2014年中考数学必做题
[vip专享]2014成都中考数学必考重点题型A卷
![[vip专享]2014成都中考数学必考重点题型A卷](https://img.taocdn.com/s3/m/ea96594eb52acfc789ebc9a5.png)
2014 成都中考数学必考重点题型
A卷
(一)三视图确定小正方形的个数
例题
.在一仓库里堆放着若干个相同的正方体小货箱,仓库管理员将这堆货箱的三视图画了出
来,如图所示,则这堆正方体小货箱共有(
)
A.11 箱 B.10 箱 C.9 箱 D.8 箱
变式练习: 1 用若干个大小相同,棱长为 1 的小正方体搭成一个几何体模型,其三视图如图所示,则 搭成这个几何体模型所用的小正方体的个数是
AEDຫໍສະໝຸດ 23WOR1DWO---RDWwOorRdDw1ordword
21
3 2 1 “” 23WOR1D
1 320082 1 3
3 2 “”1 …… ………………17
B A 3 2“” 1 “”
C
BP17-23 1 A 3 D C“” B A2P16“8”---“-” 2 1 10
“” C
P17-3D C B A3P682 1 2 1
3 “” 2 413“” 2 1 5
解不等式组 x
x
3
2
并写出该不等式组的最大整式解.
2,
“”
变式练习
3x 1 2(x 1),
1.解不等式组
x
2
3
1,
并在所给的数轴上表示出其解集。
-5 -4 -3 -2 -1 0 1 2 3 4 5 x
2 x 0,
2
解不等式组
5x 1 2
1≥,2x 1 3
计接缝和损耗,则她所需纸板的面积是
(A)12πcm2
(B)15πcm2
(C)18πcm2
(D)24πcm2
Ö÷ÊÓͼ ×óÊÓͼ 成都中考网 版权所有 谢绝转载
2014中考数学26题必攻10道题

2014中考数学26题必攻10道题2014/5/91.(2014•沙坪坝区一模)如图,抛物线y1=x2-1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不2.(2013•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-23),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.3.(2013•自贡)如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.5.(2013•资阳)如图,四边形ABCD是平行四边形,过点A、C、D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连结CE,点A、B、D的坐标分别为(-2,0)、(3,0)、(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3:4的两部分,求出该直线的解析式.6.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D 为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m 的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.7.(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,14).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C 关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF-tan∠ECP=12.8.(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=14(x-m)2-14m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?9.(2013•重庆)如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△P O C=4S△B O C.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.10.(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.。
2014中考数学真题试卷题型分类汇编全等三角形

2014中考数学真题试卷题型分类汇编-全等三角形一、选择题1. (2014•年山东东营,第4题3分)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等考点:命题与定理.分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解答:解:A、错误,如3与﹣3;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题;D、正确,是真命题,故选D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.2.(2014•四川遂宁,第9题,4分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()3.(2014•四川南充,第5题,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1.(2014•福建福州,第15题4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使1CF BC2..若AB=10,则EF的长是.2.(2014•广州,第15题3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.三、解答题1.(2014•湖南怀化,第19题,10分)如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF 的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.,2.(2014•湖南张家界,第24题,10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC 与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.,,=3. (2014山东济南,第23题,7分)(本小题满分7分)(1)如图,在四边形ABCD 是矩形,点E 是AD 的中点,求证:EC EB =.【解析】在ABE ∆和DCE ∆中,EDC EAB DE AE DC AB ∠=∠==,,,于是有 DCE ABE ∆≅∆,所以EC EB =.4.(2014•山东聊城,第20题,8分)如图,四边形ABCD 是平行四边形,作AF ∥CE ,BE ∥DF ,AF 交BE 与G 点,交DF 与F 点,CE 交DF 于H 点、交BE 于E 点.求证:△EBC ≌△FDA .A BC DE 第23题(1)图5. (2014•浙江杭州,第18题,8分)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.6.(2014•遵义24.(10分))如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD 上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.==AD=2∠B=∠C.8.(( 2014年河南) 22.10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE 填空:(1)∠AEB的度数为60 ;(2)线段AD、BE之间的数量关系是AD=BE。
2014中考数学压轴题精选(二次函数)(16题)-附详细解答和评分标准

1、(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314···························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ··························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ································································· 2分(第25题图)x∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, ···················································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625····························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ···················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ············································· 10分 2、(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································· (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ·························· (4分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································· (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ··········· (9分) ∴)(3123y y y -=. ········································································ (10分) 3、(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ············································ 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=x第26题图∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:28299y x x =--+ ················································ 9分(3)存在符合条件的点P ,点Q . ······························································ 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ···················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上28229m ∴--+=解得,10m =,2m =1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(2)Q,2Q ; 当点2P的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q的坐标分别为32Q ⎛⎫ ⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································ 14分4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =-x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C , ············································································· 1分点A C ,都在抛物线上,03a c c⎧=++⎪∴⎨⎪=⎩3a c ⎧=⎪∴⎨⎪=⎩ ∴抛物线的解析式为2y x x =-················································· 3分x∴顶点1F ⎛ ⎝⎭ ·················································································· 4分 (2)存在 ································································································ 5分1(0P ······························································································ 7分2(2P ····························································································· 9分 (3)存在 ······························································································ 10分 理由: 解法一:延长BC 到点B ',使BC B C '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =-(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴--, ········································ 12分设直线B F '的解析式为y kx b =+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得6k b ⎧=⎪⎪⎨⎪=⎪⎩y x ∴=················································································· 13分62y y x ⎧=⎪∴⎨=-⎪⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫- ⎪ ⎪⎝⎭,. ·· 14分x5、(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点.(1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩····································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································· 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ························ 5分1cos3022OM OO ∴==⨯=, 在Rt MOF △中,3cos30322OF OM ===.1sin 3032MF OM ===.∴点M 坐标为32⎛ ⎝⎭············································································· 6分图14设切线OM 的函数解析式为(0)y kx k =≠32k =,k ∴= ····· 7分∴切线OM 的函数解析式为y =··························································· 8分 (3)存在. ····························································································· 9分 ①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 30P A OA AOP =∠==113P ⎛⎫∴ ⎪ ⎪⎝⎭, ····································· 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos30OP OA ∴==在2Rt OP H △中,223cos 4OH OP AOP =∠==,2221sin 2P H OP AOP =∠==2344P ⎛⎫∴ ⎪ ⎪⎝⎭, ································· 11分∴符合条件的P 点坐标有13⎛ ⎝⎭,,344⎛⎫⎪ ⎪⎝⎭, ·············································· 12分6、(08山东济宁26题)(12分)ABC △中,90C ∠=,60A ∠=,2AC =cm .长为1cm 的线段MN 在ABC △的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P Q ,两点,线段MN 运动的时间为t s .(1)若A M P △的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C P Q ,,为顶点的三角形与ABC △相似?(08山东济宁26题解析)解:(1)当点P 在AC 上时,A M t =,tg 603PM AM t ∴==.2133(01)2y tt t t ∴==≤≤. ······························································ 2分 当点P 在BC 上时,3tan 30(4)3PM BM t ==-.213(4)(13)2363y t t t t t =-=-+≤≤. ··········································· 4分(2)2AC =,4AB ∴=.413BN AB AM MN t t ∴=--=--=-.3tan 30)QN BN t ∴==-. ······························································ 6分 由条件知,若四边形MNQP 为矩形,需PM QN =)3t =-, 34t ∴=. ∴当34t =s 时,四边形MNQP 为矩形.························································ 8分(3)由(2)知,当34t =s 时,四边形MNQP 为矩形,此时PQ AB ∥,PQC ABC ∴△∽△. ··············································································· 9分除此之外,当30CPQ B ∠=∠=时,QPC ABC △∽△,此时3tan 30CQ CP ==. 1cos602AM AP ==,22AP AM t ∴==.22CP t ∴=-. ························ 10分3cos302BN BQ ==,)3BQ t ∴==-.又2BC =)33CQ t ∴=-=. ·································· 11分 322t ∴=-,12t =.∴当12t =s 或34s 时,以C P Q ,,为顶点的三角形与ABC △相似. ··············· 12分7、(08四川巴中30题)(12分)30.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?(08四川巴中30题解析)解:(1)在2334y x =-+中,令0y =23304x ∴-+=12x ∴=,22x =-(20)A ∴-,,(20)B , ········································· 1分又点B 在34y x b =-+上 302b ∴=-+32b =BC ∴的解析式为3342y x =-+ ··································································· 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ············································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,。
吉林省长春市2014年中考数学真题试题(含解析)

吉林省长春市2014年中考数学真题试题一、选择题(每小题3分,共24分)1.(3分)(2014•长春)﹣的相反数是().解:﹣的相反数是,.C24.(3分)(2014•长春)不等式组的解集为()解:5.(3分)(2014•长春)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()6.(3分)(2014•长春)如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()∴AC==4上任意一点.7.(3分)(2014•长春)如图,在平面直角坐标系中,点A(2,m)在第一象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()8.(3分)(2014•长春)如图,在平面直角坐标系中,点A、B均在函数y=(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()):,得:二、填空题(每小题3分,共18分)9.(3分)(2014•长春)计算:×= .==.故答案为:题考查了二次根式的乘除法运算,属于基础题,注意掌握=10.(3分)(2014•长春)为落实“阳光体育”工程,某校计划购买m个篮球和n个排球,已知篮球每个80元,排球每个60元,购买这些篮球和排球的总费用为(80m+60n)元.11.(3分)(2014•长春)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15 .的面积为×3×10=15.12.(3分)(2014•长春)如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为24 度.13.(3分)(2014•长春)如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为.∴=∴=∴DF=,故答案为:14.(3分)(2014•长春)如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣2,点C在抛物线上,且位于点A、B之间(C 不与A、B重合).若△ABC的周长为a,则四边形AOBC的周长为a+4 (用含a的式子表示).x三、解答题(本大题共10小题,共78分)15.(6分)(2014•长春)先化简,再求值:•﹣,其中x=10.利用同分母分式的减法法则计算得到最简结果,=﹣=﹣=.16.(6分)(2014•长春)在一个不透明的袋子里装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下标号后放回,再从袋子里随机摸出1个乒乓球记下标号,请用画树状图(或列表)的方法,求两次摸出的乒乓球标号乘积是偶数的概率.∴两次摸出的乒乓球标号乘积是偶数的概率为:两步以17.(6分)(2014•长春)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.根据题意,得﹣18.(7分)(2014•长春)如图,为测量某建筑物的高度AB,在离该建筑物底部24米的点C处,目测建筑物顶端A处,视线与水平线夹角∠ADE为39°,且高CD为1.5米,求建筑物的高度AB.(结果精确到0.1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)∴tan∠ADE=19.(7分)(2014•长春)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.BC BC又BC又∵CF=BC20.(7分)(2014•长春)某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案 C (填A、B或C);(2)被调查的学生每天做作业所用时间的众数为 1.5 小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.)800×21.(8分)(2014•长春)甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y(吨)与清雪时间x(时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为270 吨;(2)求此次任务的清雪总量m;(3)求乙队调离后y与x之间的函数关系式.m之间的函=90∴解得,22.(9分)(2014•长春)探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CBD.应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.中,23.(10分)(2014•长春)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(1,﹣1),且对称轴为在线x=2,点P、Q均在抛物线上,点P位于对称轴右侧,点Q位于对称轴左侧,PA垂直对称轴于点A,QB垂直对称轴于点B,且QB=PA+1,设点P的横坐标为m.(1)求这条抛物线所对应的函数关系式;(2)求点Q的坐标(用含m的式子表示);(3)请探究PA+QB=AB是否成立,并说明理由;(4)抛物线y=a1x2+b1x+c1(a1≠0)经过Q、B、P三点,若其对称轴把四边形PAQB分成面积为1:5的两部分,直接写出此时m的值.∴解得∴×=×(坐标特征,三角形的24.(12分)(2014•长春)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.;相似三.∴∴∴t=.时,点∴DO=.∴1×t=AD+DO=3+.∴t=..时,如图②当<t≤3∵tan∠ADB==∴=∴PG=4﹣tt﹣∵tan∠NFG=tan∠ADB=,∴∴NF=GN=(﹣t﹣×(﹣)×(﹣<t≤∴=.∴∴BQ=,.∴QM=PQ=.QM=.∵tan∠ABD=,∴FM=BM=.(=+]==t+.<t≤当t时,S=t﹣t+∴BE=CE=.∴DH=CE=∴.∴,∴PN=(∵PQ=(∴=.∴∵OC=,∴SO==∴∵SP=3++﹣,,∴PN=∴∵OP=t﹣,OC=EC=∴PR=∵QR=BE=,∴PQ=PR+QR=∴.的值为、、。
2014年全国各地中考数学压轴题集锦

2014年全国各地中考数学压轴题集锦1.(北京模拟)已知抛物线y =-x2+2x +m -2与y 轴交于点A (0,2m -7),与直线y =2x 交于点B 、C (B 在C 的右侧). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得∠BFE =∠CFE ,若存在,求出点F 的坐标,若不存在,说明理由;(3)动点P 、Q 同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒.若△PMQ 与抛物线y =-x2+2x +m -2有公共点,求t 的取值范围.2.(北京模拟)在平面直角坐标系中,抛物线y 1=ax2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B .(1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长;②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)x Oy AB C P Q M x A yO B C P F E D Q GN M3.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.4.(北京模拟)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.动点P 从点A 出发,沿AC →CB →BA 边运动,点P 在AC 、CB 、BA 边上运动的速度分别为每秒3、4、5个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度沿CB 方向移动,移动过程中保持l ∥AC ,且分别与CB 、AB 边交于点E 、F .点P 与直线l 同时出发,设运动的时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动.(1)当t =_________秒时,点P 与点E 重合;当t =_________秒时,点P 与点F 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点P ′ 落在EF 上,点F 的对应点为F ′ ,当EF ′⊥AB 时,求t 的值;(3)作点P 关于直线EF 的对称点Q ,在运动过程中,若形成的四边形PEQF 为菱形,求t 的值;(4)在整个运动过程中,设△PEF 的面积为S ,直接写出S 关于t 的函数关系式及S 的最大值.x A y O C B D P QB C A Pl F E B C A 备用图5.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒). (1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.6.(北京模拟)已知二次函数y =-33mx2+3mx -2的图象与x 轴交于点A (23,0)、点B ,与y 轴交于点C . (1)求点B 坐标;(2)点P 从点C 出发以每秒1个单位的速度沿线段CO 向O 点运动,到达点O 后停止运动,过点P 作PQ ∥AC 交OA 于点Q ,将四边形PQAC 沿PQ 翻折,得到四边形PQA ′C ′,设点P 的运动时间为t .①当t 为何值时,点A ′恰好落在二次函数y =-33mx2+3mx -2图象的对称轴上; ②设四边形PQA ′C ′落在第一象限内的图形面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.7.(北京模拟)已知梯形ABCD 中,AD ∥BC ,∠A =120°,E 是AB 的中点,过E 点作射线EF ∥BC ,交CD 于点G ,AB 、AD 的长恰好是方程x2-4x +a2+2a +5=0的两个相等实数根,动点P 、Q 分别从点A 、E 出发,点P 以每秒1个单位长度的速度沿AB 由A 向B 运动,点Q 以每秒2个单位长度的速度沿EF由E 向F 运动,设点P 、Q 运动的时间为t (秒).(1)求线段AB 、AD 的长;(2)当t>1时,求△DPQ 的面积S 与时间t 之间的函数关系式; (3)是否存在△DPQ 是直角三角形的情况,如果存在,求出时间t ;如果不存在,请说明理由.A CB D P EB ′A C BD 备用图A BD Q CP E FG8.(天津模拟)如图,在平面直角坐标系中,直y =-x +4错误!未找到引用源。
2014年河南省中考数学试题(含答案)

2014年河南省中招考试数学试卷一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-35×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放置,则所构成的几何体的左视图可能是()7.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是()(A)8 (B) 9 (C)10 (D)118.如图,在Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC →CB →BA运动,最终回到A点。
设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()二、填空题(每小题3分,共21分)9.计算:3272--= .10.不等式组3x6042x0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB =1,∠DAB=600,把菱形ABCD绕点A顺时针旋转300得到菱形AB'C'D',其中点C的运动能路径为/CC,则图中阴影部分的面积为.15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 . 三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x=2-117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形;(2)填空:①当DP= cm 时,四边形AOBD 是菱形;②当DP= cm 时,四边形AOBP 是正方形.北京初中数学周老师的博客:l18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图. 请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A 测得潜艇C 的俯角为300.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为680.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数。
江苏2014年中考数学题型分析及知识点复习(含练习和答案)

江苏2014年中考数学题型分析及知识点复习(含练习和答案)考试范围:初中义务教育阶段初中数学课本标准规定的范围。
课本:苏科版七至九年级初中数学六册。
考试题型:选择、填空、解答三类。
分值分布:一、选择题八到十题(24—30分);二、填空题十到八题(30—24分);两类型试题合计十八题,共54分。
三、解答题十到十一题,合计分值76分。
其中十九至二十二题为基础题;二十三至二十六两题为中档题,二十七至二十九题为提高题(压轴题)。
一、选择和填空题:主要考查学生基础知识掌握情况,最后一到二题有一定难度。
试题知识点及范例:考点1、实数概念:数轴、相反数、非零实数、绝对值、科学记数法、近似数和有效数字,简单的实数运算等.练习:1.12()2⨯-的结果是()A.-4 B.-1 C.14-D.322.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为()A.3.61×106B.3.61×107C.3.61×108D.3.61×1093.2的相反数是()A.﹣2 B. 2 C.12-D.1.24.计算:23=.5.已知太阳的半径约为696000000m,696000000这个数保留保留两个有效数字可表示为。
6.(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()整式:单项式(系数和次数)和多项式(项数和次数);整式:同类项(合并同类项);幂的运算性质:因式分解:分解因式要进行到每一个因式都不能再分解为止.因式分解的方法及一般步骤;易错知识辨析:(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.7.若m·23=26,则m等于()A.2 B.4 C.6 D.88.已知1112a b-=,则aba b-的值是()A.12B.-12C.2 D.-29.分解因式:29a-=.10.函数y=x的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F 2014年中考数学必做题
1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A
及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)
2、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:
设MN 是圆O 的弦,过MN 的中点A
任作两弦BC 、DE ,设CD 、EB 分别交MN
于P 、Q .
求证:
AP =AQ .(初二)
3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.
求证:点P 到边AB 的距离等于AB 的一半.
4、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .
求证:CE =CF .(初二)
5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA 求证:AE =AF .(初二)
6、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)Array
7、如图,PC切圆O于C,AC为圆的直径,PEF
B、D.求证:AB=DC,BC=AD.(初三)。