广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题:05 Word版含答案答案

合集下载

广东省湛江市普通高中18学年高二数学11月月考试题01

广东省湛江市普通高中18学年高二数学11月月考试题01

上学期高二数学11月月考试题01时间120分钟 分数150分第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{1,2,3,4,5},{1,2,3},{3,4},()U U A B C A B ===⋃=则( ) A .{3} B .{5} C .{1,2,4,5} D .{1,2,3,4}2.“m .n 〉0”是“方程表示焦点在x 轴上的双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.已知命题p :0x ∃∈R ,021x =.则p ⌝是( )A.0x ∀∈R ,021x ≠B.0x ∀∉R ,021x ≠C.0x ∃∈R ,021x ≠D.0x ∃∉R ,021x ≠4.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率为( )5.已知函数x x x g x x x f cos sin )(,cos sin )(-=+=,下列四个命题:①将)(x f 的图像向右平移2π个单位可得到)(x g 的图像;②)()(x g x f y =是偶函数;③]4,4[)()(ππ-均在区间与x g x f 上单调递增;④)()(x g x f y =的最小正周期为π2.其中真命题的个数是( )A.1B.2C.3D.46.若n S 是等差数列{}n a 的前n 项和,且8320S S -=,则11S 的值为 ( )A.44B.22C.2203 D.88 7.已知点12,F F 是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A.0B.1C.2D.8.已知直线m 、n 、l 不重合,平面、β不重合,下列命题正确的是( ) A.若ββ⊂⊂n m ,,α//m ,α//n ,则βα// B.若ββ⊂⊂n m ,,n l m l ⊥⊥,,则β⊥l C.若βαβα⊂⊂⊥n m ,,,则n m ⊥; D. 若n m m //,α⊥,则α⊥n9.从221x y m n-=(其中,{1,2,3}m n ∈-)所表示的椭圆或双曲线方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为( ) A .12 B .47C .23 D .3410.若不论k 为何值,直线(2)y k x b =-+与曲线221x y -=总有公共点,则b 的取值范围是A.(B.⎡⎣C.(2,2)-D.[]2,2-11.设F 为抛物线)0(22>=p px y 的焦点,A 、B 、C 为该抛物线上三点,当FA →+FB →+FC →=0,且|FA →|+|FB →|+|FC →|=3时,此抛物线的方程为( )A .x y 22=B .x y 42=C .x y 62=D .x y 82=12.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过2F 的直线与圆222b y x =+相切于点A ,并与椭圆C 交与不同的两点P ,Q ,如图,若A 为线段PQ 的靠近P 的三等分点,则椭圆的离心率为A .3B .3C .3D .3第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分.将答案填写在答题纸上) 13.过点A(1,2)且与原点距离最大的直线方程是 14.直线3430x y -+=与圆221x y +=相交所截的弦长为_________ 15.若P 为抛物线210yx =上的动点,则点P 到直线50x y ++=的距离的最小值为 .16.已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分) 已知命题222:8200,:210(0)p x x q x x m m -->-+->>,若p 是q 的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知函数f(x)=2sinxcosx +cos2x. (Ⅰ)求()4f π的值;(Ⅱ)设3(0,),4πα∈1()25f α=,求cos 2α的值.19.(本小题满分12分)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式. (Ⅱ)设 nn a nb =,求数列{n b }的前n 项和Sn .20.(本题满分12分)甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹). (1)如果甲只射击1次,求在这一枪出现空弹的概率; (2)如果甲共射击3次,求在这三枪中出现空弹的概率;(3)如果在靶上画一个边长为10的等边PQR ∆,甲射手用实弹瞄准了三角形PQR 区域随机射击,且弹孔都落在三角形PQR 内。

广东省湛江市普通高中2017-2018学年高二数学11月月考试题05

广东省湛江市普通高中2017-2018学年高二数学11月月考试题05

上学期高二数学11月月考试题05考试时间:120分钟总分:150分选择题:(本大题共10小题,每题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列给出的赋值语句中正确的是()A.3=A B. M= -M C. B=A=2 D. x+y=02.对于程序:试问,若输入m=-4,则输出的数为( )A.9 B.-7C.5或-7 D.53.图1中的程序框图的循环体执行的次数是()A. 49 B.50 C.100 D.994、从装有2个红球和2个白球的口袋里任取2个球,那么互斥而不对立的两个事件是( )(A) 至少1个白球,都是白球 (B) 至少1个白球,至少1个红球(C) 至少1个白球,都是红球 (D) 恰好1个白球,恰好2个白球5、用秦九韶算法求多项式654323567983512)(xxxxxxxf++++-+=的值,当4-=x时,4v 的值为 ( ) A .220 B .124 C .-845D .-576、某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.每组命中个数的茎叶图如下.则下面结论中错误的一个是( ) A .甲的极差是29 B .乙的众数是21 C .甲罚球命中率比乙高 D .甲的中位数是247.是由一个圆、一个三角形和一个长方形构成的图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则相邻两个图形颜色不相同的概率为( ) A.34 B.38 C.14 D.188.一个十字路口的交通信号灯,红灯、黄灯、绿灯亮的时间分别为30秒、5秒、60秒, 则某辆车到达路口,遇见绿灯的概率为( )A. 951B. 1912C. 1910D. 1919、下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是 A. 游戏1和游戏3 B.游戏1 C. 游戏2 D. 游戏310、甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中{},1,2,3,4,5,6a b∈,若1a b-≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( )A. 49 B.29 C.718 D.19二.填空题:(每小题5分,共25分)11、已知程序如下,若 a = 35 ,则程序运行后结果是。

广东省湛江市普通高中高二数学11月月考试题04

广东省湛江市普通高中高二数学11月月考试题04

上学期高二数学11月月考试题04一、选择题:本大题共10个小题,每小题5分,共50分手多日,近况如何? 1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2则原梯形的面积为 A. 2 B. 2 C. D. 43.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为 1cm,2cm,3cm 的长方体木块的顶点A 处沿表面达到顶点B 处 (如图所示),这只蚂蚁走的路程是( )A .cm 14B .cm 23C .cm 26D .1+cm 135.直线l 与直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为 ( ) A .23B .32 C .-23D . -326.设集合)}0()1()1(|),{(},4|),{(22222>≤-+-=≤+=r r y x y x N y x y x M 当N N M =⋂时,r 的取值范围是 ( )A 、]12,0[-B 、]1,0[C 、]22,0(-D 、)2,0(7.连掷两次骰子得到的点数分别为m 和n ,记向量),(n m a =与向量)1,1(-=b 的夹角为θ,则]2,0(πθ∈的概率是 ( )A.125B.21C.127 D.65AB8.以下给出的是计算111124620+++⋅⋅⋅+的值的一个程序框图,如下左图所示,其中判断框内应填入的条件是 ( )A .10i >B .10i <C .20i >D .20i <9.为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如上右图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为 A .2.7,78 B .2.7,83 C .0.27,78 D .0.27,8310.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是 ( )A 、相切B 、相交C 、相离D 、相切或相交 二、填空题:本大题共5小题,每小题5分,共25分.把答案写在横线上.11.在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率分布直方图,[)cm cm 165,160组的小矩形的高为a ,[)cm cm 170,165组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数12. 将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为 . 13.已知M (-2,0), N (4,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是估计当使用年限为10年时,维修费用是15.已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为2正方形.若,则球O 的体积为_________.三、解答题。

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题:04 Word版含答案

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题:04 Word版含答案

上学期高二数学11月月考试题04一、选择题:本大题共10个小题,每小题5分,共50分手多日,近况如何? 1.用“辗转相除法”求得459和357的最大公约数是( )A .3B .9C .17D .51 2则原梯形的面积为 A. 2 B. 2 C. D. 43.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为1cm,2cm,3cm 的长方体木块的顶点A 处沿表面达到顶点B 处 (如图所示),这只蚂蚁走的路程是( )A .cm 14B .cm 23C .cm 26D .1+cm 135.直线l 与直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为 ( ) A .23B .32 C .-23D . -326.设集合)}0()1()1(|),{(},4|),{(22222>≤-+-=≤+=r r y x y x N y x y x M 当N N M =⋂时,r 的取值范围是 ( )A 、]12,0[-B 、]1,0[C 、]22,0(-D 、)2,0(7.连掷两次骰子得到的点数分别为m 和n ,记向量),(n m a =与向量)1,1(-=b 的夹角为θ,则]2,0(πθ∈的概率是 ( )A.125B.21C.127 D.65AB8.以下给出的是计算111124620+++⋅⋅⋅+的值的一个程序框图,如下左图所示,其中判断框内应填入的条件是 ( )A .10i >B .10i <C .20i >D .20i <9.为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如上右图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则,a b 的值分别为 A .2.7,78 B .2.7,83 C .0.27,78 D .0.27,8310.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与该圆的位置关系是 ( ) A 、相切 B 、相交 C 、相离 D 、相切或相交二、填空题:本大题共5小题,每小题5分,共25分.把答案写在横线上. 11.在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率分布直方图,[)cm cm 165,160组的小矩形的高为a ,[)cm cm 170,165组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数12. 将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为 . 13.已知M (-2,0), N (4,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是估计当使用年限为10年时,维修费用是15.已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为2正方形.若,则球O 的体积为_________.三、解答题。

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题:08 Word版含答案答案

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题:08 Word版含答案答案

上学期高二数学11月月考试题08一、填空题:(每小题3分,共36分)1.经过)9,1(-A ,)4,6(B 两点的直线的点方向式方程为_____5971--=+y x ____ 2.已知点)2,5(A ,)4,1(-B ,则线段AB 的中垂线所在直线的点法向式方程为 0)3(2)2(6=-+--y x3.在三阶行列式987654321中,元素4的代数余子式的为 9832-4.计算矩阵乘积=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛1001v u y x ⎪⎪⎭⎫⎝⎛--v u y x 5.已知向量a ,b 满足1a = ,2b =, a 与b 的夹角为60-6.已知2132PP P =,若211P P PP λ=,则λ等于 52- 7.无论m 为何实数,直线011)3()12(=+-+--m y m x m 恒过定点 )3,2( 8.若直线01:=+-my x l 的倾斜角是直线042=--y x 的倾斜角的两倍,则直线l 的一般式方程为 ___0434=++y x _9.已知点)1,3(A ,)1,4(--B ,直线l 过点)3,2(-P 且与线段AB 相交,则直线l 的斜率k 的取值范围是______),2[]52,(+∞⋃--∞____10.设点)2,2(A ,)1,4(B ,在x 轴上求一点P ,使BP AP ⋅最小,此时=∠APB 1010arccos11.在ABC ∆中,点)3,4(A ,AC 边上的中线BD :010134=-+y x ,ABC ∠的角平分线BT :052=-+y x ,则BC 边所在直线的一般式方程为 057=++y x12.若对于n 个向量n a a a ,,, 21,存在n 个不全为0的实数n k k k ,,, 21,使得02211=+++n n a k a k a k ,则称n a a a ,,, 21为“线性相关”,依此规定,能说明)2,2()1,1()0,1(321=-==a a a ,,“线性相关”的实数321k k k ,,之比为 1:2:4-二、选择题:(每小题3分,共12分)13. 两直线0111=++c y b x a 与0222=++c y b x a 垂直的充要条件是( C )(A )12121=b b a a (B )12121-=b b aa (C )02121=+b b a a (D )02121=-b b a a 14.如果执行右面的程序框图,输入6,4n m ==, 那么输出的p 等于( B ) (A )720 (B ) 360 (C ) 240 (D ) 120 15.在ABC ∆中,有4个命题:① BC AC AB =-; ② 0=++CA BC AB ;③若0)()(=-⋅+,则ABC ∆是等腰三角形; ④若0>⋅,则ABC ∆为锐角三角形. 上述命题正确的是( C )(A )①② (B )①④ (C )②③ (D )②③④16.已知直线l ∶0),(=y x f ,点),(111y x P 是直线l 上一点,点),(222y x P 是直线l 外一点,则方程0),(),(),(2211=++y x f y x f y x f 所表示直线与直线l 的位置关系是( A ) (A )平行 (B ) 重合 (C )垂直 (D )斜交 三、解答题:(8分+8分+10分+12分+14分,共52分) 17.求过点)3,2(-P 且与直线042=+-y x 的夹角为55arccos 的直线l 的一般式方程。

湛江市普通高中2017-2018学年高二数学11月月考试题11

湛江市普通高中2017-2018学年高二数学11月月考试题11

上学期高二数学11月月考试题11一、选择题1.二项式()n1sinx +的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[0,2π]内的值为 ( )A .6π或3π B .6π或65π C .3π或32π D .3π或65π2.在()()()567111x x x +++++的展开式中,含4x 项的系数是等差数列 35na n =-的 ( )A .第2项B .第11项C .第20项D .第24项 3.设(3x 31+x 21)n展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2项的系数是 ( )A .21 B .1 C .2 D .34.三边长均为正整数,且最大边长为11的三角形的个数为( ) A.25 B. 26 C.36 D.375.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A .10种B .52种 C.25种 D.42种6.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种7.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是( ) A.4 B.7 C.12 D.168.把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( ) (A )12种 (B )20种 (C )24种 (D )48种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )(A )88A 种 (B )48A 种 (C )44A ·44A 种 (D )44A 种10.1063被8除的余数是 ( )A .1B .2C .3D .7 二、填空题(题型注释)11.整数630的正约数(包括1和630)共有 个.12.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直角三角形的个数为 .13.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则123a a a ++的值为__________。

广东省湛江市普通高中2017-2018学年高二数学11月月考试题03

广东省湛江市普通高中2017-2018学年高二数学11月月考试题03

上学期高二数学11月月考试题03一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. +10y -=的倾斜角是 ( )A .150º B.135º C.120º D.30º答案:C解析:直线斜率k =,则倾斜角为120º. 2. 下列说法中正确的有( )A .一组数据的平均数一定大于这组数据中的每个数据B .一组数据不可能有两个众数C .一组数据的中位数一定是这组数据中的某个数据D .一组数据的方差越大,说明这组数据的波动越大 答案:D解析:一组数据的平均数介于这组数据中的最大数据与最小数据之间,所以A 错;众数是一组数据中出现最多的数据,所以可以不止一个,B 错;若一组数据的个数有偶数个,则其中中位数是中间两个数的平均值,所以不一定是这组数据中的某个数据,C 错;一组数据的方差越大,说明这组数据的波动越大,D 对.3.抛掷一颗骰子,则事件“点数为奇数”与事件“点数大于5”是( )A .对立事件B .互斥事件但不是对立事件C .不是互斥事件D .以上答案都不对答案:B解析:事件“点数为奇数”即出现1点,3点,5点,事件“点数大于5”即出现6点,则两事件是互斥事件但不是对立事件. 4. 把(2)1010化为十进制数为( )A .20B .12C .10D .11答案:C3210(2)1010=12+02+12+02=10⨯⨯⨯⨯解析:5. 某程序框图如图1所示,现输入如下四个函数:则可以输出的函数是( ) A .2()f x x = B .()sin f x x =答案:B解析:有程序框图可知可以输出的函数既是奇函数,又要存在零点.满足条件的函数是B . 6. 设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离小于等于2的概率是( ) A .4π B .22π- C .6π D .44π- 答案:A解析:平面区域D 的面积为4,到坐标原点的距离小于等于2的点所到区域为π,有几何概型的概率公式可知区域D 内一个点到坐标原点的距离小于等于2的概率为4π. 7.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ) A .7 B .9 C .10D .15 答案:C解析:方法一:从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人.方法二:总体中做问卷A 有450人,做问卷B 有300人,做问卷C 有210人,则其比例为15:10:7.抽到的32人中,做问卷B 有10321032=⨯人. 8.如图2等腰三角形和菱形,则该几何体体积为( )A . . C .4 D .2 答案:A解析:有三视图可知几何体是底面为菱形,对角线分别为2和图2面菱形对角线的交点,高为3,所以体积为11V=232⨯⨯⨯9.如图3是某算法的程序框图,则程序运行后输入的结果是( )A .1B .2C .3D .4 答案:C解析:当1,1,1;k a T === 当2,0,1;k a T ===当3,0,1;k a T ===当4,1,2;k a T ===当5,1,3k a T ===,则此时=16k k +=,所以输出T=3. 10.函数y =能成为该等比数列的公比的数是( ) A .34B C答案:D解析:函数等价为0,9)5(22≥=+-y y x ,表示为圆心在)0,5(半径为3的上半圆,圆上点到原点的最短距离为2,最大距离为8,若存在三点成等比数列,则最大的公比q 应有228q =,即2,42==q q ,最小的公比应满足282q =,所以21,412==q q ,所以公比的取值范围为221≤≤q 不可能成为该等比数列的公比. 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.)11.点B 是点A (1,2,3)在坐标面xOy 内的射影,其中O 为坐标原点,则OB 等于 ________.解析:点B 是点A (1,2,3)在坐标面xOy 内的射影,可知B (1,2,0),有空间两点的距离公式可知=5OB .12.从一堆苹果中任取10只,称得它们的质量如下(单位:克): 125 120 122 105 130114 116 95 120 134,则样本数据落在[)114124, 内的频率为________. 答案:0.7解析:样本数据落在[)114124, 内有7个,所以频率为0.7. 13.在平面直角坐标系中,设直线:0l kx y -+=与圆22:4C x y +=相交于A 、B 两点,M 为弦AB 的中点,且C 1M =,则实数k =________. 答案:1±解析:有圆的性质可知CM AB ⊥,又C 1M =,有点到直线距离公式可得1k =±. 14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量 分别为1234,,,x x x x (单位:吨).根据如图4所示的程序框图, 若1234,,,x x x x 分别为1, 2,3, 4,则输出的结果S 为________. 答案:52解析:有算法的程序框图的流程图可知输出的结果S 为1234,,,x x x x 的平均值, 即为1+2+3+45=42. 15.设11(,)M x y ,22(,)N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为 . ①不论δ为何值,点N 都不在直线l 上; ②若1δ=,则过M ,N 的直线与直线l 平行; ③若1δ=-,则直线l 经过MN 的中点;④若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交. 答案:①②③④解析:不论δ为何值,220ax by c ++≠,点N 都不在直线l 上,①对;若1δ=,则1212)()0a x x b y y -+-=(,即1212=MN l y y ak k x x b-==--,过M ,N 的直线与直线l 平行, ②对;若1δ=-则12121212+)(+)+)(+)+20+022x x y y a x x b y y c a b c +=⇒+=((,直线l 经过MN 的中点, ③对;点M 、N 到直线l的距离分别为12d d ==,若1δ>,则112212++ax by c ax by c d d +>+⇒>,且1122+(+ax by c ax by c ++())>0,即点M 、N 在直线l 的同侧且直线l 与线段MN 的延长.图4三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x 吨收取的污水处理费y 元,运行程序如图5所示: (Ⅰ)写出y 与x 的函数关系;(Ⅱ)求排放污水150吨的污水处理费用. 16解:(Ⅰ)y 与x 的函数关系为:…………8分(Ⅱ)因为150100,m =>所以15025(150100)1400y =+-=,故该厂应缴纳污水处理费1400元. …………12分17.(本题满分12分)已知向量(,1)a x =-,(3,)b y =,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,39},. (Ⅰ)求//a b 的概率; (Ⅱ)求a b ⊥的概率.17解析:则基本事件空间包含的基本事件有:(-1,1),(-1,3),(-1,9),(1,1),(1,3),(1,9),(3,1),(3,3),(3,9),共9种. …2分(Ⅰ)设“//a b ”事件为A ,则3xy =-. 事件A 包含的基本事件有(-1,3), 共1种. ∴//a b 的概率为()19P A =. …7分 (Ⅱ)设“a b ⊥” 事件为B ,则3y x =.事件A 包含的基本事件有(1,3), (3,9),共2种. ∴a b ⊥的概率为()29P B =. ………12分 18.(本题满分12分)如图6是歌手大奖赛中,七位评委给甲、乙两名选手打出的分数的茎叶图.(Ⅰ)现将甲、乙所得的一个最高分和一个最低分均去掉后,分别求甲、乙两名选手得分的众数,中位数,平均数;50131005015(50)15025(100)INPUT xIF x THEN y x ELSEIF x THEN y x ELSEy x END IF END IF END≤=≤=+-=+-图 566图613(50)5015(50)(50100)15025(100)(100)m m y m m m m ≤⎧⎪=+-<≤⎨⎪+->⎩(Ⅱ)在(Ⅰ)的条件下用方差说明甲、乙成绩的稳定性.(注:方差2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-,其中x ,为数据12,,,n x x x ⋅⋅⋅的平均数)18.解析:将甲、乙所得的一个最高分和一个最低分均去掉后,甲的分数为85,84,85,85,86;乙的分数为84,84,86,84,87. ……2分(Ⅰ)甲的众数,中位数,平均数分别为85,85,85;乙的众数,中位数,平均数分别为84,84,85. ………6分(Ⅱ)在(Ⅰ)的条件下,甲的方差为2222212[(8585)(8485)(8585)+(8585)+(8685)]=55-+-+---,乙的方差为2222218[(8485)(8485)(8685)+(8485)+(8785)]=55-+-+---.……10分甲的方差比乙的方差小,则甲的成绩稳定些. ………12分19.(本题满分12分)某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: [)40,50,[)50,60,…, []90,100后得到如下频率分布直方7. (Ⅰ)求分数在[)70,80内的频率;(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分;(Ⅲ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样 本看成一个总体,从中任意选取2人, 求其中恰有1人的分数不低于90分的概率. 19解析:(Ⅰ)分数在[)80,70内的频率为:1(0.0100.0150.0150.0250.005)1010.70.3-++++⨯=-= …3分(Ⅱ)平均分为:450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=……7分(Ⅲ)由题意,[)90,80分数段的人数为:0.256015⨯=人[]100,90分数段的人数为:0.05603⨯=人; ……9分∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本, ∴[)90,80分数段抽取5人,分别记为A ,B ,C ,D ,E ;[]100,90分数段抽取1人, 记为M. 因为从样本中任取2人,其中恰有1人的分数不低于90分,则另一人的图7分数一定是在[)90,80分数段,所以只需在分数段[)90,80抽取的5人中确定1人. 设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件A , 则基本事件空间包含的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B ,C), (B ,D),(B ,E),(C ,D),(C ,E),(D ,E),(A ,M),(B ,M),(C ,M),(D ,M), (E ,M)共15种.事件A 包含的基本事件有(A ,M ),(B ,M ),(C ,M ),(D ,M ),(E ,M )5种. ∴恰有1人的分数不低于90分的 概率为()51.153P A ==. ……12分 20.(本题满分13分)如图8,圆柱1OO 内有一个三棱柱111ABC A B C -,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 直径. (Ⅰ)证明:平面11A ACC ⊥平面11B BCC ;(Ⅱ)设12AB AA ==,在圆柱1OO 内随机选取一点,记该点取自于三棱柱111ABC A B C -内的概率为p . (i )当点C 在圆周上运动时,求p 的最大值;(ii )当p 取最大值时,求直线1CB 与平面11C COO 所成的角的正弦值. 20解析:(Ⅰ)因为1AA ⊥平面ABC ,BC ⊂平面ABC ,所以1AA ⊥BC ,因为AB 是圆O 直径,所以BC ⊥AC ,又AC ⋂1AA A =,所以BC ⊥平面11A ACC , 而11BC B BCC ⊂,所以平面11A ACC ⊥平面11B BCC . ……3分 (Ⅱ)(i )有AB=AA 1=2,知圆柱的半径=1r ,其体积2V=22r r ππ⋅=三棱柱111ABC-A B C 的体积为11V =BC AC 2BC AC 2r ⋅⋅=⋅,又因为222BC +AC =AB =4,所以22BC +AC BC AC =22⋅≤,当且仅当时等号成立,从而1V 2≤, 故11V p V π=≤当且仅当,即OC AB ⊥时等号成立, 所以p 的最大值是1π. ………8分(ii )由(i )可知,p 取最大值时,OC AB ⊥,即1111O C O B ⊥ , 111O O O B ⊥图8则11O B ⊥平面11C COO ,连1O C ,则11O CB ∠为直线1CB 与平面11C COO 所成的角,则11111sin O CB O B CB ∠=…………13分21.(本题满分14分)在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4)1C x y -+-=. (Ⅰ)若过点1(1,0)C -的直线l 被圆2C 截得的弦长为65, 求直线l 的方程;(Ⅱ)设动圆C 同时平分圆1C 的周长、圆2C 的周长,如图9(i )证明:动圆圆心C 在一条定直线上运动;(ii )动圆C 是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21 解析:(Ⅰ)设直线l 的方程为(1)y k x =+,即0kx y k -+=.因为直线l 被圆2C 截得的弦长为65,而圆2C 的半径为1,所以圆心2(3 4)C ,到l :0kx y k -+=244451k k -=+.化简,得21225120k k -+=,解得43k =或34k =.所以直线l 的方程为4340x y -+=或3430x y -+=. ……4分(Ⅱ)(i )证明:设圆心( )C x y ,,由题意,得12CC CC =, .化简得30x y +-= 即动圆圆心C 在定直线30x y +-=上运动. …………8分(ii )圆C 过定点,设(3)C m m -,,则动圆C于是动圆C 的方程为222()(3)1(1)(3)x m y m m m -+-+=+++-整理,得22622(1)0x y y m x y +----+=.图9由2210 620x y x y y -+=⎧⎨+--=⎩,,得1 2x y ⎧=⎪⎨⎪=⎩或1 2x y ⎧=⎪⎨⎪=⎩所以定点的坐标为(1,(1++. ……14分。

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题09

广东省湛江市普通高中2017-2018学年上学期高二数学11月月考试题09

上学期高二数学11月月考试题09二、选择题(每题只有一个选项正确,每题3分,共36分)1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则12:V V =( ) A . 1:3 B . 1:1 C . 2:1 D. 3:1 2.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A .0B .1C .2D .33. 方程1x -= ) A .一个圆 B .两个半圆 C .两个圆 D .半圆 4.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 7.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.28.直线13kx y k -+=,当k变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)9.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤ C .324k k ≥≤或 D .2k ≤ 10.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .811.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程 A. 032=-+y x B. 03=--y x C. 01=-+y x D. 052=--y x12.直线l 过点),(02-,l 与圆x y x 222=+有两个交点,斜率k 的取值范围( ) A .),(2222- B .),(22- C .),(4242- D .),(8181- 二、填空题(本大题共4小题,每小题3分,共12分)13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .14.若曲线21x y -=与直线b x y +=始终有交点,则b 的取值范围是___________;若有一个交点,则b 的取值范围是________;若有两个交点,则b 的取值范围是_______; 15.下列命题中: (1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行. 其中正确的个数有_____________;16.已知点A 在x 轴上,点B (1,2,0),且则点A 的坐标是_________________. 三、解答题(本大题共小题,每小题分,共52分) 17.(10分)已知直线A x B y C ++=0, (1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x 轴相交; (4)系数满足什么条件时是x 轴;(5)设()P x y 00,为直线Ax B y C ++=0上一点, 证明:这条直线的方程可以写成()()A x x B y y -+-=000.18.(10分)①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.19.(10分)已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为72,求圆C 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上学期高二数学11月月考试题05
考试时间:120分钟总分:150分
选择题:(本大题共10小题,每题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列给出的赋值语句中正确的是()
A.3=A B. M= -M C. B=A=2 D. x+y=0
2.对于程序:
试问,若输入m=-4,则输出的数为()
A.9 B.-7
C.5或-7 D.5
3.图1中的程序框图的循环体执行的次数是()
A.49 B.50 C.100 D.99
4、从装有2个红球和2个白球的口袋里任取2个球,那么互斥而不对立的两个事件是( )
(A) 至少1个白球,都是白球(B) 至少1个白球,至少1个红球
(C) 至少1个白球,都是红球(D) 恰好1个白球,恰好2个白球
5、用秦九韶算法求多项式
6
5
4
3
23
5
6
79
8
35
12
)
(x
x
x
x
x
x
x
f+
+
+
+
-
+
=的值,当4-
=
x
图1
时,4v 的值为 ( ) A .220 B .124 C .-845
D .-57
6、某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.每组命中个数的茎叶图如下.则下面结论中错误的一个是( ) A .甲的极差是29 B .乙的众数是21 C .甲罚球命中率比乙高 D .甲的中位数是24
7.是由一个圆、一个三角形和一个长方形构成的图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则相邻两个图形颜色不相同的概率为( ) A.34
B.38
C.14
D.1
8
8.一个十字路口的交通信号灯,红灯、黄灯、绿灯亮的时间分别为30秒、5秒、60秒, 则
某辆车到达路口,遇见绿灯的概率为( )
A. 951
B. 1912
C. 1910
D. 191
9、下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是 A. 游戏1和游戏3 B.游戏1 C. 游戏2 D. 游戏3
10、甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙
猜的数字记为b,其中
{}
,1,2,3,4,5,6
a b∈
,若
1
a b
-≤
,就称甲乙“心有灵犀”.现任意找两人玩
这个游戏,则他们“心有灵犀”的概率为( )
A. 4
9 B.
2
9 C.
7
18 D.
1
9
二.填空题:(每小题5分,共25分)
11、已知程序如下,若 a = 35 ,则程序运行后结果是。

12、三个数72,120,168的最大公约数是__________。

13、二进制数1011001(2)化成十进制数为;化成八进制
数为。

14、某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练
习,每人投10次,投中的次数如下表:
15、随机向边长为2的正方形ABCD中投一点M,则点M与A的距离不小于1且使∠CMD 为锐角的概率________。

三.解答题
16、(本小题满分12分)某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率,
(2)至少射中7环的概率;
(3)射中环数不足8环的概率.
17、(本小题满分12分)某中学高三年级男子体育训练小组2012年5月测试的50米跑的成绩(单位:s)如下:6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,设计一个算法,从这些成绩中搜索出小于6.8 s的成绩,并画出程序框图.
18、(本小题满分12分)甲、乙两人各有四张卡片,甲的卡片上分别标有数字1、2、3、4,
乙的卡片上分别标有数字0、1、3、5.两人各自从自己的卡片中随机抽出一张,甲抽出卡片上的数字记为a,乙抽出卡片上的数字记为b,游戏规则是:若a和b的积为奇数,则甲赢,否则乙赢.
(1)请你运用概率计算说明这个游戏是否公平.
(2)若已知甲抽出的数字是奇数,求甲赢的概率.
19、(本小题满分12分)
高一年级共有学生1500人,为了了解某次考试数学成绩的分布情况,从50个考场的1500名考生中抽取了每个考场中的3号和23号考生的成绩组成样本,这100名考生的成绩都在区间[60,160],样本频率分布表如下:
内Array (Ⅰ)指出本题中抽取样本的方法,并求表中w的值;
(Ⅱ)作出样本频率分布直方图;
(Ⅲ)根据样本估计全年级数学成绩在120分以上人数.
20.(本小题满分13分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
(1) 画出散点图.观察散点图,说明两个变量有怎样的相关性。

(2) 用最小二乘法计算利润额y 对销售额x 的回归直线方程.
(3) 当销售额为4(千万元)时,估计利润额的大小.
122
1
,n
i i
i n
i
i x y nx y
b a y bx
x
nx ==-=
=--∑∑
21.(本小题满分14分)根据右图所示的程序框图,将输出的
,x y
依次记为
122011122011,,,,,,,.x x x y y y ⋅⋅⋅⋅⋅⋅
(1)求出数列{}n x ,{}n y 的通项公式;
(2)求数列
{}(2011)n n x y n +≤的前n 项的和S n 。

答案一.选择题:(每小题5分,共50分)
18、(1)将甲、乙所得ab的所有可能结果列表如下:。

相关文档
最新文档