 • 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,a叫做________,2叫做_____,2可以______.
2 a
叫做__a______,它表示________.
a
四、合作探究
1,装修房屋,选用了某种型号的正方形地砖, (1)如果问,当这种地砖一块的边长为0.5m时,
它的面积是多少? (2)如果问,当这块正方形地砖面积为0.25m2时,
选做题:书本上第9页习题6.1第1题. 课外作业:基础训练同步
看书本上第5~6内容,解决以下问题
1,看懂例2,会用计算器求一个非负数的平方根和算术平方根。
2,看懂书本上的例3。
3
中, r=6.37×106m, g=9.8 m/s2
求第在二公宇式宙速度v2。 2gr
4,解方程:
(1)
3x2 27,
2,什么叫做一个正数a的算术平方根?0的算术平方根是多少?
3,什么叫做开平方?
4,看懂例1,并会按例1的格式书写求一个数的平方根.
5,小组交流第3页书本上的“交流”,你能得出的结论是:一个正数的平方根有____个,它 们之间是_____关系;0的平方根是____;负数_____平方根.
6,一个非负数a的平方根可记作 叫做________,它表示_______;
。a
3,交流
1,
2, 3, 4,
16 的平方根是什么? 25 0.16的平方根是什么? 0的平方根是什么? -9的平方根是什么?
你能得出什么结论?
4,平方根的性质:
一个正数的平方根有两个,它们是互为相反数; 0的平方根是0; 负数没有平方根.
5,交流:
a表示什么? - a表示什么?
a , a ,- a之间有什么区别与联系?
6,算术平方根: 一个正数a的正的平方根叫做这个正数a的算术平方根。
0的算术平方根等于0
7,求一个数的平方根的运算叫做方根,如果有,求出它的 平方根;如果没有,说明道理.
1 , 25
2,
3 , 0.0169
4,
1 4 64
2019/5/24
最新中小学教学课件
17
thank you!
(2) (x 1)2 25 (3)
5,估计 在哪两个相邻的整数之间.
162
2(3x 1)2 128
仅供学习交流!!!
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
五、巩固新知,当堂训练
(一):书本上第6页课后练习第1,2,3,4 (二):3m-4和7-4m是正数N的平方根,
则m=_____,N=_____
六小节 本节课你学习了哪些内容?
七课堂作业 必做题: 1,书本上第9页习题6.1第2题
2, 361的平方根是 ;
16 的平方根是
144 49 的算术平方根是 ____;
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
6.1平方根、立方根
一、引入
由美国和欧洲共同研制,35亿千米
土星
卡西尼号
“卡西尼”号土星探测器历经了80多个月的飞行,
成功进入环绕土星运行的轨迹,要使土星探测器
飞离地球,它的速度需大于 ,计算 v2的公式为v2 v2 2g。r由上式求 ,就要v2引进新的运算—开
方和新的数—实数。
二、学习目标
它的边长是多少?
设这块正方形地砖的边长 为am, 则a2=0.25
a
2,平方根:如果一个数的平方等于a,那么这个数叫 做a的平方根,也叫二次方根。
a的平方根可记作: 2 a
其中 a叫做被开方数,(a≥0), 2叫做根指数,当根指数是2时,可省略不写。
上面定义用符号语言可表示为:
如果x2=a,那么x=
1,理解并掌握平方根的定义,了解什么是被开方数? 什么叫根指数?
2,理解并掌握平方根的性质。 3,理解算术平方根的概念。 4,了解什么是开平方? 5,能区别平方根、算术平方根、负的平方根之间
的关系。 6,会求一个数的平方根。
三、自学提纲
看书本上第2~4内容,解决以下问题
1,什么叫做一个数a的平方根?平方根定义用符号语言怎样表示?