初等数论中的几个重要定理 引理 和推论

合集下载

四大数论定理

四大数论定理

四大数论定理四大数论定理是指费马小定理、欧拉定理、中国剩余定理和欧几里得算法。

这四个定理在数论领域中具有重要的地位和应用。

下面将分别介绍这四个定理的概念、原理和应用。

一、费马小定理:费马小定理是由法国数学家费马在17世纪提出的,是数论中的基本定理之一。

它的主要内容是:如果p是一个质数,a是任意一个整数,那么a的p次方减去a一定能够被p整除。

即a^p ≡ a (mod p)。

这个定理在密码学中有广泛的应用。

费马小定理的原理是基于模运算的性质。

对于给定的整数a和质数p,我们可以将a的p次方表示为a^p = a * a * a * ... * a。

根据模运算的性质,我们可以对每个乘法因子a进行取模操作。

由于模运算满足乘法的结合律和交换律,我们可以得到 a * a ≡ a^2 (mod p),再依次类推,最终得到a^p ≡ a (mod p)。

费马小定理在密码学中的应用是基于离散对数问题。

通过费马小定理,我们可以快速计算模p下的指数问题,从而实现快速的加密和解密操作。

例如,RSA加密算法就是基于费马小定理和大素数的选择来实现的。

二、欧拉定理:欧拉定理是由瑞士数学家欧拉在18世纪提出的,是费马小定理的推广。

它的主要内容是:如果a和n互质,那么a的欧拉函数值φ(n)次方减去1一定能够被n整除。

即a^φ(n) ≡ 1 (mod n)。

欧拉定理在数论和密码学中都有重要的应用。

欧拉定理的原理是基于欧拉函数的性质。

欧拉函数φ(n)表示小于等于n且与n互质的正整数的个数。

对于给定的整数a和正整数n,我们可以将a的φ(n)次方表示为a^φ(n) = a * a * a * ... * a。

根据模运算的性质,我们可以对每个乘法因子a进行取模操作。

由于a和n互质,根据欧拉定理,我们可以得到a^φ(n) ≡ 1 (mod n)。

欧拉定理在密码学中的应用是基于模反演问题。

通过欧拉定理,我们可以快速计算模n下的指数问题,从而实现快速的加密和解密操作。

第五节初等数论中的几个重要定理

第五节初等数论中的几个重要定理

第五节 初等数论中的几个重要定理基础知识定义(欧拉(Euler)函数)一组数s x x x ,,,21 称为是模m 的既约剩余系,如果对任意的s j ≤≤1,1),(=m x j 且对于任意的Z a ∈,若),(m a =1,则有且仅有一个j x 是a 对模m 的剩余,即)(mod m x a j ≡。

并定义},,2,1{)(m s m ==ϕ中和m 互质的数的个数,)(m ϕ称为欧拉(Euler )函数。

这是数论中的非常重要的一个函数,显然1)1(=ϕ,而对于1>m ,)(m ϕ就是1,2,…,1-m 中与m 互素的数的个数,比如说p 是素数,则有1)(-=p p ϕ。

引理:∏⋅=为质数)-(P |P 11)(mP m m ϕ;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler )定理)设),(m a =1,则)(mod 1)(m a m ≡ϕ。

证明:取模m 的一个既约剩余系))((,,,,21m s b b b s ϕ= ,考虑s ab ab ab ,,,21 ,由于a 与m 互质,故)1(s j ab j ≤≤仍与m 互质,且有i ab )1(s j i ab j ≤<≤∀,于是对每个s j ≤≤1都能找到唯一的一个s j ≤≤)(1σ,使得)(mod )(m b ab j j σ≡,这种对应关系σ是一一的,从而)(mod )(mod )(11)(1m b m b ab s j j s j j s j j∏∏∏===≡≡σ,∴))(mod ()(11m b b a sj j s j j s ∏∏==≡。

1),(1=∏=sj j b m ,)(mod 1m a s ≡∴,故)(mod 1)(m a m ≡ϕ。

证毕。

分析与解答:要证)(mod 1)(m a m ≡ϕ,我们得设法找出)(m ϕ个n 相乘,由)(m ϕ个数我们想到m ,,2,1 中与m 互质的)(m ϕ的个数:)(21,,,m a a a ϕ ,由于),(m a =1,从而)(21,,,m aa aa aa ϕ 也是与m 互质的)(m ϕ个数,且两两余数不一样,故)(21m a a a ϕ⋅⋅⋅ ≡)(21,,,m aa aa aa ϕ ≡)(m a ϕ)(21m a a a ϕ⋅⋅⋅ (m mod ),而()(21m a a a ϕ⋅⋅⋅ m )=1,故)(mod 1)(m am ≡ϕ。

数论中的基本概念与定理

数论中的基本概念与定理

数论中的基本概念与定理数论作为数学的一个分支,研究整数的性质和规律。

它是纯粹抽象的数学分支,却具有深刻的应用价值。

本文将介绍数论中的一些基本概念与定理,包括素数、同余、欧几里得算法、费马小定理等。

一、素数素数是指不能被其他整数整除的数,除了1和自身以外没有其他因数的数。

素数是数论中最基本的概念,也是许多数论定理的基础。

素数的性质十分丰富,例如:任意大于1的整数必定可以被表示为有限个素数的乘积。

二、同余同余是数论中的重要概念,它描述了两个数在除以一个整数后的余数相等的情况。

若两个整数a和b满足a-b能被正整数m整除,则称a 与b关于模m同余。

同余关系具有如下性质:(1)若a与b关于模m 同余,即a≡b (mod m),则a的整数倍与b的整数倍关于模m也同余;(2)若a与b关于模m同余,且b与c关于模m同余,则a与c关于模m同余。

三、欧几里得算法欧几里得算法是求解两个整数最大公约数的一种高效算法。

它基于如下定理:对于任意两个非零整数a和b,它们的最大公约数等于b和a%b的最大公约数,其中%表示取余运算。

利用这个定理,可以递归地求解最大公约数,直至余数为0,此时上一步的除数即为最大公约数。

四、费马小定理费马小定理是数论中的一条重要定理,它为许多数论问题的解决提供了便利。

设p为一个素数,a为与p互质的整数,则a^(p-1) ≡ 1 (mod p),其中^表示乘方运算。

费马小定理的应用十分广泛,例如在RSA加密算法中就有重要作用。

五、欧拉函数欧拉函数是数论中的一个重要概念,它表示小于或等于某个正整数n的数中与n互质的数的个数。

记为φ(n),例如φ(8) = 4,因为1、3、5、7都与8互质。

欧拉函数有如下性质:(1)若p为素数,则φ(p) = p-1;(2)若a与b互质,则φ(ab) = φ(a)φ(b)。

六、扩展欧几里得算法扩展欧几里得算法是求解形如ax+by=gcd(a,b)的一元二次方程的一种方法。

初等数论基本思想方法总结

初等数论基本思想方法总结

初等数论基本思想方法总结初等数论是研究整数性质及其关系的数学分支,它包括了数的整除性质、最大公因数、素数分解等基本概念和理论。

初等数论的基本思想方法总结如下:1. 数的分类:在初等数论中,数的分类是非常重要的一步。

我们把整数分为偶数和奇数、正整数和负整数、完全平方数和非完全平方数等等。

这样的分类有助于我们更好地理解和描述数的性质。

2. 递归思想:初等数论中经常使用递归思想。

例如,整数的定义是基于自然数的递归定义。

在证明一些性质的时候,我们也可以使用数的递归性质来进行推导。

递归思想在解决问题时,常常能够将复杂的问题简化为简单的子问题。

3. 数的整除性质:整除是初等数论最基本的概念之一。

在初等数论中,我们要研究一个数能否被另一个数整除、两个数的最大公因数等问题。

对于整除性质的研究,我们常常使用带余除法、最大公因数等概念和定理。

4. 素数和合数:素数和合数是初等数论中重要的概念。

我们称大于1且只能被1和它本身整除的数为素数,否则我们称之为合数。

素数的性质在初等数论中有着重要的地位,素数分解定理将任意一个正整数表示为若干个素数的乘积,具有重要的理论和应用价值。

5. 辗转相除法:辗转相除法是初等数论中常用的算法之一。

它用于求两个数的最大公因数,通过不断地进行除法运算,将两个整数的最大公因数转化为较小整数的最大公因数,直到其中一个数为0为止。

6. 数的因子分解:在初等数论中,我们常常需要将一个数分解为几个素数和幂的乘积。

这种分解是数的因子分解,可以通过素数分解定理和辗转相除法来实现。

7. 同余:同余是初等数论中重要的概念和方法之一。

两个整数除以一个正整数所得的余数(都是非负整数)相等,我们就说这两个数对于这个正整数是同余的。

同余关系可以用来刻画整数的性质和关系,也可以用来解决一些问题。

8. 数的循环节性:在初等数论中,很多整数序列会出现循环节。

例如,10进制小数中的循环节、数的幂的个位数循环节等等。

这样的循环节性质可以通过数的除法和模运算来进行研究和验证。

初等数论中的欧拉定理

初等数论中的欧拉定理

定理内容在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。

欧拉定理表明,若n,a为正整数,且n,a互素,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)证明首先证明下面这个命题:对于集合Zn={x1,x2,...,xφ(n)},其中xi(i=1,2,…φ(n))是不大于n 且与n互素的数,即n的一个化简剩余系,或称简系,或称缩系),考虑集合S = {a*x1(mod n),a*x2(mod n),...,a*xφ(n)(mod n)} 则S = Zn1) 由于a,n互质,xi也与n互质,则a*xi也一定于n互质,因此任意xi,a*xi(mod n) 必然是Zn的一个元素2) 对于Zn中两个元素xi和xj,如果xi ≠ xj则a*xi(mod n) ≠ a*xj(mod n),这个由a、n互质和消去律可以得出。

所以,很明显,S=Zn既然这样,那么(a*x1 × a*x2×...×a*xφ(n))(mod n)= (a*x1(mod n) × a*x2(mod n) × ... × a*xφ(n)(mod n))(mod n)= (x1 × x2 × ... × xφ(n))(mod n)考虑上面等式左边和右边左边等于(a*(x1 × x2 × ... × xφ(n))) (mod n)右边等于x1 × x2 × ... × xφ(n))(mod n)而x1 × x2 × ... × xφ(n)(mod n)和n互质根据消去律,可以从等式两边约去,就得到:a^φ(n) ≡ 1 (mod n)推论:对于互质的数a、n,满足a^(φ(n)+1) ≡ a (mod n)费马定理:a是不能被质数p整除的正整数,则有a^(p-1) ≡ 1 (mod p)证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

数论的四大定理详解(转载)

数论的四大定理详解(转载)

数论的四⼤定理详解(转载)转载于:前⾔可以发现RSA中的很多攻击⽅法都是从数论四⼤定理推导出的,所以找时间好好学习了⼀下数论四⼤定理的证明及其应⽤场景——Rabin算法。

欧拉定理若$n,a$为正整数,且$n,a$互素,即$gcd(a,n) = 1$,则$a^{φ(n)}\equiv1\pmod{n}$证明⾸先,我们需要知道欧拉定理是什么:数论上的欧拉定理,指的是$a^{φ(n)}\equiv1\pmod{n}$这个式⼦实在$a$和$n$互质的前提下成⽴的。

证明⾸先,我们知道在1到$n$的数中,与n互质的⼀共有$φ(n$)个,所以我们把这$φ(n)$个数拿出来,放到设出的集合X中,即为$x_1,x_2……x_{φ(n)}$那么接下来,我们可以再设出⼀个集合为M,设M中的数为:$m_1=a∗x_1,m_2=a∗x_2……m_φ(n)=a∗x_{φ(n)}$下⾯我们证明两个推理:⼀、M中任意两个数都不模n同余。

反证法。

证明:假设M中存在两个数设为$m_a,m_b$模$n$同余。

即$m_a\equiv m_b$移项得到:$m_a−m_b=n∗k$再将m⽤x来表⽰得到:$a∗x_a−a∗x_b=n∗k$提取公因式得到:$a∗(x_a−x_b)=n∗k$我们现在已知$a$与$n$互质,那么式⼦就可以转化为:$x_a−x_b\equiv 0 \pmod{n}$因为$a$中没有与$n$的公因⼦(1除外)所以$a !\equiv 0 \pmod{n}$ 所有只能是$ x_a−x_b\equiv 0\pmod{n}$。

⼜因为$x_a,x_b$都是⼩于$n$的并且不会相同,那么上述的式⼦⾃然全都不成⽴。

假设不成⽴。

证得:$M$中任意两个数都不模$4$同余。

⼆、M中的数除以n的余数全部与n互质。

证明:我们已知$m_i=a∗x_i$⼜因为$a$与$n$互质,$x_i$与$n$互质,所以可得$m_i$与$n$互质。

带⼊到欧⼏⾥得算法中推⼀步就好了。

初等数论的性质与定理总结

初等数论的性质与定理总结

初等数论的性质与定理总结初等数论是数论中的一个基础分支,研究整数的性质和整数运算规律。

本文将总结初等数论中的一些重要性质与定理。

一、整数的整除性质1. 整数的除法基本性质:对于任意整数a、b和非零整数c,存在唯一的整数q使得a = bq + c。

2. 整除关系的传递性:如果a能整除b,且b能整除c,则a能整除c。

3. 整除关系的辗转相除法:对于任意整数a和非零整数b,存在唯一的整数q和r使得a = bq + r(其中0 ≤ r < |b|)。

二、质数与合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数。

例如,2、3、5、7等都是质数。

2. 质因数分解定理:每个大于1的整数都可以唯一地表示为若干个质数的乘积。

3. 最大公约数与最小公倍数的性质:对于任意整数a和b,记a和b 的最大公约数为gcd(a, b),最小公倍数为lcm(a, b),则有以下性质: - gcd(a, b) = gcd(b, a)- gcd(a, 0) = |a|- lcm(a, b) = |ab| / gcd(a, b)三、模运算与同余1. 模运算的基本性质:对于任意整数a、b和正整数n,有以下性质:- (a + b) mod n = (a mod n + b mod n) mod n- (a - b) mod n = (a mod n - b mod n) mod n- (a * b) mod n = (a mod n * b mod n) mod n2. 同余关系的性质:对于任意整数a、b和正整数n,如果a与b模n同余(记作a ≡ b (mod n)),则有以下性质:- a + c ≡ b + c (mod n)- ac ≡ bc (mod n)- 如果a ≡ b (mod n),则a^k ≡ b^k (mod n)对于任意正整数k四、费马小定理与欧拉定理1. 费马小定理:如果p是质数,a是任意正整数且p不整除a,则有a^(p-1) ≡ 1 (mod p)。

初中数学全部公式定理推论归纳总结

初中数学全部公式定理推论归纳总结

初中数学全部公式定理推论归纳总结数学是一门科学,它研究的是数量、结构、空间以及变化等一切与运算和度量有关的概念和规律。

在初中数学中,我们学习了许多重要的公式、定理、推论和归纳方法,在解决问题中起到重要的作用。

下面是对这些知识点的一个总结,希望能够帮助大家更好地理解初中数学。

一、代数公式:1. 二项式定理:(a + b)^n = Cn0 * a^n + Cn1 * a^(n-1) * b^1 + Cn2 * a^(n-2) * b^2 + ... + Cnk * a^(n-k) * b^k + ... + Cnn *b^n2.平方差公式:(a+b)*(a-b)=a^2-b^23.平方根公式:(a+b)*(a-b)=a^2-b^2二、几何公式:1.勾股定理:直角三角形中,a^2+b^2=c^2,其中a、b为直角边,c为斜边的长度。

2.相似三角形定理:(1)AAA相似定理:两个三角形对应的角分别相等,则这两个三角形相似。

(2)SAS相似定理:两个三角形对应的两条边成比例并且夹角相等,则这两个三角形相似。

(3)SSS相似定理:两个三角形对应的三条边成比例,则这两个三角形相似。

3. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。

4. 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的边长,C为夹角的角度。

5.正弦定理:A=π*r^2,其中r为圆的半径。

6.弧长公式:L=rθ,其中L为弧长,r为半径,θ为圆心角的弧度数。

7.扇形面积公式:S=1/2*r^2*θ,其中S为扇形的面积,r为半径,θ为圆心角的弧度数。

三、推论与定理:1.同位角定理:当两条直线被一条截线所交叉时,同位角相等。

2.内切圆定理:一个三角形的内切圆的半径等于三角形的周长与面积之比的一半。

3.外接圆定理:一个三角形的外接圆的半径等于三角形三边长度的乘积与面积的比的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论中的几个重要定理
基础知识
定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模的剩余,即。

并定义中和互质的数的个数,
称为欧拉(Euler)函数。

这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,
中与互素的数的个数,比如说是素数,则有。

引理:;可用容斥定理来证(证明略)。

定理1:(欧拉(Euler)定理)设=1,则。

分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而
也是与互质的个数,且两两余数不一样,故
(),而()=1,故。

证明:取模的一个既约剩余系,考虑,由
于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系
是一一的,从而,。

,,故。

证毕。

这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。

定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。

设为质数,若是的倍数,则。

若不是的倍数,则
由引理及欧拉定理得,,由此即得。

定理推论:设为质数,是与互质的任一整数,则。

定理3:(威尔逊(Wilson)定理)设为质数,则。

分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。

证明:对于,在中,必然有一个数除以余1,这是因为
则好是的一个剩余系去0。

从而对,使得;
若,,则,,故
对于,有。

即对于不同的对应于不同的,即
中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,
或。

除外,别的数可两两配对,积除以余1。

故。

定义:设为整系数多项式(),我们把含有的一组同余式
()称为同余方组程。

特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足:
,则剩余类(其中)称为同余方程组的一个解,写作
定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数
,一次同余方程组,必有解,且解可以写为:
这里,,以及满足,
(即为对模的逆)。

中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。

(拉格郎日定理)设是质数,是非负整数,多项式
定理5:
是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。

定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。

以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。

另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到
意想不到的作用,如:,。

这里我们只介绍几个较为直接的应用这些定理的例子。

典例分析
例1.设,求证:。

证明:因为,故由知,从而,但是
,故由欧拉定理得:,,从而;同理,。

于是,,即。

注明:现考虑整数的幂所成的数列:若有正整数使,则有,其中;
因而关于,数列的项依次同余于这个数列相继的项成一段,各段是完全相同的,因而是周期数列。

如下例:
例2.试求不大于100,且使成立的自然数的和。

解:通过逐次计算,可求出关于的最小非负剩余(即为被11除所得的余数)为:
因而通项为的数列的项的最小非负剩余构成周期为5的周期数列:
3,9,5,4,1,3,9,5,4,1,………
类似地,经过计算可得的数列的项的最小非负剩余构成周期为10的周期数列:
7,5,2,3,10,4,6,9,8,1,………
于是由上两式可知通项为的数列的项的最小非负剩余,构成周期为10(即上两式周期的最小公倍数)的周期数列:
3,7,0,0,4,0,8,7,5,6,………
这就表明,当时,当且仅当时,,即;又由于数列的周期性,故当时,满足要求的只有三个,即
从而当时,满足要求的的和为:
.
下面我们着重对Fetmat小定理及其应用来举例:
例3.求证:对于任意整数,是一个整数。

证明:令,则只需证是15的倍数即可。

由3,5是素数及Fetmat小定理得,,则

而(3,5)=1,故,即是15的倍数。

所以是整数。

例4.求证:(为任意整数)。

证明:令,则;
所以含有因式
由Fetmat小定理,知13|7|
又13,7,5,3,2两两互素,所以2730=能整除。

例5.设是直角三角形的三边长。

如果是整数,求证:可以被30整除。

证明:不妨设是直角三角形的斜边长,则。

若2 ,2 ,2 c,则,又因为
矛盾!
所以2|.
若3 ,3 ,3 c,因为,则
,又,矛盾!从而3|.
若 5 ,5 ,5 c,因为,,所以或0(mod5)与矛盾!
从而5|.
又(2,3,5)=1,所以30|.
下面讲述中国剩余定理的应用
例6.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都有大于1的平方因子。

证明:由于素数有无穷多个,故我们可以取个互不相同的素数,而考虑同余组①
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

于是,连续个数分别被平方数整除。

注:(1)本题的解法体现了中国剩余定理的一个基本功效,它常常能将“找连续个正整数具有某种性质”的问题转化为“找个两两互素的数具有某种性质”,而后者往往是比较容易解决的。

(2)本题若不直接使用素数,也中以采用下面的变异方法:由费尔马数
两两互素,故将①中的转化为后,相应的同余式也有解,同样可以导出证明。

例7.证明:对于任意给定的正整数,均有连续个正整数,其中每一个都不是幂数。

分析:我们来证明,存在连续个正整数,其中每一个数都至少有一个素因子,在这个数的标准分解中仅出现一次,从而这个数不是幂数。

证明:取个互不相同的素数,考虑同余组
因为显然是两两互素的,故由中国剩余定理知,上述同余组有正整数解。

对于因为,故,但由①式可知,即
在的标准分解中恰好出现一次,故都不是幂数。

例8.设是给定的偶数,且是偶数。

证明:存在整数使得,且。

证明:我们先证明,当为素数幂时结论成立。

实际上,能够证明,存在使
且:
若,则条件表明为偶数,此时可取;
若,则与中有一对满足要求。

一般情形下,设是的一个标准分解,上面已经证明,对每
个存在整数使得且,而由中国剩余定理,
同余式①有解,
同余式②有解。

现不难验证解符合问题中的要求:因,故,
于是,又由①②知,
故。

注:此题的论证表现了中国剩余定理最为基本的作用:将一个关于任意正整数的问题,化为为素数幂的问题,而后者往往是比较好处理的。

相关文档
最新文档