大一下学期高等数学期中考试试卷及答案教学内容
福建省高一下学期期中考试数学试题(解析版)

一、单选题1.已知,则的虚部为( )()3i 2i z =⋅+z A . B . C . D .12-2i 2i -【答案】B【分析】利用复数的乘方及乘法运算化简复数,即可确定其虚部.【详解】,虚部为.()()32i 2i i 2i 2i i 12i z =⋅+=-⋅+=--=-2-故选:B2.如图,已知等腰直角三角形是一个平面图形的直观图,,斜边,则这个O A B '''O A A B ''''=2O B ''=平面图形的面积是( )A .B .1CD 【答案】A【分析】根据斜二测画法的定义,画出平面图形,求得原三角形的直角边,从而面积可得. 【详解】由题意,利用斜二测画法的定义,画出原图形,∵是等腰直角三角形,,斜边, Rt O A B '''△O A A B ''''=2O B ''=∴ O A B ''''==∴,2,2OB O B OA O A ''''====∴原平面图形的面积是.122⨯⨯=故选:A .3.,,是两两不同的三条直线,下面四个命题中,真命题是( )a b cA .若直线,异面,,异面,则,异面 a b b c a cB .若直线,相交,,相交,则,相交 a b b c a cC .若,则,与所成的角相等a b A a b c D .若,,则a b ⊥r rb c ⊥a c A 【答案】C【分析】由空间中直线与直线的位置关系进行分析判断即可.【详解】对于A ,若直线,异面,,异面,则,可能是平行、相交、异面的任意一种, a b b c a c 如在正方体中,与异面,与异面,, 1111ABCD A B C D -AD 1BD 1BD 11B C 11AD B C ∥或与异面,与异面,与相交于点,AD 1BD 1BD CD AD CD D 或与异面,与异面,与异面,故选项A 错误;AD 1BD 1BD 11A B AD 11A B 对于B ,若直线,相交,,相交,则,可能是平行、相交、异面的任意一种, a b b c a c 如在正方体中,与相交于点,与相交于点,, 1111ABCD A B C D -AB 1BD B 1BD 11D C 1D 11AB D C ∥或与相交于点,与相交于点,与相交于点,AB 1BD B 1BD 1AD 1D AB 1AD A 或与相交于点,与相交于点,与异面,故选项B 错误; AB 1BD B 1BD 11A D 1D AB 11A D 对于C ,由异面直线所成角的定义,选项C 正确;对于D ,若,,则与可能是平行、相交、异面的任意一种,a b ⊥r rb c ⊥a c 如在正方体中,,,, 1111ABCD A B C D -1AB AA ⊥111AA A B ⊥11AB A B ∥或 ,,与相交于点,1AB AA ⊥1AA BC ⊥AB BC B 或 ,,与异面,故选项D 错误. 1AB AA ⊥111AA A D ⊥AB 11A D 故选:C.4.已知平面向量与的夹角为,则实数的值为( ) ,a b a b ()30,b a a λ-⊥λA .B .2C .D .2-12-12【答案】B【分析】根据向量垂直时数量积等于0,结合数量积运算律以及数量积的定义,展开计算,即得答案.【详解】因为,所以,()b a a λ-⊥()0b a a λ-⋅= 即,故,20a b a λ⋅-=130,2λλ=∴=故选:B5.平行四边形ABCD ,点E 满足,,则( ) 4AC AE = ()2,R 2DE AB AD λμλμ=+∈λμ+=A .B .C .D .1181412【答案】A【分析】先根据平面向量的线性运算将用表示,再根据平面向量基本定理即可得解.DE ,AB AD【详解】, ()11134444DE AE AD AC AD AB AD AD AB AD =-=-=+-=- 又因为,22DE AB AD λμ=+所以,所以,124324λμ⎧=⎪⎪⎨⎪=-⎪⎩1238λμ⎧=⎪⎪⎨⎪=-⎪⎩所以. 131288λμ+=-=故选:A.6.“阿基米德多面体”这称为半正多面体(semi-regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知 ) AB =A .18πB .16πC .14πD .12π【答案】A【分析】根据正方体的对称性可知:该半正多面体外接球的球心为正方体的中心,进而可求球的O 半径和表面积.【详解】如图,在正方体中,取正方体、正方形的中心、,连接1111F EFG E G H H -1111E F G H O 1O ,1111,,,E G OO OA O A∵分别为的中点,则 ,A B 1111,E H H G 112E G AB ==∴正方体的边长为, 3EF =故,可得 1132OO O A ==OA ==根据对称性可知:点到该半正多面体的顶点的距离相等,则该半正多面体外接球的球心为,半O O径, R OA ==故该半正多面体外接球的表面积为.224π4π18πS R ==⨯=故选:A.7.已知正四面体中,为的中点,则与所成角的余弦值为 A BCD -M AB CM ADA .B C D .1223【答案】C【分析】设正四面体A ﹣BCD 的棱长为2,取BD 的中点N ,连结MN ,CN 则MN ∥AD ,∠CMN 或其补角是CM 与AD 所成的角,由此能求出直线CM 与AD 所成角的余弦值. 【详解】如图,设正四面体A ﹣BCD 的棱长为2,取BD 的中点N , 连结MN ,CN ,∵M 是AB 的中点,∴MN ∥AD , ∴∠CMN 或其补角是CM 与AD 所成的角,设MN 的中点为E ,则CE ⊥MN ,在△CME 中,ME ,CM =CN 12==∴直线CM 与AD 所成角的余弦值为cos ∠CME .ME CM ===故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是基础题.8.若圆锥的表面积为,其侧面展开图为一个半圆,则下列结论正确的为( ) 3πA .圆锥的母线长为1 B .圆锥的底面半径为2C D .圆锥的侧面积为π【答案】C【分析】设圆锥的底面半径为,母线为,根据侧面展开图为一个半圆,得出半径与母线的关系,r l 结合圆锥的表面积求出半径与母线,然后对选项进行逐一判断即可. 【详解】设圆锥的底面半径为,母线为,r l 由侧面展开图为一个半圆,则,所以,1222l r ππ⨯⨯=2l r =圆锥的表面积为,则,, 2233lr r r ππππ+==1r =2l =圆锥的高h ==圆锥的体积为,213r h π=圆锥的侧面积为, 2rl ππ=故选:C二、多选题9.已知复数满足,则( ) z ()2i 13i z +=+A B .在复平面内对应的点位于第二象限 z C . D .满足方程44z =z 2220z z -+=【答案】AD【分析】根据复数的运算及其几何意义,逐个选项判断即可.【详解】对于A :,故A 正确; 13i1i 2iz +==++对于B :在复平面内对应的点位于第四象限,故B 错误;1i z =-对于C :,故C 错误; 24422(1i)(1i)(2i)4z =⎡⎤=++==-⎣⎦对于D :,故D 正确;. 2222(1i)2(1i)22i 22i 20z z -+=+-++=-++=故选:AD .10.已知平面向量,,则下列说法正确的是( )()1,a λ= ()2,1b =-A .若,则B .若,则0λ=2a b +=//a b 12λ=-C .若与的夹角为锐角,则D .若,则在上的投影向量为 a b2λ<1λ=-a b 35b -【答案】BD【分析】利用向量模及共线向量的坐标表示,计算判断AB ;利用向量夹角公式计算判断C ;求出投影向量判断D 作答.【详解】平面向量,, ()1,a λ= ()2,1b =-对于A ,当时,,因此,A 错误;0λ=(1,1)a b =- +||a b +=对于B ,,则有,解得,B 正确;//a b 21λ-=12λ=-对于C ,与的夹角为锐角,则且与不共线,当时,,a b 0a b ⋅> a b0a b ⋅> 1(2)10λ⨯-+⨯>解得,由B 选项知,当时,与不共线,因此,C 错误;2λ>12λ≠-a b 2λ>对于D ,当时,,而1λ=-3a b ⋅=-||b == 因此在上的投影向量为,D 正确.a b 35||||a b b b b b ⋅⋅=-故选:BD11.如图,AC 为圆锥SO 底面圆O 的直径,点B 是圆O 上异于A ,C 的动点,,则下1SO OC ==列结论正确的是( )A .圆锥SOB .三棱锥S -ABC 体积的最大值为13C .∠SAB 的取值范围是ππ,43⎛⎫⎪⎝⎭D .若,F 为线段AB 上的动点,则 AB BC =SF CF +1【答案】ABD【分析】A 求出母线长、底面周长,应用扇形面积公式求侧面积;B 棱锥体积最大只需到距B AC 离最大,并确定最大值,应用棱锥体积公式求体积;C 注意确定大小即可判断;D AB BC =SAB ∠将两个三角形展开为一个平面,由三点共线求最小值即可.【详解】A :由题设,圆锥母线,底面周长为,故侧面积为,对; l =2π2πr =12π2⨯=B :要使三棱锥S -ABC 体积最大,只需最大即可,即到距离最大,为,ABC S A B AC 1r =所以体积的最大值为,对;111112323⨯⨯⨯⨯=C :当时,△为等腰直角三角形,此时 AB BC =ABC AB BC ==所以,即△为等边三角形,此时,错; SA SB AB ==SAB π3∠=SAB D :由C 分析知:时△为等腰直角三角形、△为等边三角形, AB BC =ABC SAB 将它们展开成一个平面,如下图,要使,即共线,最小值为的长度, SF CF +,,S F C SC而,,则,对. 3π4SBC ∠=SB BC ==1SC ==故选:ABD12.在中,角A ,B ,C 对边分别是a ,b ,c ,,,.则下列说法正确的ABC A π3A =8b =a =是( )A .为锐角三角形B .面积为ABC A ABCA C .AB 长度为6 D .外接圆的面积为ABC A 52π3【答案】BD【分析】利用余弦定理求出边判断C ,再利用余弦定理判断角的范围即可判断A ,利用面积公式c 判断B ,利用正弦定理求出外接圆的半径即可判断D. 【详解】由,,所以,π3A =8,b a ==(222π828cos3c c =+-⨯⨯⨯即,解得或,故C 错误;28120c c --=2c =6c =当时,,所以为钝角, 2c=222cos 02a c b B ac +-===<B 此时为钝角三角形,故A 错误;ABC A 当时,2c =11sin 8222S bc A ==⨯⨯=当时,6c =11sin 8622S bc A ==⨯⨯=所以面积为B 正确;ABC A 设外接圆的半径为R,由正弦定理得,所以ABCA 2sin a R A ===R =所以外接圆的面积为,故D 正确;ABC A 2252πππ3R ⎛== ⎝故选:BD.三、填空题13.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【分析】利用计算即可.11A NMD D AMN V V --=【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 14.在△中,角,,所对的边分别为,,,表示△的面积,若ABC A B C a b c S ABC ,,则__________.cos cos sin a B b A c C +=2221()4S b c a =+-B ∠=【答案】4π【详解】试题分析:∵,∴,∴222cos 2b c a A bc+-=22211sin ()24S bc A b c a ==+-,∴,.∵,∴,∴11sin 2cos 24bc A bc A =⨯tan 1A =4A π=cos cos sin a B b A c C +=2sin()sin A B C +=,∴,∴.sin 1C =2C π=4B π=【解析】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把tan 1A =4A π=中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据cos cos sin a B b A c C +=90C =︒三角形内角和,进而求得.B 15.在棱长为2的正方体中,点分别是棱的中点,是上底面1111ABCD A B C D -,E F 1111,C D B C P 内一点(含边界),若平面,则点的轨迹长为___________.1111D C B A AP ∥BDEF P【分析】由平行关系得出点轨迹后计算P 【详解】如图,取中点,中点,可知,11A D G 11A B H //AH DE //AG BF ,故平面平面,故点的轨迹为线段AG AH A = //AGH BDEF P GHGH =16.已知点为的外心,外接圆半径为,且满足,则的面积为O ABC A 12340OA OB OC ++=ABC A __________.【分析】由题意得到,利用,分别求得向量的||||||1OA OB OC === 2340OA OB OC ++=,,OA OB OC 两两夹角的余弦值,得出正弦值,结合三角形的面积公式,即可求解. 【详解】如图所示,因为点为的外心,可得,O ABC A ||||||1OA OB OC ===由,可得①,②,2340OA OB OC ++= 234OA OB OC +=- 342OB OC OA +=- 243OA OC OB+=- ③;①式两边平方得,可得,所以;412916OA OB +⋅+= 14OA OB ⋅= 1cos 4AOB ∠=同理②③两边分别平方,可得,,7cos 8BOC ∠=-11cos 16AOC ∠=-则,, sin AOB ∠=sin BOC ∠=sin AOC ∠=所以故答案为:11111111222ABC AOB BOC AOC S S S S =++=⨯⨯⨯⨯⨯⨯=A A A A四、解答题17.设向量满足,且,a b1==a b r r 32a b -=(1)求与夹角的大小;a b (2)求在上的投影向量.a b + b 【答案】(1) π3(2) 32b【分析】(1)利用数量积的运算律有,结合已知和向量数量积的定义求夹角2291247a a b b -⋅+= 即可;(2)所求投影向量为,根据已知和数量积的运算律求投影向量即可. ()||||a b b b b b +⋅⋅ 【详解】(1)由题设,,222232(32)91247a b a b a a b b -=-=-⋅+= 1==a b r r 所以,则,, 1312cos ,7a b -= 1cos ,2a b = ,],0π[a b ∈ 所以. π,3a b = (2)由在上的投影向量. a b + b 22()32||||||a b b b a b b b b b b b +⋅⋅+⋅=⋅= 18.已知圆锥的底面半径,高6R =8h =(1)求圆锥的表面积和体积(2)如图若圆柱内接于该圆锥,试求圆柱侧面积的最大值O O '【答案】(1),;96π96π(2).24π【分析】(1)由已知求得圆锥的母线长,再由圆锥的侧面积与体积公式求解;(2)作出圆柱与圆锥的截面图,把圆柱的侧面积用h 表示,然后结合二次函数求最值.【详解】(1)∵圆锥的底面半径R =6,高H =8,圆锥的母线长, ∴10L ==则表面积,体积. 26036π96πS RL R πππ=+=+=21963V R H ==ππ(2)作出圆锥、圆柱的轴截面如图所示,其中,8,6,(08)SO OA OB OK h h ====<<设圆柱底面半径为r ,则,即 . 868r h -=3(8)4r h =-设圆柱的侧面积为. 23322(8)(8)42r h h h h h S =⋅=⋅-'⋅=-+πππ当时,有最大值为.4h =S '24π19.在①;②;③sin cos 0a B A =()22sin sin sin sin sin B C A B C -=-这三个条件中任选一个,补充在下面问题的横线上,并加以解答.问()2cos cos cos A c B b C a +=题:的内角所对的边分别为,且满足________.ABC A ,,A B C ,,a b c (1)求A ;(2)若,求的面积.a =sin 2sin C B =ABC A 注:如果选择多个条件分别解答,按第一个解答给分.【答案】(1)π3【分析】(1)选择①,由正弦定理边化角可得,求得答案;选择②,由正弦定sin 0A A =理边化角,再结合余弦定理求得答案;选择③,由正弦定理边化角,再结合两角和的正弦公式求得答案;(2)利用正弦定理角化边,结合余弦定理即可求得,利用三角形面积公式即得答案.,b c【详解】(1)选择①,,sin cos 0a B A =由正弦定理,得, sin sin cos 0A B B A =而,故(0,π),sin 0B B ∈∴≠sin 0,tan A A A =∴=. π(0,π),3A A ∈∴=选择②,,()22sin sin sin sin sin B C A B C -=-由正弦定理,得,整理得,22()b c a bc -=-222b c a bc +-=又 而. 2221cos ,22b c a A bc +-==π(0,π),3A A ∈∴=选择③,,()2cos cos cos A c B b C a +=由正弦定理,得,()2cos sin cos cos sin sin A C B C B A +=即,即,()2cos sin sin A B C A +=2cos sin sin A A A =又, (0,π),sin 0A A ∈∴≠所以,故. 1cos 2A =π3A =(2)由若,可得,a =sin 2sin C B =2cb =故,即, 222cos 2bc a A bc+-=22153,1,224b b c b -=∴==故11sin 1222ABC S bc A ==⨯⨯=A20.已知函数的图象相邻对称中心之间的距离为. ()()2cos cos 0f x x x x ωωωω=->π2(1)求函数的单调递增区间;()f x (2)若函数,且在上有两个零点,求的取值范围. ()()g x f x b =-()g x π0,2⎡⎤⎢⎥⎣⎦b 【答案】(1) ()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z (2) 10,2⎡⎫⎪⎢⎣⎭【分析】(1)由三角恒等变换化简函数解析式,根据题意可得出函数的最小正周期,结合正()f x 弦型函数的周期公式可求得的值,再利用正弦型函数的单调性可求得函数的单调递增区ω()f x 间;(2)分析函数在上的单调性,根据已知条件可得出关于的不等式组,解之即可. ()g x π0,2⎡⎤⎢⎥⎣⎦b【详解】(1)解:因为 ()21cos 2cos cos 22x f x x x x x ωωωωω+=-=-, 11π12cos 2sin 22262x x x ωωω⎛⎫=--=-- ⎪⎝⎭因为函数图象相邻对称中心之间的距离为,故函数的最小正周期为, π2()f x π因为,则,则,故. 0ω>2π22πω==1ω=()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭由可得, ()πππ2π22π262k x k k -≤-≤+∈Z ()ππππ63k x k k -≤≤+∈Z 因此,函数的单调递增区间为. ()f x ()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z (2)解:因为, ()()π1sin 262g x f x b x b ⎛⎫=-=--- ⎪⎝⎭当时,, π02x ≤≤ππ5π2666x -≤-≤由可得,所以,函数在上单调递增, πππ2662x -≤-≤π03x ≤≤()g x π0,3⎡⎤⎢⎥⎣⎦由可得,所以,函数在上单调递减, ππ5π2266x ≤-≤ππ32x ≤≤()g x ππ,32⎡⎤⎢⎥⎣⎦因为,, ()max ππ11sin 3222g x g b b ⎛⎫==--=- ⎪⎝⎭()π10sin 162g b b ⎛⎫=---=-- ⎪⎝⎭, ππ1sin π262g b b ⎛⎫⎛⎫=---=- ⎪ ⎪⎝⎭⎝⎭要使得函数在上有两个零点,则,解得, ()g x π0,2⎡⎤⎢⎥⎣⎦π1032π02g b g b ⎧⎛⎫=-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-≤ ⎪⎪⎝⎭⎩102b ≤<因此,实数的取值范围是. b 10,2⎡⎫⎪⎢⎣⎭21.如图所示,在四棱锥中,底面为平行四边形,侧面为正三角形,为P ABCD -ABCD PAD M 线段上一点,为的中点.PD N BC(1)当为的中点时,求证:平面.M PD //MN PAB (2)当平面,求出点的位置,说明理由.//PB AMN M【答案】(1)证明见解析;(2)存在点M ,点M 为PD 上靠近P 点的三等分点,理由见解析.【分析】(1)取中点为,连接,利用中位线、平行四边形性质及平行公理有AP E ,EM EB ,即为平行四边形,则,最后根据线面平行的判定证结论; //,BN ME BN ME =BNME //MN BE (2)连接,相交于,连接,由线面平行的性质得,利用相似比可得,AN BD O OM //PB OM ,即可判断的位置. 12PM MD =M 【详解】(1)取中点为,连接,AP E ,EM EB在中,为的中点,为中点,PAD A M PD E AP , 1//,2EM AD EM AD ∴=在平行四边形中,为的中点,ABCD N BC , 1//,2BN AD BN AD ∴=,//,BN ME BN ME ∴=四边形为平行四边形,∴BNME 面面,//,MN BE MN ∴⊄,PAB BE ⊂PAB 平面;//MN ∴PAB (2)连接,相交于,连接,,AN BD O OM 面,面面面,//PB AMN PBD ,AMN OM PB =⊂PBD ,, //PB OM ∴12PM OB BN MD OD AD ===即存在点M ,M 为PD 上靠近P 点的三等分点.22.在路边安装路灯,灯柱与地面垂直(满足),灯杆与灯柱所在平面与AB 90BAD ∠=︒BC AB 道路垂直,且,路灯采用锥形灯罩,射出的光线如图中阴影部分所示,已知120ABC ∠=︒C ,路宽.设灯柱高,.60ACD ∠=︒12m AD =()m AB h =ACB θ∠=()3045θ︒≤≤︒(1)求灯柱的高(用表示);h θ(2)若灯杆与灯柱所用材料相同,记此用料长度和为,求关于的函数表达式,并求出BC AB S S θS 的最小值.【答案】(1)8sin 2h θ=()3045θ︒≤≤︒(2),米8sin(260)S θ=+︒+()3045θ︒≤≤︒(min 4S =+【分析】(1)分别在△、△中,应用正弦定理求、,即可得解析式;ACD ABC AC AB (2)应用正弦定理求得,并应用差角正弦公式、倍角公式、辅助角公式化16cos sin(60)BC θθ=︒-简得到.8sin(260)S θ=+︒+【详解】(1)由题设,,, 90ADC θ∠=︒-60ACD ∠=︒12m AD =在△中,则, ACD sin sin AD AC ACD ADC =∠∠sin sin AD ADC AC ACD θ∠===∠在△中,则. ABC sin sin AB AC ABC θ=∠sin 8sin 2sin AC h AB ABC θθ====∠所以.8sin 2h θ=()3045θ︒≤≤︒(2)由题意,而,则S AB BC =+sin(60)sin BC AC ABCθ=︒-∠,16cos sin(60)BC θθ==︒-所以2116cos sin )8sin cos2BC θθθθθθ=⨯-=-24sin 2θθ=-+结合(1)知:4sin 228sin(260)Sθθθ=++=+︒+又,120260150θ︒≤+︒≤︒所以,当,时,米. 260150θ+︒=︒45θ=︒(min 1842S =⨯+=+。
大学高数期中考试试卷

大学高数期中考试试卷一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在x=0处:A. 连续B. 可导C. 不连续D. 可积2. 若函数f(x)在闭区间[a,b]上连续,则:A. 必存在最大值B. 必存在最小值C. 必存在零点D. 以上都不对3. 微分方程\(\frac{dy}{dx} + y = e^x\)的解是:A. \(y = e^x - xe^x\)B. \(y = e^x + ce^{-x}\)C. \(y = e^x - ce^x\)D. \(y = e^x\)4. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 无法确定5. 函数\(\sin(x)\)的原函数是:A. \(x\)B. \(\cos(x)\)C. \(-\cos(x)\)D. \(\sin(x)\)6. 若f(x)在区间(a,b)内可导,则f(x)在该区间内:A. 必定单调递增B. 必定单调递减C. 必定连续D. 以上都不对7. 曲线y=\(\sqrt{x}\)与直线x=4所围成的面积是:A. \(\frac{16}{3}\)B. \(\frac{32}{3}\)C. \(\frac{64}{3}\)D. \(\frac{128}{3}\)8. 函数\(\ln(x)\)的泰勒展开式是:A. \(x - 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots\)B. \(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\)C. \(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots\)D. \(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} -\cdots\)9. 若\(\int_{0}^{1} f(x)dx = 2\),则\(\int_{0}^{1} x f(x)dx\)的值是:A. 0B. 1C. 2D. 无法确定10. 函数\(\frac{1}{1+x^2}\)的不定积分是:A. \(\ln(1+x^2)\)B. \(\arctan(x)\)C. \(\ln|x|\)D. \(\ln|x+1|\)二、填空题(每空1分,共10分)1. 若\(\frac{dy}{dx} = 3x^2\),则\(dy\) = __________。
华东理工大学级(下)高等数学期中考试试卷(学分)解答

华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
高一数学第二学期期中考试试卷含答案(共5套)

高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对 2.将八进制数135(8)化为二进制数为( ) A .1 110 101(2) B .1 010 101(2) C .1 111 001(2)D .1 011 101(2)3.某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程a ˆx b ˆy ˆ+=中的b ˆ=-4,据此模型预计零售价定为16元时,销售量为( )A .48B .45C .50D .514.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.65.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .106.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤97.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为878.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .29.利用秦九韶算法求f (x )=x 5+x 3+x 2+x +1当x =3时的值为( ) A .121 B .283 C .321 D .23910.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( ) A .7.68 B .8.68 C .16.32D .17.3211.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. 91B. 92C. 187D.9412.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=21(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长为m 340的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3≈π,73.13≈) A . 15 B . 16 C . 17 D . 18第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归方程:y ∧=0.234x +0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 14.已知sin(π4+α)=32,则sin(3π4-α)的值为________. 15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件B A Y 发生的概率为________.(B 表示B 的对立事件)16.设函数y =f (x )在区间[0,1]上的图像是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到S 的近似值为________. 二、解答题(17题10分,其余均12分)17.(10分) 已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.18.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程a ˆx b ˆyˆ+= (3)试预测加工10个零件需要多少小时?(注:b ∧=∑ni =1x i y i -n x - y -∑n i =1x i 2-n x -2,a ∧=y --b ∧ x -)零件的个数x(个)2345加工的时间y(小时) 2.5 3 4 4.519.(12分)已知α是第三象限角,f (α)=()()()α-π-•α-π-α-•α-π•α-πsin tan tan )2cos()sin((1)化简f (α);(2)若⎪⎭⎫ ⎝⎛π-α23cos =15,求f (α)的值;20.(12分)某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n 名学生的数学成绩,制成如下所示的频率分布表.(1)求a ,b ,n 的值;(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.21.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.22.(12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)求这两个班参赛学生的成绩的中位数.高一下期期中考试数学试题答案一、选择题B D B D A B D D BCD B二、填空题13. 0.234 14.3215.32 16.N1N三、解答题(17题10分,其余均12分)17.解:如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤9的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P1=14π×224×4=π16.18.解:(1)散点图如图.(2)由表中数据得∑4i=1x i y i=52.5,x -=3.5,y -=3.5,∑4i =1x i 2=54. ∴b ∧=0.7,∴a ∧=1.05. ∴y ∧=0.7x +1.05.(3)将x =10代入回归直线方程,得y ∧=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.19.解:(1)f (α)==-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-32π=cos ⎝ ⎛⎭⎪⎫32π-α=-sin α,又cos ⎝⎛⎭⎪⎫α-32π=15,∴sin α=-15.又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.20.解:(1)由表中数据,得5n =0.05,a n =0.35,20n=b ,解得n =100,a =35,b=0.20.(2)由题意,得第三、四、五组分别抽取的学生人数为3060×6=3,2060×6=2,1060×6=1.第三组的3名学生记为a 1,a 2,a 3,第四组的2名学生记为b 1,b 2,第五组的1名学生记为c ,则从6名学生中随机抽取2名,共有15种不同情况,分别为{a 1,a 2},{a 1,a 3},{a 1,b 1},{a 1,b 2},{a 1,c },{a 2,a 3},{a 2,b 1},{a 2,b 2},{a 2,c },{a 3,b 1},{a 3,b 2},{a 3,c },{b 1,b 2},{b 1,c },{b 2,c }.其中第三组的3名学生均未被抽到的情况共有3种,分别为{b 1,b 2},{b 1,c },{b 2,c }. 故第三组中至少有1名学生被抽到与老师面谈的概率为1-315=45.21解:(1)p=3162(2)先从袋中随机取一个球,记下编号m,放回后,再从袋中随机取一个球,记下编号n,可能的结果为(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个,满足条件的事件为(1,3)(1,4)(2,4)共3个所以n ≥m+2的概率为p=16322.解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)∵(0.03+0.04)×10>0.5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x则0.03×10+(x-59.5)×0.04=0.5得x=64.5高一下学期期中数学考试试卷(时间:120分钟满分:150分)第Ⅰ卷 (选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( )A. B. C. D.2.( )A.0 B.1 C.2 D.43.若,则下列结论正确的是( )A. B.C. D.4.下列函数中,既不是奇函数,也不是偶函数的是( )A.B.C.D.5.函数的定义域是( )A. B. C. D.6.函数过定点( )A. B. C. D.7.已知,,,则=( )A. B. C. D.8.已知函数为幂函数,则实数的值为( )A.或 B.或 C. D.9.已知函数,若,则实数等于( )A .2 B. 45 C .12 D .910.若,则函数与的图象可能是下列四个选项中的( )11.已知是定义在上的奇函数,当时,,则当时,( )AB .C .D .12.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是( ) A .B . C. D .第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.设集合,集合,若,则实数14.若,则=15.如果函数,的增减性相同,则的取值范围是.16.已知是方程的两个根,则的值是.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值(式中字母都是正数): (1);(2)已知,求的值.18.(本小题满分12分)已知集合,.(1)若,求;(2)⊆,求的取值范围.19.(本小题满分12分)已知函数+2.(1)求在区间上的最大值和最小值;(2)若在上是单调函数,求的取值范围.20.(本小题满分12分)已知函数是R上的奇函数,(1)求的值;(2)先判断的单调性,再证明.21.(本小题满分12分)已知函数,.(1)求函数的定义域;(2)讨论不等式中的取值范围.22.(本小题满分12分)若二次函数满足且. (1)求的解析式;(2)若在区间上不等式恒成立,求实数的取值范围.高一下学期期中考试试卷数学时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,共60分)1.3x cos y =是( )A .周期为π6的奇函数B .周期为3π的奇函数C .周期为π6的偶函数D .周期为3π的偶函数2.已知sin α=41,则cos 2α的值为( )A .21B .87- C.21- D.873.已知平面向量()()3,2,4,1==→→b a ,则向量=+→→b a 5251( )A .()1,2B .()5,3 C.()3,5 D.()2,14.已知平面向量a =(2,4),b =(-4,m ),且a ⊥b ,则m =( )A .4B .2C .-4D .-25.为得到函数⎪⎭⎫ ⎝⎛+=33sin πx y 的图象,只需将函数y =sin 3x 的图象( )A .向左平移9π个长度单位B .向右平移9π个长度单位C .向左平移3π个长度单位D .向右平移3π个长度单位6.设a =(8,-2),b =(-3,4),c =(2,3),则(a +2b )·c 等于( )A .(4,18)B .22C .-6 D.(18,4)7.已知a ·b =122,|a |=4,a 与b 的夹角为45°,则|b |为( )A .12 A .3 C .6 D .98.若-π2<α<0,则点P (sin α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知α∠的终边经过点()31P ,,则=αsin ( )A .21 B .10103C .31D .3310.若=)(x f ⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛+2,32032sin ππππx x f x x ,,求)32(πf =( ) A.0 B.23C.21 D.1 11.已知2tan -=α,则αααα22cos sin cos sin 3-的值是( ) A .2- B . 3 C .2 D .3- 12.在Rt △ABC 中,∠C =90°,AC =3,则AB →·AC→等于( )A .-3B .-6C .9D .6 二、填空题(本大题共4小题,每小题5分,共20分)13.已知AB →=(2,7),AC →=(-5,8),则BC →=__________________.14.函数()()()R x x x x f ∈-=cos sin 2的最小正周期为________,最大值为________. 15.设a =(5,-2),b =(6,2),则2|a |2-12a ·b =______________.16.已知tan α=-2,tan(α+β)=5,则tan β的值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知()ππθθ2,,53cos ∈=,求⎪⎭⎫ ⎝⎛+6sin πθ以及⎪⎭⎫ ⎝⎛-4tan πθ的值.18.(10分)设函数()⎪⎭⎫ ⎝⎛+=6sin 2πωx x f ,0>ω,最小正周期为2π. (1)求()0f .(2)求()x f 的解析式.(3)求()x f 的单调递增区间.19.(12分)已知向量a =(3,2),b =(-1,3),c =(5,2).(1)求6a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ; (3)若(a +k c )//(2b -a ),求实数k . 20. (12分)已知23παπ<<,211-tan tan -=αα.(1)求αtan 的值。
大一下学期高数期中复习题

微积分(二)期中复习题第一部分1. 设2,4a b ==,若向量32a b -垂直于向量a b +,向量2a b +垂直于向量43a b -,求a 与b 之间的夹角,并求以32a b -和2a b +为邻边的平行四边形的面积.2.已知向量(,,2)a x y =-与向量(4,1,3)b =垂直,且a 的模等于b 在z 轴上的投影,求 ,x y .3.证明:两直线1111:112x y z L -+-==-与223:12x y L z -+==-相交,并求此两直线所在平面的方程.4.求过直线110:220x y L x y z ++=⎧⎨++=⎩且与直线211:211x y z L -+==--平行的平面方程.5.求过点(1,1,1)P 且与直线12:113x y z L +==-垂直相交的直线方程.6.求曲线222224:3x y z x y z ⎧++=⎪Γ⎨+=⎪⎩在xOy 面的投影。
7.求曲线2244:0x y y z ⎧++=Γ⎨=⎩绕x 轴旋转一周所得的曲面。
第二部分1、求函数)1ln(4222y x y x z ---=定义域。
2、求()22001lim sin .x y x y xy→→+3、讨论函数⎪⎩⎪⎨⎧++=2)(2sin ),(2222y x y x y x f 002222=+≠+y x y x 在点(0,0)处的连续性。
4、设(,)z f x y =由ln x z z y =确定,求22,z z x x∂∂∂∂。
5、设222z y x eu ++=,而y x z sin 2=,求xu ∂∂,du y u ,∂∂。
6、设),(22y x y x f z -=,其中),(υu f 具有二阶连续偏导数,求y x z x z ∂∂∂∂∂2, 。
7、求函数223246u x y y x z =-++在原点沿()2,3,1OA =方向的方向导数。
8、设32u x y z =-,求u 在点()2,1,1-处的方向导数的最大值及取得最大值的方向。
高等数学(下册)期中考试题及答案

高等数学(下册)期中考试20110504一、 填空题(每小题4分,共计40分)1、已知三点 A(1,0,2),B(2,1,-1),C(0,2,1),则三角形ABC 的面积为 。
2、已知曲面224y x z --=在点P 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是 。
3、函数),(y x f z =在),(00y x 处可微的充分条件为 , 必要条件为 。
4、设方程az z y x 2222=++确定函数),(y x z z =,则全微分dz 。
5、设⎰⎰=202),(x xdy y x f dx I ,交换积分次序后,=I 。
6、设∑是曲面22y x z +=介于1,0==z z 之间的部分,则曲面面积为 。
7、⎰=+Lds y x )(22 ,其中222:a y x L =+。
8、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I= 。
9、设Ω:,0,1222≥≤++z z y x 若将三重积分⎰⎰⎰Ω=zdV I 在球面坐标系下化为三次积分,则I= 。
10、设L是椭圆周1422=+y x 的正向,则曲线积分⎰+-L y x ydxxdy 224= 。
二、求解下列问题(共计14分) 1、 (7分)求函数)ln(22z y x u ++=在点A (1, 0,1)沿A 指向点B (3,-2,2)的方向的方向导数。
2、 (7分)已知函数(,)f u v 具有二阶连续偏导数,(1,1)2f =是(,)f u v 的极值,(,(,)).z f x y f x y =+, 求2(1,1).zx y∂∂∂三、求解下列问题(共计16分)1、(8分)计算⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x 所围成的立体域。
2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dtdF 。
2022-2023学年上海师范大学附属中学高一年级下册学期期中数学试题【含答案】

2022-2023学年上海师范大学附属中学高一下学期期中数学试题一、填空题1.若tan 2α=,则sin cos sin cos αααα-+的值为____________.【答案】13【分析】将sin cos sin cos αααα-+分子分母同除以cos α,即可求得答案.【详解】由题意tan 2α=,则cos 0α≠,则sin cos tan 1211sin cos tan 1213αααααα---===+++,故答案为:132.已知向量()()1,1,2,3a b ==,则a 在b 方向上的数量投影为___________【答案】51313【分析】根据平面向量投影的定义计算即可【详解】向量()()1,1,2,3a b ==,12135a b ∴⋅=⨯+⨯= ,222313b =+= ,所以a在b 方向上的数量投影为5513cos 1313a b a bθ⋅===;故答案为:513133.若1πcos ,0,72αα⎛⎫=∈ ⎪⎝⎭,则πcos 3α⎛⎫+= ⎪⎝⎭____________.【答案】1114-【分析】首先根据正余弦的平方关系求出sin α的值,再利用余弦两角和公式化简cos()3πα+,把得到的sin α,cos α代入即可.【详解】解: 若1cos 7α=,π(0,)2α∈2143sin 1cos 1497αα∴=-=-=πππ1143311cos()cos cos sin sin 333727214ααα∴+=-=⨯-⨯=-故答案为:1114-.4.若向量,a b的夹角150︒,||3,||4a b == ,则|2|a b += ___________.【答案】2【分析】直接根据平面向量数量积的概念以及向量模的表示即可得结果.【详解】因为向量a ,b的夹角为150︒,3a = ,4b = ,所以3cos1503462a b a b ⎛⎫⋅=⨯⨯=⨯⨯-=- ⎪ ⎪⎝⎭,所以222|2||2|441224162a b a b a a b b +=+=+⋅+=-+= 故答案为:2.5.已知21,e e 是夹角为2π3的两个单位向量,若向量1232a e e =- ,则1a e ⋅= __________.【答案】4【分析】直接由数量积的定义计算即可.【详解】依题意得,212π111cos 32e e ⋅=⋅⋅=- ,于是()211111223232314a e e e e e e e ⋅=⋅=-⋅=+=- .故答案为:46.已知函数π2cos 24y x ⎛⎫=- ⎪⎝⎭,当函数值为2-时,自变量x 的取值集合为__________.【答案】5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣【分析】由题意可求πcos 214x ⎛⎫-=- ⎪⎝⎭,进而利用余弦函数的性质即可求解.【详解】函数π2cos 24y x ⎛⎫=- ⎪⎝⎭,当函数值为2-时,则cos 214x π⎛⎫-=- ⎪⎝⎭,所以π2π2π,Z 4x k k -=+∈,则5ππ,Z 8x k k =+∈,故自变量x 的取值集合为5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣.故答案为:5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣.7.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,函数()f x 的对称中心与对称轴4x π=的最小距离为6π,则()f x =_________.【答案】2sin 34x π⎛⎫- ⎪⎝⎭【分析】由题设知函数的周期223T ππω==,即可求出ω,再由4x π=是函数()f x 的对称轴可求出ϕ,即可求出函数的解析式.【详解】由函数()f x 的对称中心与对称轴4x π=的最小距离为6π,46T π∴=即223T ππω==,3ω∴=由4x π=是函数()f x 的对称轴,3,42k k Z ππϕπ∴⨯+=+∈,即,4k k Zπϕπ=-∈又||2ϕπ<,令0k =,则4πϕ=-,故n (4)2si 3x f x π⎛-=⎫ ⎪⎝⎭故答案为:2sin 34x π⎛⎫- ⎪⎝⎭【点睛】方法点睛:本题主要考查由函数sin()y A x ωϕ=+的部分图像求解析式,由函数的周期可求出ω,由五点法作图可求得ϕ,即可求出函数的解析式,考查学生的逻辑推理与运算能力,属于中档题.8.已知关于x 的方程22sin 3sin 210x x m -+-=在,2ππ⎡⎤⎢⎥⎣⎦上有两个不同的实数根,则m 的取值范围是___________.【答案】(]2,1--【分析】利用三角函数的倍角公式和辅助角公式,将方程整理化简,利用三角函数的图象和性质,确定条件关系,进行求解即可.【详解】 22sin 3sin 210x x m -+-=,∴1cos 23sin 210x x m --+-=,即cos 23sin 20x x m +-=,∴2sin(2)6x m π+=,即sin(2)62m x π+=,[,]2x ππ∈ ,7132[,]666x πππ+∈,设7132,[,]666x t t πππ+=∈,则sin 2mt =在713[,]66t ππ∈上有两个不同的实数根,∴1sin y t =,22m y =,713[,]66t ππ∈的图像有两个不同的交点,如图由图象可知,1122m -<≤-,即21m -<≤-故答案为:(2,1]--9.声音是由物体的振动产生的能引起听觉的波,每一个音都是由纯音合成的,纯音的数学模型是函数sin πy A t ω=.某技术人员获取了某种声波,其数学模型记为()y H t =,部分图象如图所示,对该声波进行逆向分析,发现它是由两种不同的纯音合成的,满足()()9sin 2πsin π0810H t t t ωω=+<<,其中50.8663H ⎛⎫≈- ⎪⎝⎭,则ω=_________.(参考数据:3 1.732≈)【答案】3【分析】将53t =代入()H t ,结合题干数据可得05πsin 3ω⎛⎫⎪⎭=⎝,又()10H =,可得3ω=或6ω=,又1不是()H x 的周期,从而可求出满足题意的ω的值.【详解】由()()9sin 2πsin π0810H t t t ωω=+<<,且50.8663H ⎛⎫≈- ⎪⎝⎭,得5595sin 2πsin π33103H ω⎛⎫⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0.86610π95π395πsinsin sin 31032103ωω⎛⎫⎛⎫=+=-≈-+ ⎪ ⎪⎝⎭⎝⎭,因为3 1.732≈,所以3 1.7320.86622≈=,所以05πsin 3ω⎛⎫ ⎪⎭=⎝.由图可知()991sin 2πsin πsin π01010H ωω=+==,故ππ,k k ω=∈Z ,即,k k ω=∈Z .因为08ω<<,且05πsin 3ω⎛⎫⎪⎭=⎝,所以3ω=或6ω=.由图可知,1不是()H x 的周期,当6ω=时,()9sin 2πsin 6π10H t t t =+,此时()()()()991sin 2π1sin 6π1sin 2πsin 6π1010H t t t t t H t +=+++=+=,周期为1,不符合题意.当3ω=时,()9sin 2πsin 3π10H t t t =+,易知()()1H t H t +≠,满足题意.综上,3ω=.故答案为:3.10.已知函数()()3sin cos 0f x x x ωωω=->在区间π3π,34⎡⎤-⎢⎥⎣⎦上单调递增,且在区间[]0,π上只取得一次最大值,则ω的最大值是_______【答案】89【分析】根据辅助角公式,结合换元法、正弦型函数的单调性和最值性质进行求解即可.【详解】()π3sin cos 2sin 6f x x x x ωωω⎛⎫=-=- ⎪⎝⎭,令π6x t ω-=,因为π3π,34x ⎡⎤∈-⎢⎥⎣⎦,所以ππ3ππ,3646t ωω⎡⎤∈---⎢⎥⎣⎦,因为0ω>,所以()2sin f t t =在ππ3ππ,3646t ωω⎡⎤∈---⎢⎥⎣⎦上时单调递增,所以有3πππ84620πππ9362ωωω⎧-≤⎪⎪⇒<≤⎨⎪--≥-⎪⎩,当[]0,πx ∈时,ππ,π66t ω⎡⎤∈--⎢⎥⎣⎦,所以()2sin f t t =在ππ,π66t ω⎡⎤∈--⎢⎥⎣⎦时,只取得一次最大值,因此有ππ5π28π26233ωω≤-<⇒≤<,综上所述:2839ω≤≤,所以ω的最大值是89,故答案为:89【点睛】关键点睛:利用换元法,根据正弦型函数的最值性质和单调性是解题的关键.11.已知函数23tan ,,,2332()63233,,33x x f x x x πππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪-+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________.【答案】47,912ππ⎧⎫⎨⎬⎩⎭【分析】先确定()f x 在区间[)0,a 上有最大值3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,因此()f x 在区间[],2a a 上的最大值为33.然后按()f x 在x a =处或2x a =处取最大值33分类讨论,数形结合,进而可得结果.【详解】依题意可知,()f x 在区间[)0,a 上有最大值必然为3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,所以()f x 在区间[],2a a 上的最大值为33.(1)若()f x 在x a =处取最大值33,即633333a π-⋅+=,解得49a π=,此时87296a ππ=<,所以49a π=适合题意;(2)若()f x 在2x a =处取最大值33,即3tan 23a =,解得712a π=,此时49a π>,所以712a π=适合题意.综上可知,a 的取值集合是47,912ππ⎧⎫⎨⎬⎩⎭.故答案为:47,912ππ⎧⎫⎨⎬⎩⎭.【点睛】关键点点睛:本题的关键点在于确定()f x 在区间[)0,a 上有最大值3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,进而可得()f x 在区间[],2a a 上的最大值为33.12.在ABC 中,角A B C 、、的对边分别为a b c 、、,且a b c 、、为正数,120BAC ∠=︒,AO 为BC 边上的中线,3AO =,则2c b -的取值范围是__________.【答案】()43,23-【分析】先利用平面向量得到2AO AB AC =+,从而求得2212b c bc +=+,设2z c b =-,代入消去c得到关于b 的一元二次方程,从而由判别式得到4343z -≤≤,再分类讨论对称轴的正负求得023z <<,最后由余弦定理得到1220bc +>,从而利用恒成立问题求得43z >-,综上即可得解.【详解】依题意得,,,AB c AC b BC a ===,,,a b c 为正数.又ABC 中,120,BAC AO ∠︒=为BC 边上的中线,3AO =,所以2AO AB AC =+ ,两边平方得22242AO AB AB AC AC =+⋅+ ,则2212b c bc =+-,故2212b c bc +=+①,设22,2b z AB AC c b c z -==+=-,代入①得()22(2)122b z b b z b ++=++,整理得2233120b zb z ++-=②,此方程至少有1个正根,首先()22Δ912120z z =--≥,解得4343z -≤≤③,对于方程②:若对称秞30,03zz z -=-><,则方程②至少1个正根,符合题意;若对称轴30,03zz z -=-<>,要使方程②至少有一个正根,则需2120z -<,解得023z <<;在三角形ABC 中,由余弦定理得222222cos1201220a b c bc b c bc bc =+-︒=++=+>恒成立,所以6c b >-,则622z c b b c=->--恒成立,由于666222243b b b b b b ⎛⎫--=-+≤-⋅=- ⎪⎝⎭,当且仅当62b b =,即3b =时,等号成立,所以43z >-,结合③可得4343z -<≤.综上所述,z 也即2AB AC -的取值范围是()43,23-.故答案为:()43,23-.【点睛】关键点睛:本题的解决关键是假设2z c b =-,将两变量范围问题转化为一个变量z 的范围问题,再由平面向量与余弦定理依次缩小z 的范围,从而得解.二、单选题13.已知两个单位向量a 与b的夹角为θ,则“60θ=︒”是“12a b ⋅= ”的()A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】A【分析】用定义法,分充分性和必要性分别讨论即可.【详解】充分性:若60θ=︒,则由a 、b 是单位向量可知11cos 601122a b a b =⨯⨯︒=⨯⨯= ,即充分性得证;必要性:若12a b ⋅= ,则1cos 2a b a b θ=⨯⨯= 由a 、b 是单位向量可知1cos 2θ=,因为0180θ︒≤≤︒,所以60θ=︒,必要性得证.所以“60θ=︒”是“12a b ⋅= ”的充分必要条件.故选:A14.已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是()A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数【答案】D【分析】一次判断选项即可.【详解】∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A 正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0],f (x )=cos x +sin x =π2sin 4x ⎛⎫+ ⎪⎝⎭,则π3ππ[,]444x +∈-,故f (x )在[-π,0]上不单调,D为假命题,故选:D.15.已知锐角ABC ,23AB =,π3C =,则AB 边上的高的取值范围为()A .(]0,3B .()0,3C .(]2,3D .()2,3【答案】C【分析】设AB 边上的高为h ,根据题意得ππ62A <<,再结合条件得π2sin 216h A ⎛⎫=-+ ⎪⎝⎭,再分析求值域即可.【详解】因为ABC 为锐角三角形,π3C =,设AB 边上的高为h ,所以π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62A <<由正弦定理可得,234sin sin sin 32a b c A B C ====,所以4sin a A =,4sin b B =,因为11πsin 223S ch ab ==,所以32π3124sin sin 4sincos sin 32223abh A A A A A ⎛⎫⎛⎫==-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭2π23sin cos 2sin 3sin 21cos 22sin 216A A A A A A ⎛⎫=+=+-=-+ ⎪⎝⎭因为ππ62A <<,所以ππ5π2666A <-<,所以1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭,所以π22sin 2136A ⎛⎫<-+≤ ⎪⎝⎭,所以AB 边上的高的取值范围为(2,3].故选:C.16.设函数()()()()112233sin sin sin f x a x a x a x βββ=⋅++⋅++⋅+,其中i a 、()1,2,3i i β=为已知实常数,x ∈R ,有如下命题:(1)若()π002f f ⎛⎫== ⎪⎝⎭,则()0f x =对任意实数x 恒成立;(2)若()00f =,则函数()f x 为奇函数:(3)若π02f ⎛⎫= ⎪⎝⎭,则函数()f x 为偶函数;(4)当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,若()()120f x f x ==,则()12πZ x x k k -=∈.则所有正确命题的个数是()A .1个B .2个C .3个D .4个【答案】D【分析】根据函数奇偶性的定义判断(1)(2)(3),对于(4),当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,由12()()0f x f x ==,结合三角函数的性质,故可得结论.【详解】(1)若()00f =,则()()()()1122330sin sin sin 0f a a a ααα=⋅+⋅+⋅=则()()()()()112233sin sin sin f x f x a x a x a x ααα-+=⋅-++⋅-++⋅-+()()()112233sin sin sin a x a x a x ααα+⋅++⋅++⋅+[]112233cos sin sin sin 0x a a a ααα=⋅+⋅+⋅=∴函数()f x 为奇函数;若π02f ⎛⎫= ⎪⎝⎭,则112233ππππsin sin sin 2222f a a a βββ⎛⎫⎛⎫⎛⎫⎛⎫=⋅++⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112233cos cos cos 0a a a ααα=-⋅-⋅-⋅=,()()()()()112233sin sin sin f x f x a x a x a x ααα∴--=⋅-++⋅-++⋅-+()()()112233sin sin sin a x a x a x ααα-⋅+-⋅+-⋅+[]1122sin cos cos cos 0n n x a a a ααα=⋅+⋅+⋯+⋅=∴函数()f x 偶函数,故()f x 既是奇函数又是偶函数,故()0f x =对任意实数x 恒成立,故(1)正确;(2)由(1)的证明过程可知当()00f =时,函数()f x 为奇函数,正确.(3)由(1)的证明过程可知当π02f ⎛⎫= ⎪⎝⎭时,函数()f x 为偶函数,正确.(4)对于命题(4),当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,()()()()112233sin sin sin f x a x a x a x ααα=⋅++⋅++⋅+ ()()112233112233cos cos cos sin sin sin sin cos a a a x a a a x αααααα=+++++令112233πcos cos cos 2a a a a f ααα⎛⎫=++= ⎪⎝⎭()112233sin sin sin 0b a a a f ααα=++=则()2222π002a b f f ⎛⎫+=+≠ ⎪⎝⎭,由辅助角公式得()()22sin cos sin f x a x b x a b x ϕ=+=++其中()()122222cos ,sin ,0a b f x f x a ba bϕϕ====++ ,则()()12,0,,0x x 是函数()y f x =的两个对称中心点,函数()y f x =的最小正周期为2π,该函数的两个相邻对称中心之间的距离为周期的一半,因此,()12πZ x x k k -=∈,命题(4)正确.故选:D.三、解答题17.设两个向量,a b满足()132,0,,22a b ⎛⎫== ⎪ ⎪⎝⎭,(1)求a b +方向的单位向量;(2)若向量27ta b +与向量a tb + 的夹角为钝角,求实数t 的取值范围.【答案】(1)5721,1414⎛⎫⎪ ⎪⎝⎭(2)141417,,222⎛⎫⎛⎫--⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)根据()132,0,,22a b ⎛⎫== ⎪ ⎪⎝⎭,求得a b +的坐标和模后求解;(2)根据向量27ta b + 与向量a tb + 的夹角为钝角,由()()270ta b a tb ++< ,且向量27ta b +不与向量a tb +反向共线求解.【详解】(1)由已知()13532,0,,2222a b ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以2253722a b ⎛⎫⎛⎫+=+= ⎪ ⎪⎪⎝⎭⎝⎭,所以57217,1414a b ⎛⎫+= ⎪ ⎪⎝⎭,即a b +方向的单位向量为5721,1414⎛⎫ ⎪ ⎪⎝⎭;(2)由已知1a b ⋅=,2,1a b == ,所以()()()22222722772157ta b a tb ta t a b tb t t +⋅+=++⋅+=++ ,因为向量27ta b +与向量a tb + 的夹角为钝角,所以()()270ta b a tb ++< ,且向量27ta b +不与向量a tb + 反向共线,设()()270ta b k a tb k +=+< ,则27t k kt=⎧⎨=⎩,解得142t =-,从而221570142t t t ⎧++<⎪⎨≠-⎪⎩,解得141417,,222t ⎛⎫⎛⎫∈--⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.18.已知函数2()23sin cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;【答案】(1)最小正周期为πT =,递增区间为ππ[π,π]63k k -++,Z k ∈;(2)[2,1]-【分析】(1)由二倍角公式,结合辅助角公式得()f x π2sin 26x ⎛⎫=- ⎪⎝⎭,再利用周期2πT ω=、正弦型函数单调性求结果;(2)由x 的范围求π26x -的范围,进而可求出πsin 26x ⎛⎫- ⎪⎝⎭的范围,从而可求()f x 的值域.【详解】(1)()3sin2cos2f x x x =-312sin 2cos222x x ⎛⎫=- ⎪ ⎪⎝⎭π2sin 26x ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最小正周期为2ππ2T ==.令πππ2π22π262k x k -+≤-≤+,Z k ∈,则ππππ63k x k -+≤≤+,Z k ∈,所以单调递增区间为ππ[π,π]63k k -++,Z k ∈.(2)∵5ππ[,]126x ∈-,则ππ2[π,]66x -∈-,∴π11sin 262x ⎛⎫-≤-≤ ⎪⎝⎭,∴π22sin 216x ⎛⎫-≤-≤ ⎪⎝⎭,故函数()f x 在区间5ππ[,]126-的值域为[2,1]-.19.近年来,为“加大城市公园绿地建设力度,形成布局合理的公园体系”,许多城市陆续建起众多“口袋公园”、现计划在一块边长为200米的正方形的空地上按以下要求建造“口袋公园”、如图所示,以EF 中点A 为圆心,FG 为半径的扇形草坪区ABC ,点P 在弧BC 上(不与端点重合),AB 、弧BC 、CA 、PQ 、PR 、RQ 为步行道,其中PQ 与AB 垂直,PR 与AC 垂直.设PAB θ∠=.(1)如果点P 位于弧BC 的中点,求三条步行道PQ 、PR 、RQ 的总长度;(2)“地摊经济”对于“拉动灵活就业、增加多源收入、便利居民生活”等都有积极作用.为此街道允许在步行道PQ 、PR 、RQ 开辟临时摊点,积极推进“地摊经济”发展,预计每年能产生的经济效益分别为每米5万元、5万元及5.9万元.则这三条步行道每年能产生的经济总效益最高为多少?(精确到1万元)【答案】(1)2001003+(米)(2)2022万元【分析】(1)根据图依次求出三条线段长度即可求出总长度;(2)将PQ 、PR 、RQ 三边通过图中的关系用关于θ的等式表示,再记经济总效益W ,将W 进行表示,通过辅助角公式化简求出最值即可.【详解】(1)解:由题200,100,1003AC EA EC ==∴=,π3EAC ∴∠=,同理π3FAB ∴∠=,故π3BAC ∠=,由于点P 位于弧BC 的中点,所以点P 位于BAC ∠的角平分线上,则πsin 200sin 1006PQ PR PA PAB ==⋅∠=⨯=,3cos 20010032AQ AP PAB =∠=⨯=,因为π3BAC ∠=,1003AQ AR ==,所以ARQ 为等边三角形,则1003RQ AQ ==,因此三条街道的总长度为10010010032001003l PQ PR RQ =++=++=+(米).(2)由图可知sin 200sin PQ AP θθ==,sin 200sin 1003cos 100sin 33PR AP ππθθθθ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,cos 200cos AQ AP θθ==,cos 200cos 100cos 1003sin 33AR AP ππθθθθ⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎝⎭⎝⎭,在ARQ 中由余弦定理可知:222π2cos3RQ AQ AR AQ AR =+-()()22200cos 100cos 1003sin θθθ=++()2200cos 100cos 1003sin cos3πθθθ-⨯+30000=,则1003RQ =,设三条步行道每年能产生的经济总效益W ,则()5 5.9W PQ PR RQ =+⨯+⨯()200sin 1003cos 100sin 55903θθθ=+-⨯+π1000sin 59033θ⎛⎫=++ ⎪⎝⎭,当sin 13πθ⎛⎫+= ⎪⎝⎭即π6θ=时W 取最大值,最大值为100059032022+≈.答:三条步行道每年能产生的经济总效益最高约为2022万元.20.已知向量(cos 5,sin 5),(2cos(),2sin()),33a x xb x x ππ==-- 令()u x a b =⋅ .(1)求函数()u x 的对称轴方程;(2)设()4cos(2)6v x x π=+,当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()4()2()65(R)f x u x v x λλλ=-++∈的最小值()g λ;(3)在(2)的条件下,若对任意的实数,a b 且0a b >>,不等式21111()(2)()22()t a b g t a a b ab a a b λ-++≤≤+++-对任意的[]0,5λ∈恒成立,求实数t 的取值范围.【答案】(1),Z 412k x k ππ=-∈;(2)221,2()63,24213,4g λλλλλλλλ+<⎧⎪=-+-≤≤⎨⎪-+>⎩;(3)15t ≤≤.【分析】(1)根据平面向量的数量积公式及两角和的余弦公式可得()2cos 43u x x π⎛⎫=+ ⎪⎝⎭,再由43x k ππ+=可得结果;(2)令cos 26x t π⎛⎫+= ⎪⎝⎭,因为,612x ππ⎡⎤∈-⎢⎥⎣⎦,所以1,12t ⎡⎤∈⎢⎥⎣⎦则()()216863f x h t t t λλ==-+-,根据二次函数的性质讨论三种情况,即可得结果;(3)当[]0,5λ∈时,()()max min6,1g g λλ==由()()2112121126t a b a b t a ab a a b ⎧⎛⎫-++≤ ⎪⎪⎝⎭⎪⎨⎪+++≥⎪-⎩,结合基本不等式即可得结果.【详解】(1)因为向量(cos 5,sin 5),(2cos(),2sin()),33a x xb x x ππ==-- 所以()2cos 5cos 2sin 5sin 2cos 4333u x a b x x x x x πππ⎛⎫⎛⎫⎛⎫=⋅=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,由4,Z 3x k k ππ+=∈,得,Z 412k x k ππ=-∈,所以函数()u x 对称轴方程为,Z 412k x k ππ=-∈(2)由(1)得()22cos 42cos 224cos 22366u x x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()4cos(2)6v x x π=+所以()4()2()65(R)f x u x v x λλλ=-++∈2=16cos 288cos 26566x x ππλλ⎛⎫⎛⎫+--+++ ⎪ ⎪⎝⎭⎝⎭2=16cos 28cos 26366x x ππλλ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭令cos 26x t π⎛⎫+= ⎪⎝⎭,因为,612x ππ⎡⎤∈-⎢⎥⎣⎦,2,663x πππ⎡⎤+∈-⎢⎥⎣⎦所以1,12t ⎡⎤∈⎢⎥⎣⎦,则()()216863f x h t t t λλ==-+-,对称轴为14t λ=,当1142λ<,即2λ<,可得()h t 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以min 111()1686321242h t h λλλ⎛⎫==⨯-⨯+-=+ ⎪⎝⎭,当11124λ≤≤,即24λ≤≤时,22min ()16863634164h t h λλλλλλλ⎛⎫==⨯-⨯+-=-+- ⎪⎝⎭,当114λ>,即4λ>时,()h t 在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以()min ()116863213h t h λλλ==-+-=-+所以221,2()63,24213,4g λλλλλλλλ+<⎧⎪=-+-≤≤⎨⎪-+>⎩(3)当[]0,5λ∈时,由(2)可得()()max min 6,1g g λλ==所以()()2112121126t a b a b t a ab a a b ⎧⎛⎫-++≤ ⎪⎪⎝⎭⎪⎨⎪+++≥⎪-⎩而()11222422b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭,当且仅当2a b =时取等号,()()()()22111111224a a ab ab a a b ab ab a a b ab a a b a a b ab ++=-+++=-+++≥+=---,当且仅当22,2a b ==时,取等号,所以41246t t -≤⎧⎨+≥⎩所以15t ≤≤,即实数t 的取值范围为[1,5]【点睛】关键点点睛:此题考查三角函数的图象与性质,考查向量的数量积运算,考查二次函数的最值的求法,考查基本不等式的应用,解题的关键是利用三角函数公式将函数进行化简,再换元转化为二次函数求解,考查数学转化思想和分类思想,属于难题.21.设O 为坐标原点,定义非零向量(),OM a b = 的“相伴函数”为()sin cos f x a x b x =+()R x ∈,(),OM a b =称为函数()sin cos f x a x b x =+的“相伴向量”.(1)记()0,2OM =uuur的“相伴函数”为()y f x =,若方程()123sin f x k x =+-在区间[]0,2π上有且仅有四个不同的实数解,求实数k 的取值范围;(2)已知点(),M a b 满足22431a ab b -+=-,向量OM的“相伴函数”()y f x =在0x x =处取得最大值,当点M 运动时,求0tan2x 的取值范围;(3)已知点()0,1M ,向量OM 的“相伴函数”()y f x =在0x x =处的取值为35,在锐角ABC 中,设角A B C 、、的对边分别为a b c 、、,且4a =,()0cos A f x =,求AB AC AB AC +-⋅的取值范围.【答案】(1)[)1,3(2)3,4⎛⎫-∞- ⎪⎝⎭(3))4,2139⎡--⎣【分析】(1)去绝对值得函数的单调性及最值,利用交点个数求得k 的范围;(2)由22()sin cos sin()f x a x b x a b x ϕ=+=++,可求得即()02Z 2x k k ππϕ=+-∈时()f x 取得最大值,其中0tan a x b=,换元求得ab 的范围,再利用二倍角的正切可求得0tan 2x 的范围;(3)解法1:由题意可得3cos 5A =,由余弦定理和向量数量积定义可得21()44AB AC AB AC f t t t +-⋅==-++ ,再由正弦定理化得8sin 4cos 45sin()b c B B B ϕ+=+=+,结合函数性质求解范围即可;解法2:结合三角形的余弦定理、正弦定理、三角形外接圆、数量积的运算,利用函数性质解范围即可.【详解】(1)由题意可得()0,2OM =uuur的“相伴函数”()0sin 2cos 2cos f x x x x =⨯+⨯=,即方程()123sin f x k x =+-为[]2cos 123sin ,0,2πx k x x =+-∈,则方程[]2cos 123sin ,0,2πx k x x =+-∈有四个实数解.所以[]2cos 123sin ,0,2πk x x x =-+∈有四个实数解.令()[]2cos 123sin ,0,2πg x x x x =-+∈①当[]()0,,2cos 123sin 4sin 16x g x x x x ππ⎛⎫∈=-+=+- ⎪⎝⎭;②当(](),2,2cos 123sin 4sin 16x g x x x x πππ⎛⎫∈=--=--- ⎪⎝⎭.所以()[](]π4sin 1,0,π6π4sin 1,π,2π6x x g x x x ⎧⎛⎫+-∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---∈ ⎪⎪⎝⎭⎩,作出()g x 的图像:所以函数()g x 与y k =有四个交点时,实数k 的取值范围为[)1,3.(2)向量OM的“相伴函数”()()22sin cos sin f x a x b x a b x ϕ=+=++,其中2222cos ,sin ,tan abb aa b a b ϕϕϕ===++.当()π2πZ 2x k k ϕ+=+∈,即()0π2πZ 2x k k ϕ=+-∈时,()f x 取最大值,所以0πtan tan 2πcot 2a x k b ϕϕ⎛⎫=+-== ⎪⎝⎭,所以0022022tan 2tan21tan 1ax b x b x a a bb ⨯===-⎛⎫-- ⎪⎝⎭,令()b m a b a =≠,则()2234110mm a -++=所以()2Δ43410m m =--+>,解得:113m <<,所以021tan2113x m m m⎛⎫=<< ⎪⎝⎭-,因为1y m m =-单调递增,所以18,03m m ⎛⎫-∈- ⎪⎝⎭,所以03tan2,4x ∞⎛⎫∈-- ⎪⎝⎭.(3)解法1:()003cos cos 5A f x x ===,由余弦定理222266161655b c bc b c bc =+-⇒+=+②由定义3cos 5AB AC bc A bc ⋅== 则()2144AB AC AB AC f t t t +-⋅==-++ 由正弦定理:()435sin 5sin 5sin 5sin 5sin 5cos sin 55b c B C B A B B B B ⎛⎫+=+=++=++ ⎪⎝⎭()8sin 4cos 45sin B B B ϕ=+=+,其中锐角ϕ的终边经过点()2,1,由锐角三角形可知ππππ,,2222B A B A ϕϕϕ⎛⎫⎛⎫∈-⇒+∈+-+ ⎪ ⎪⎝⎭⎝⎭注意到ππ25sin sin 225A ϕϕ⎛⎫⎛⎫+-=+= ⎪ ⎪⎝⎭⎝⎭,所以()25sin ,15B ϕ⎛⎤+∈ ⎥ ⎝⎦所以(8,45b c ⎤+∈⎦,②式变形为25()516bc b c =+-,故(]15,20bc ∈,从而(213,8t ⎤∈⎦,此时函数()f t 单调递减,而()()2132139,84f f =-=-所以())4,2139AB AC AB AC f t ⎡+-⋅=∈--⎣解法2:()003cos cos 5A f x x ===,设BC 中点为D ,则22AB AC AD AD +== ()()()()AB AC AD DB AD DC AD DB AD DB⋅=+⋅+=+⋅- 所以2||24AB AC AB AC AD AD +-⋅=-++ 如下图所示,设ABC 的外接圆为圆O ,由于ABC 为锐角三角形,故点A 的运动轨迹为劣弧12A A (不含端点),由正弦定理知圆O 的半径52r =,故533cos 252OD r A ==⨯=,设AOD θ∠=,则ππA θ-<≤,由余弦定理:22259532cos 2cos 4422AD OA OD OA OD θθ=+-⋅⋅=+-⋅⋅⋅(1715cos 13,422θ⎤=-∈⎦由于函数()224f x x x =-++在(13,4x ⎤∈⎦时单调递减,()()132139,44ff =-=-所以)2||244,2139AB AC AB AC AD AD ⎡+-⋅=-++∈--⎣ .。
广工环境工程大一下学期高数期中考试(下)(06提高班)解答

过 L 和 L2 的平面为
x4 2 4
y 1 1
z4 3 3 0 即 3x 9 y z 8 0
所求直线 L 为
2 x 7 y 5z 12 0 3x 9 y z 8 0
四、计算下列各题(每题6分,共 18 分) 1.设 f ( x, y) 连续,且 f ( x, y) xy 求 f ( x, y) 。 解:设
s s1 s2 = 1 1 1 = 4i j 3k 2 1 3
设 ( x, y, z ) 为 L 上任意一点,则过 L 和 L1 的平面为
i
j
k
x2 1 4
y 3 z 1 1 1 1 3 0 即 2 x 7 y 5z 12 0
解:由对称性,只需求 z 0 那部分 面积的两倍。 在 上, dS
2a 2a x y
2 2 2
dxdy , 在 xoy 面上的投影区域 D : x 2 y 2 a 2 。
S 2 dS = 2 2a d
D
0
2
a
d
2a
2 2
0
= 4 2 ( 2 1)a 2
2z 2 f1 2 x( f11 2 x f12 2 y) 2 y( f 21 2 x f 22 2 y) x 2
广东工业大学试卷用纸,第 4 页, 共 6 页
2 f1 4x 2 f11 2x 8xyf12 4 y 2 f 22
同理
z 2 yf1 2 xf 2 y
2 z 2 f1 4 y 2 f11 8xyf12 4 x 2 f 22 y 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一下学期高等数学期中考试试卷及答案大一第二学期高等数学期中考试试卷一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。
1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为4、2222222(,)(0,0)(1cos())sin lim()ex y x y x y xy x y +→-+=+5、设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。
以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。
1、旋转曲面1222=--z y x 是( )(A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成.2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).212211sin )(cos )(x d x b x a x x b x a x ++++;(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++;(D).322111)sin )(cos (d x d x d x x b x a x +++++3、已知直线π22122:-=+=-zy x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( )(A) 两向量a r 与b r 平行的充要条件是存在唯一的实数λ,使得b a λ=r r;(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22yz∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条件;(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.5、设),2,2(y x y x f z -+=且2C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂yx z2( ) (A)122211322f f f --; (B)12221132f f f ++; (C)12221152f f f ++; (D)12221122f f f --.三、计算题(本大题共29分)1、(本题13分)计算下列微分方程的通解。
(1)(6分)221xy y x y +++='(2)(7分)x xe y y y 223=+'-''2、(本题8分)设u t uv z cos 2+=,t e u =,t v ln =,求全导数dtdz 。
3、(本题8分)求函数()()y y x e y x f x 2,22++=的极值。
四、应用题(本题8分)1、某工厂生产两种型号的机床,其产量分别为x 台和y 台,成本函数为xy y x y x c -+=222),( (万元),若市场调查分析,共需两种机床8台,求如何安排生产使其总成本最少?最小成本为多少?五、综合题(本大题共21分)1、(本题10分)已知直线⎪⎩⎪⎨⎧==+011x c z b y l :,⎪⎩⎪⎨⎧==-012y c z a x l :,求过1l 且平行于2l 的平面方程.2、(本题11分)设函数(,,)ln ln 3ln f x y z x y z =++ 在球面22225(0,0,0)x y z R x y z ++=>>>上求一点,使函数(,,)f x y z 取到最大值.六、证明题(本题共12分)1、设函数⎪⎭⎫⎝⎛=x y xzF x u k ,,其中k 是常数,函数F 具有连续的一阶偏导数.试证明:z u z y u y x u x ∂∂+∂∂+∂∂⎪⎭⎫ ⎝⎛=x y xz F kx k ,第二学期高等数学期中考试试卷答案一、填空题(本题满分15分,共有5道小题,每道小题3分) 1.、 ()()()21113222=-+++-z y x2、12.3、2450x y z +--=.4、05、232x y +;二、选择填空题(本题满分15分,共有5道小题,每道小题3分) 1(A ) 2(B ) 3(C ) 4(C ) 5(A )三、计算题(本大题共29分)1、(1)解:将原微分方程进行分离变量,得:x x yyd )1(1d 2+=+ 上式两端积分得c x x x x y yy ++=+==+⎰⎰2)d 1(arctan 1d 22即 : c x x y ++=2arctan 2其中c 为任意常数.(2)解:题设方程对应的齐次方程的特征方程为,0232=+-r r 特征根为,11=r,22=r 于是,该齐次方程的通解为,221x e C x C Y +=因2=λ是特征方程的单根,故可设题设方程的特解:.)(210*x e b x b x y +=代入题设方程,得,22010x b b x b =++比较等式两端同次幂的系数,得,210=b ,11-=b于是,求得题没方程的一个特解*y .)121(2x e x x -=从而,所求题设方程的通解为.)121(2221x x x e x x e C e C y -++= 2、解:()u t v u t uv u u z sin cos 22-=+∂∂=∂∂, ()uv u t uv v v z 2cos 2=+∂∂=∂∂,u tz cos =∂∂ 依复合函数求导法则,全导数为dtdt t z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂= ()1cos 12sin 2⋅+⋅+-=u t uv e u t v t()tt t t e t e t e e t t cos ln 2sin ln 2++-=3、解:解方程组()()()()⎪⎩⎪⎨⎧=+==+++=022,01422,222y e y x f y y x e y x f xyx x ,得驻点⎪⎭⎫⎝⎛-1,21。
由于()()124,22+++==y y x e y x f A x xx ,()()142+==y e xy f B x xy ,()x yy e y x f C 22,==在点⎪⎭⎫ ⎝⎛-1,21处,02>=e A ,0=B ,e C 2=,224e B AC =-,所以函数在点⎪⎭⎫⎝⎛-1,21处取得极小值,极小值为21,21e f -=⎪⎭⎫⎝⎛-。
四、应用题(本题8分) 1、解:即求成本函数()y x c ,在条件8=+y x 下的最小值构造辅助函数 ())8(2,22-++-+=y x xy y x y x F λ解方程组 ⎪⎩⎪⎨⎧=-+='=++-='=+-='080402y x F y x F y x F y x λλλ解得 3,5,7==-=y x λ这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为:2835325)3,5(22=⨯-⨯+=c (万) 五、综合题(本大题共21分)1、解:直线1l 与2l 的方向向量分别为 {}⎭⎬⎫⎩⎨⎧-=⨯⎭⎬⎫⎩⎨⎧=b c c b 1100011101,,,,,,s ρ,{}⎭⎬⎫⎩⎨⎧=⨯⎭⎬⎫⎩⎨⎧-=a cc a 1010101012,,,,,,s ρ,作 ⎭⎬⎫⎩⎨⎧--=⨯=221111c bc ca,,s s n ρρρ,取直线1l 上的一点()c P ,,001,则过点1P 且以⎭⎬⎫⎩⎨⎧--=2111c bc ca ,,n ρ为法向量的平面01=+--czb y a x ,就是过1l 且平行于2l 的平面方程.2、解:设球面上点为(,,)x y z .令 2222(,,,)ln ln 3ln (5)L x y z x y z x y z R λλ=+++++-,222211120,20,20,503x y z L x L y L z L x y z R x y zλλλλ=+==+==+==++-= 由前三个式子得2223z x y ==,代入最后式子得,x y R z ===.由题意得(,,)f x y z在球面上的最大值一定存在,因此唯一的稳定点(,)R R 就是最大值点,最大值为5(,))f R R =. 六、证明题(本题共12分)1、证明:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂-22211,,,x y x y x z F x x z x y xz F x x y x z F kx x u kkk ⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛=---x y xz F yx x y xz F zx x y xz F kx k k k ,,,22121⎪⎭⎫⎝⎛'=⋅⎪⎭⎫ ⎝⎛'=∂∂-x y x z F x x x y x z F x y u k k ,1,212⎪⎭⎫ ⎝⎛'=⋅⎪⎭⎫ ⎝⎛'=∂∂-x y xz F x x x y xz F x z u k k ,1,111 所以,zu z y u y x u x∂∂+∂∂+∂∂ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛⋅=---x y xz F yx x y xz F zx x y x zF kx x k k k ,,,22121 ⎪⎭⎫⎝⎛'⋅+⎪⎭⎫ ⎝⎛'⋅+--x y xz F x z x y xzF x y k k ,,1121 ⎪⎭⎫ ⎝⎛=x y x z F kx k ,。