分式易错题(易错点)专题(学生版超全版)

合集下载

(专题精选)最新初中数学—分式的易错题汇编及答案

(专题精选)最新初中数学—分式的易错题汇编及答案

一、选择题1.函数y =x 的取值范围是( ) A .x ≥﹣2B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠12.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍3.下列分式是最简分式的是( )A .22a a ab+B .63xy aC .211x x -+D .211x x ++4.计算22193x x x+--的结果是( ) A .13x - B .13x + C .13x- D .2339x x +- 5.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=6.计算32-的结果是( ) A .-6 B .-8C .18-D .187.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 8.下列变形正确的是( ). A .1a b bab b++= B .22x y x y-++=- C .222()x y x y x y x y --=++ D .23193x x x -=-- 9.已知有理式:4x 、4a 、1x y -、34x 、12x 2、1a +4,其中分式有 ( )A .2个B .3个C .4个D .5个10.下列各式中的计算正确的是( )A .22b b a a=B .a ba b ++=0 C .a c ab c b+=+ D .a ba b-+-=-1 11.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( )A .7.7×106B .7.7×107C .7.7×10-6D .7.7×10-7 12.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解13.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍 B .扩大3倍 C .扩大6倍 D .不变 15.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 16.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米17.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况18.若(x -2016)x =1,则x 的值是( ) A .2017B .2015C .0D .2017或019.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d20.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个21.如果把分式232x x y+中的x 和y 都扩大为原来的5倍,那么分式的值( )A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的1522.如果2310a a ++=,那么代数式229263a a a a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1B .1-C .2D .2-23.3--2的倒数是( )A .-9B .9C .19D .-1924.计算()22ab ---的结果是( )A .42b a -B .42b aC .24a b -D .24a b25.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式、分式有意义的条件可得关于x 的不等式组,解不等式组即可得. 【详解】解:由题意得:2010x x +≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1, 故选B. 【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.A解析:A 【详解】∵要把分式2210x y xy+中的x y 、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x y x y xy x yxyxy+++==⨯⨯⨯,∴把分式2210x y xy+中的x y 、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n 倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n 倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.3.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.4.B解析:B 【解析】原式=()()2x x 3x 3+-−1 x 3-=()()()2x x 3x 3x 3-++-=()()x 3x 3x 3-+-=1x 3+.故选:B.5.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.6.D解析:D 【解析】3311228-==.故选D.7.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.8.C解析:C 【解析】 选项A.a bab+ 不能化简,错误. 选项B.22x y x y-+-=-,错误. 选项C.()222x y x y x y x y --=++ ,正确. 选项D. 23193x x x -=-+,错误. 故选C.9.B解析:B 【解析】4a 、、34x 、12x 2的分母中均不含有字母,因此它们是整式,而不是分式. 4x、、1x y -、1a +4的分母中含有字母,因此是分式.所以B 选项是正确的.点睛:本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.10.D解析:D 【解析】解:A.22b ba a≠,故A错误;B.a ba b++=1,故B错误;C.a c ab c b+≠+,故C错误;D.a ba b-+-=-1,正确.故选D.11.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.12.A解析:A【解析】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.13.A解析:A【解析】试题分析:==;故选A.考点:分式的基本性质.14.B解析:B【解析】【分析】根据分式的基本性质即可求出答案.【详解】原式=1862333mn mn mn m n m n m n==⨯---故选B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.B解析:B【解析】【分析】分别算出两次购粮的平均单价,用做差法比较即可.【详解】解:设第一次购粮时的单价是x元/千克,第二次购粮时的单价是y元/千克,甲两次购粮共花费:100x+100y,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x yx y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420 222x y xy x yx y xyx y x y x y>+--+-==+++,即22x y xyx y ++>,所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B.【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.18.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).19.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20 221110.30.09,3,9,1933a b c d--⎛⎫⎛⎫=-=-=-=-=-==-=⎪ ⎪⎝⎭⎝⎭,∴10.0919 9-<-<<,∴b<a<d<c.故选:B.【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a-p=1pa(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.20.A解析:A【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可.【详解】解:式子2x yx-,-2x y-中都含有字母是分式.故选:A.【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.A解析:A【解析】【分析】x,y都扩大为原来的5倍就是分别变成原来的5倍,变成5x和5y.用5x和5y代替式子中的x和y,看得到的式子与原来的式子的关系.【详解】用5x和5y代替式子中的x和y得:()2255, 151032x xx y x y=++则扩大为原来的5倍.故选:A.【点睛】考查分式的基本性质,掌握分式的基本性质是解题的关键.22.D解析:D【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2+3a+1=0,即可求得所求式子的值.【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++ =()2232•3a a a a ++ =2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a •b 4=42b a. 故选B .【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.A解析:A【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244m m -=,故③错误; ④523a a a -÷-=-()(),故④正确;⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.。

分式易错题汇编附答案解析

分式易错题汇编附答案解析

分式易错题汇编附答案解析一、选择题1.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠ 【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.2.下列计算正确的是( ).A 2=-B .2(3)9--=C .0( 3.14)0x -=D .2019(1)|4|5---=- 【答案】D【解析】【分析】直接利用二次根式的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】A 2=,故此选项错误;B 、(-3)-2=19,故此选项错误; C 、(x-3.14)0=1,故此选项错误;D 、(-1)2019-|-4|=-5,正确.故选:D .【点睛】此题考查二次根式的性质以及负指数幂的性质、零指数幂的性质,正确化简各数是解题关键.3.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.4.在等式[]209()a a a ⋅-⋅=中,“[]”内的代数式为( )A .6aB .()7a -C .6a -D .7a【答案】D【解析】【分析】 首先利用零指数幂性质将原式化简为[]29a a ⋅=,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.【详解】()01a -=Q ,则原式化简为:[]29a a ⋅=, ∴[]927a a -==,故选:D .【点睛】本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.5.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( )A .2a 5-aB .2a 5-1aC .a 5D .a 6【答案】D【解析】 【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a 2×3+a 2+3-a 2-(-3)=a 6+a 5-a 5=a 6,故选D.【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.6.x 的取值范围为( ) A .5x ≠-B .0x >C .5x ≠- 且0x >D .0x ≥【答案】D【解析】【分析】根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,由此即可求得答案.【详解】由题意得:x+5≠0,且x≥0,解得:x≥0,故选D .【点睛】本题考查了分式有意义的条件 二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.7.如果30x y -= ,那么代数式()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭的值为( ) A .23 B .2 C .-2 D .32【答案】A【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x =3y 代入化简可得.【详解】解:()2223x y x x y y ⎛⎫+-÷- ⎪⎝⎭=()22213xy x y y x y -+-g =()2()13x y y x y --g =3x y y- ∵30x y -=,∴x=3y , ∴32333x y y y y y --==, 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.8.下列运算错误的是( )A .235a a a ⋅=B .()()422ab ab ab ÷-=C .()222424ab a b -=D .3322a a -= 【答案】B【解析】【分析】直接运用同底数幂的乘法运算法则、单项式除以单项式运算法则、积的乘方与幂的乘方运算法则以及负整数指数幂的意义分别计算得出答案再进行判断即可.【详解】A . 235a a a ⋅=,计算正确,不符合题意;B . ()()4222ab ab a b ÷-=,原选项计算错误,符合题意;C . ()222424ab a b -=,计算正确,不符合题意; D . 3322a a-=,计算正确,不符合题意. 故选:B .【点睛】此题主要考查了幂的运算,熟练掌握运算法则是解题的关键.9.已知17x x -=,则221x x +的值是( ) A .49B .48C .47D .51【答案】D【解析】【分析】 将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【详解】 已知等式17x x -=两边平方得:22211()249x x x x -=+-=, 则221x x +=51. 故选D .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯【答案】C【解析】【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.12.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.13.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.14.下列各分式中,是最简分式的是( ).A .22x y x y++ B .22x y x y -+ C .2x x xy + D .2xy y【答案】A【解析】【分析】 根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.15.213-⎛⎫ ⎪⎝⎭的相反数是( ) A .9B .-9C .19D .19- 【答案】B【解析】【分析】先根据负指数幂的运算法则求出213-⎛⎫ ⎪⎝⎭的值,然后再根据相反数的定义进行求解即可. 【详解】2211113193-⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭=9, 9的相反数为-9, 故213-⎛⎫ ⎪⎝⎭的相反数是-9, 故选B .【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.16.a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.17.计算2111x x x x -+-+的结果为( ) A .-1B .1C .11x +D .11x - 【答案】B【解析】【分析】先通分再计算加法,最后化简.【详解】2111x x x x -+-+ =221(1)11x x x x x --+-- =2211x x -- =1,故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键.18.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.19.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .20.12×10−3=0.00612,故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.。

分式易错题汇编及答案解析

分式易错题汇编及答案解析
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
18.当 有意义时,a的取值范围是()
A.a≥2B.a>2C.a≠2D.a≠-2
【答案】B
【解析】
解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.
7.已知m﹣ = ,则 +m的值为( )
A.± B. C.± D.11
【答案】A
【解析】
【分析】
根据完全平方公式即可得到结果.
【详解】
,
,
,
,
,
.
故选A.
【点睛】
本题主要考查完全平方公式,熟悉掌握公式是关键.
8.下列分式中,无论 取何值,分式总有意义的是()
A. B. C. D.
【答案】A
【解析】
【分析】
x≠1
故选D.
4.在等式 中,“ ”内的代数式为()
A. B. C. D.
【答案】D
【解析】
【分析】
首先利用零指数幂性质将原式化简为 ,由此利用同底数幂的乘除法法则进一步进行分析即可得出答案.
【详解】
,则原式化简为: ,
∴ ,
故选:D.
【点睛】
本题主要考查了零指数幂的性质与同底数幂的乘除法运算,熟练掌握相关概念是解题关键.
C.∵ ,∴ y,∴ 不成立,故C不正确;
D.∵ ,∴ ,∴ 成立,故D正确;
故选D.
【点睛】
本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果 ,则有 .

分式易错题汇编附答案

分式易错题汇编附答案
【答案】B
【解析】
【分析】
利用幂次方计算公式即可解答.
【详解】
解:原式= .
答案选B.
【点睛】
本题考查幂次方计算,较为简单.
15. 的相反数是()
A.9B.-9C. D.
【答案】B
【解析】
【分析】
先根据负指数幂的运算法则求出 的值,然后再根据相反数的定义进行求解即可.
【详解】
=9,
9的相反数为-9,
20.如果 ,那么代数式 的值为()
A. B.2C.-2D.
【答案】A
【解析】
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将x=3y代入化简可得.
【详解】
解:
=
=
=
∵ ,
∴x=3y,
∴ ,
故选:A.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
A.第一次往返航行用的时间少B.第二次往返航行用的时间少
C.两种情况所用时间相等D.以上均有可能
【答案】A
【解析】
【分析】
甲乙两港之间的路程一定,可设其为 ,两次航行中的静水速度设为 ,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度﹣水流速度,把相关数值代入,比较即可.
【详解】
解:设两次航行的路程都为 ,静水速度设为 ,
第一次所用时间为:
第二次所用时间为:
∵ ,∴ ,
∴ ,

∴第一次的时间要短些.
故选:A.
【点睛】
本题主要考查了列代数式,得到两次所用时间的等量关系是解决本题的关键.
10.下列运算错误的是()

(专题精选)最新初中数学—分式的易错题汇编附答案

(专题精选)最新初中数学—分式的易错题汇编附答案

一、选择题1.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍2.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 3.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义4.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+5.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠6.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 8.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++9.计算32-的结果是( ) A .-6B .-8C .18-D .1810.下列等式成立的是( ) A .|﹣2|=2B .(2﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣211.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1- B .1a -C .()21a - D .11a- 12.3x +在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍B .扩大3倍C .扩大6倍D .不变15.把分式 2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的16倍B .扩大到原来的4倍C .缩小到原来的14D .不变 16.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 17.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .2011201318.分式b ax ,3c bx -,35a cx 的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 519.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 220.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个21.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 322.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1 B .1-C .2D .2-23.函数y =的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠224.3--2的倒数是( )A .-9B .9C .19D .-1925.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222xx y ⋅⋅-()=原式.故选A .点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .2.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.3.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .4.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.5.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C.6.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c7.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.8.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.9.D解析:D 【解析】3311228-==. 故选D. 10.A解析:A【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A、|﹣2|=2,计算正确,故本选项正确;B﹣1)0=1,原式计算错误,故本选项错误;C、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误;D、﹣(﹣2)=2,原式计算错误,故本选项错误;故选:A.点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.11.D解析:D【解析】解:A.当a≥1时,根式有意义.B.当a≤1时,根式有意义.C.a取任何值根式都有意义.D.要使根式有意义,则a≤1,且分母不为零,故a<1.故选D.点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.12.D解析:D【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可.【详解】根据题意得x+3≥0且x−2≠0,所以x的取值范围为x≥−3且x≠2.故答案选D.【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.D解析:D【解析】根据分式的基本性质,可知A不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.14.B解析:B 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】原式=1862333mn mn mnm n m n m n ==⨯---故选B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.C解析:C 【解析】分析:把原分式中的x .y 都扩大到原来的4倍后,再约分化简.详解:因为()422441224416242x y x y x y x y xy xy ---⨯⨯==,所以分式的值缩小到原来的14.故选C .点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.16.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.A解析:A【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案.【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A.【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.18.C解析:C【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积.【详解】最简公分母为3⨯5⨯a⨯b⨯c⨯x3=15abcx3故答案选:C.【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.19.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.20.A解析:A 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++=()2232•3a a a a ++=2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.D解析:D 【解析】 【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】 根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2.故选D . 【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.24.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.25.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.。

(完整版)分式易错题(易错点)专题(学生版超全版)

(完整版)分式易错题(易错点)专题(学生版超全版)

分式易错题专题班级:姓名:易错点一对分式的定义理解不透导致判断出错 a — b x + 3 5+ y a + b x + y 亠 1下列各式:, , , , 中,是分式的有() 2 x n a — b m A. 1个B. 2个C. 3个D. 4个易错点二 忽略分式有意义的条件而出错x 2—42、(桂林中考)若分式药巨的值为0,则x 的值为()A.— 2B. 0C. 2D.±2易错点三忽略除式不能为0而致错x + 3 x 斗 24、 使式子x —3十xT^有意义的x 的取值范围是()A. x^3 且 xM — 4B. x^3 且 xM — 2C. x M 3^且x M — 3D. x M — 2, x M 3 ^且 x M — 4易错点四 未正确理解分式基本性质而致错5、 若x , y 的值扩大为原来的3倍,下列分式的值如何变化?⑴—⑵丝⑶弓与 x yx yx y6、 如果把一二的x 与y 都扩大10倍,那么这个代数式的值()i+y A.不变B•扩大50倍C 扩大10倍D.缩小到原来的丄/ 107、 若x 、y 的值均扩大为原来的 2倍,则下列分式的值保持不变的是()易错点六 做分式乘除混合运算时,未按从左到右的运算顺序而致错3、分式a 21a 22a 1有意义的条件是 __________ ,这个分式的值等于零的条件是A3xB 、3xC2y 2y 23x 2、2yD易错点五 未理解最简分式概念而致错3x 3 2?K8、分式—气中,最简分式有x y例1计算:2a 4a2 6a 9 2? (a+3) 3错解: 原式2 a 2a2 6a 9 26a 99、练习:¥1x 1? x 1x 2x 1xx易错点七 分式运算中,错用分配律出现错误例2计算:旦卫十m 2」一2m 4m 2323 m = m 3m 9m 27 1010 m 2 410、练习:(x+1) =-2x — 611、练习:(山西中考)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.2 x — 6—~2x+2 x —4=2(x — 2) — x — 6 第—步 =2x — 4— x + 6 第二步小明的解法从第 _步开始出现错误,正确的化简结果是 _____________易错点九弄错底数符号而出错计算:(x — y)6十(y — x)3十(x — y).. ,636 一 3 — 12解:原式=(x — y)十[—(x — y)] 十(x — y) =— (x — y) 一一 =— (x — y). 易错点十考虑问题不全而出错若(x — 1)0— 2(x — 2) —2有意义,则x 应满足条件 ____________ .错解:原式=—_m十 m 22m 43 m 53 m22m 4 m 22 m 4易错点八例4 把解方程中的“去分母”误用到分式运算中计算:x 21错解:x 3x 21=x 一 3 一 32 (x — 2)(x+ 2)( x — 2) x — 6(x + 2)( x — 2)=x + 2.第四步12、练习: (1)计算3 x 22x1 x 22x(2)解方程3 x 2 2x1 x2 2x易错点十一对负整数指数幕理解不清而致错13、阅读下列解题过程:2 - 2、-3 _3 4、- 2(—3mn ) • ( — 2m n )—3 —6 6 —2 6 —8 1— 6 616 —81=(—3) m n • ( — 2) mn A=— 27m n • ( — 4mn )B = 108?Q上述解题过程中,从___________ 步开始出错,应改正为__________________________易错点十二分子相加减时易忽视分数线有括号作用而出错222 a 4 a 4 a 4n= =0a 2 a 2m m— n14练习:计算祐-E勺结果是-------------------- 易错点十三运算法则、顺序使用不当而致错12o 23.1432 3 32a 2b 3 ? ab易错点十四对整体思想、式子变形掌握不好而出错16、①已知 1 14,求分式2a ab 2b的值。

分式题型-易错题-难题-大汇总

分式题型-易错题-难题-大汇总

分式单元复习(一)、分式定义及有关题型一、分式的概念:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式。

概念分析:①必须形如“BA”的式子;②A 可以为单项式或多项式,没有其他的限制;③B 可以为单项式或多项式,但必须含有字母。

...例:下列各式中,是分式的是 ①1+x 1 ②)(21y x + ③3x ④xm -2 ⑤3-x x ⑥1394y x + ⑦πx练习:1、下列有理式中是分式的有( )A 、m 1 B 、162y x - C 、xy x 7151+- D 、572、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④xm -2 ⑤3-x x ⑥1394y x + ⑦πy +5 1、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2B 、3C 、4D 、5 二、有理式:整式和分式统称有理式。

即:⎪⎩⎪⎨⎧⎩⎨⎧分式多项式单项式整式有理式例:把下列各有理式的序号分别填入相应的横线上①21x ②)(51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+ ⑦y x+2 整式: ;分式 。

①分式有意义:分母不为0(0B ≠)②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) ⑧分式的值为整数:(分母为分子的约数) 例:当x 时,分式22+-x x 有意义;当x 时,22-x 有意义。

练习:1、当x 时,分式6532+--x x x 无意义。

分式易错题易错点专题学生版超全版

分式易错题易错点专题学生版超全版

分式易错题易错点专题学生版超全版Newly compiled on November 23, 2020分式易错题专题班级: 姓名:易错点一 对分式的定义理解不透导致判断出错1、下列各式:a -b 2,x +3x ,5+y π,a +b a -b ,x +ym 中,是分式的有( )A .1个B .2个C .3个D .4个易错点二 忽略分式有意义的条件而出错2、(桂林中考)若分式x 2-4x +2的值为0,则x 的值为( )A .-2B .0C .2D .±23、分式12122++-a a a 有意义的条件是 ,这个分式的值等于零的条件是 .易错点三 忽略除式不能为0而致错4、使式子x +3x -3÷x +2x +4有意义的x 的取值范围是( )A .x≠3且x≠-4B .x≠3且x≠-2C .x≠3且x≠-3D .x≠-2,x≠3且x≠-4 易错点四 未正确理解分式基本性质而致错5、若x ,y 的值扩大为原来的3倍,下列分式的值如何变化⑴x y x y +- ⑵xy x y - ⑶22x yx y -+ 6、如果把的x 与y 都扩大10倍,那么这个代数式的值( )A .不变B .扩大50倍C .扩大10倍 D. 缩小到原来的7、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A 、y x 23B 、223y xC 、y x 232D 、2323yx易错点五 未理解最简分式概念而致错 8、分式a b 8,ba b a +-,22y x y x --,22y x y x +-中,最简分式有( ) A 1个 B 2个 C 3个 D 4个易错点六 做分式乘除混合运算时,未按从左到右的运算顺序而致错例1 计算:96422++-a a a ÷32+-a a •(a+3) 错解:原式=()96222++-a a a ÷()2-a =9622++a a9、练习:⎪⎭⎫⎝⎛-•+÷+--x x x x x x x 1112122 易错点七 分式运算中,错用分配律出现错误例2 计算:423--m m ÷⎪⎭⎫ ⎝⎛--+252m m错解:原式=423--m m ÷()2+m -423--m m ÷25-m =()4232--m m —103m -=()4102793223-+--m m m m 10、练习:212111-÷⎪⎭⎫ ⎝⎛--+a a a 易错点八 把解方程中的“去分母”误用到分式运算中 例4 计算:132--x x -x-13错解:132--x x -x -13=()()113-+-x x x -13-x =()()113-+-x x x -()()()1113-++x x x =x -3-3(x+1)=﹣2x -611、练习:(山西中考)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题. 2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)第一步=2(x -2)-x -6第二步 =2x -4-x +6第三步 =x +2.第四步 小明的解法从第 步开始出现错误,正确的化简结果是 .12、练习:(1)计算x x x x 212322--+ (2)解方程 0212322=--+xx x x易错点九 弄错底数符号而出错计算:(x -y)6÷(y-x)3÷(x-y).解:原式=(x -y)6÷[-(x -y)]3÷(x-y)=-(x -y)6-3-1=-(x -y)2. 易错点十 考虑问题不全而出错若(x -1)0-2(x -2)-2有意义,则x 应满足条件 . 易错点十一 对负整数指数幂理解不清而致错 13、阅读下列解题过程:(-3m 2n -2)-3·(-2m -3n 4)-2=(-3)-3m -6n 6·(-2)-2m 6n -8A =-127m -6n 6·(-14m 6n -8)B =1108n2.C上述解题过程中,从 步开始出错,应改正为 .易错点十二 分子相加减时易忽视分数线有括号作用而出错例3 计算:a+2-242-+a a错解:原式=242--a a -242-+a a =24422-+--a a a =014、练习:计算2m m +n -m -n n +m的结果是 . 易错点十三 运算法则、顺序使用不当而致错 15、计算:①()()210123214.323----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯-+--π ②()()213322-----•-ab b a③2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-•⎪⎭⎫ ⎝⎛-ab a b a b ④()()810109108.1⨯÷⨯-- 易错点十四 对整体思想、式子变形掌握不好而出错16、①已知411=-b a ,求分式b ab a b ab a ---+222的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3x 2y
27
3x 2 c 3x 3 2y 2y 2
易错点五 未理解最简分式概念而致错 8、分式—,
8a
A 1 易错点六
错解:
9、练习: a b x
y 2
2
a b x
y

B 2

做分式乘除混合运算时, 计算:2羽
4
a 2 6a 9
原式=年空2
a 6a
x 2 1
y 中
2
2
中,
x y
最简分式有(
未按从左到右的运算顺序而致错
a 2
? (a+3)
3
6a x 易错点七 分式运算中,错用分配律出现错误
5
例2计算:2^十m
2m 4
错解:原式=——m
2m 4
2m 4
3 m
2 m 2 4
分式易错题专题
班级:
姓名:
易错点一对分式的定义理解不透导致判断出错
a —
b x + 3 5+ y a + b x + y 亠
1下列各式: , , , , 中,是分式的有()
2 x n a — b m
A. 1个
B. 2个
C. 3个
D. 4个
易错点二 忽略分式有意义的条件而出错
X 2— 4
2、 (桂林中考)若分式齐2的值为0,则x 的值为()
A.— 2
B. 0
C. 2
D. 土 2
a 2 1
3、 分式# 1
有意义的条件是 __________________ ,这个分式的值等于零的条件是 ___________
a 2a 1
易错点三忽略除式不能为0而致错
x 亠3 x 亠2
4、 使式子 有意义的x 的取值范围是()
x — 3 x + 4
A. x 丰3且x 丰—4
B. x M 3且x 工—2
C. x M 3 且 x M — 3
D. x M — 2, x M 3 且 x M — 4
易错点四 未正确理解分式基本性质而致错
5、 若x , y 的值扩大为原来的3倍,下列分式的值如何变化?
⑴3
⑵江

x y
x y
x y
6、 如果把一二的x 与y 都扩大10倍,那么这个代数式的值(

x+y
A .不变
B •扩大50倍 C.扩大10倍
D.缩小到原来的丄

10
7、 若x 、y 的值均扩大为原来的 2倍,则下列分式的值保持不变的是(

3 m = 3
m 3m 9m 27 10 10 m 2 4
10、 练习:1
1 1
a 1 a 2 a 2
易错点八 把解方程中的“去分母”误用到分式运算

(x+1) =-2x — 6
11、练习:(山西中考)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.
2 X — 6 x + 2 x 2 — 4
易错点九弄错底数符号而出错
计算:(x — y)6- (y — X )3 十(x — y).
. ,
6
3
6 一 3 — 1
2
解:原式=(x — y)十[—(x — y)] 十(x — y) =— (x — y) 一一 =— (x — y). 易错点十考虑问题不全而出错
若(x — 1)0— 2(x — 2) —
2有意义,则x 应满足条件 ______________ . 易错点十一对负整数指数幕理解不清而致错
13、阅读下列解题过程: 2 — 2 —3
—3 4、— 2
(—3mn )
• ( — 2m n )
3 —6 6
—2 6 —8*
1 —6 6 , 1
6 —8
1
=(—3) m n • ( — 2) mn A =— 27m n • ( — :mn )B =
上述解题过程中,从 ___________ 步开始出错,应改正为 _________________________ 易错点十二 分子相加减时易忽视分数线有括号作用而出错
222
a 4 a 4 a 4 n
= =0
a 2
a 2
m m — n,, ,, m 14
、练习:计算m +mn —m +m 勺结果是 ---------- 易错点十三运算法则、顺序使用不当而致错
例4 错解: 计算: x 3
x 3 3
2 x
1
3 =
1 x x 3 3 _ x 3 x 2
1 1 x
x 1 x 1
x 1 x 1 x 1
=x 一 3 一 3
2 (x — 2) (x + 2)( x — 2) x — 6
(x + 2)( x — 2)
=2(x — 2) — x — 6 第—步 =2x — 4— x + 6 第二步 小明的解法从第 步开始出现错误,正确的化简结果是 =x + 2.第四步
12、练习: (1)计算
3
~2~
x 2x
1
~2~
x 2x (2)解方程
3
~2~
x 2x 1
~2~
x 2x
例3计算:a+2 —
a 2
错解:原式
易错点十五
未理解增根的本质而致错
17. (岳阳中考)关于x 的分式方程二 + 3 = 一丄有增根,则增根为()
x - 1 x - 1
A. x = 1
B. x =— 1
C. x = 3
D. x =— 3
18. (贵港港南区期中)若解分式方程x ■不=不产生增根,则 m = _________ .
k 一 1
1
k -5
19. 若关于x 的方程—=—有增根x =- 1,贝U k 的值为()
x — 1 x — x x + x
A. 1
B. 3
C . 6
D. 9
x 一 4 m
20. 已知关于x 的方程 —m- 4 = 无解,求m 的值.
x — 3 3 — x 解:去分母、整理得(m + 3)x = 4m + 8,① 由于原方程无解,故有以下两种情况:
15、计算:①
3 2
2 1
3.14 0
2 3

2a 2b 3
3
1 2
? ab 1
3 2
3
2
③- ?
b b 3
2
④ 1.8 10
10
8
9 10
a
2a
4a
1
2
易错点十四 对整体思想、式子变形掌握不好而出错
16、①已知--4,求分式
2a ab
一2b
的值。

a b a 2ab b
②若 4x=5y ,求 的值.
③已知: 1 1
5,求 2x 3xy 2y 的值
x y
x 2xy y
⑤已知:
x 1
2 求
x 2
X -
2
'求 4
2
x
x 2x
的值.
1
④已知:x -
2,求x 2 42的值• X
x 2 ⑥若 |x y 1 | (2x 3)2
0,求一1一 的值.
4x 2y
(1)方程①无解,即 mi + 3= 0,且4mi + 8工0,此时m =- 3;
⑵方程①的根x = 罗是增根,
因此,m 的值为一3或1.
易错点十六 解分式方程后,忽略根的检验,未舍去增根
解:方程两边同乘(1 + x)(1 — x),得 1 + x = 2.解得 x = 1.
检验:当 x = 1 时,(1 + x)(1 — x) = 0. 所以x = 1是原方程的增根,故原方程无解.
3 a 4
22. 练习:若关于x 的分式方程a
一4 有增根,求该分式方程的增
根。

x 2 x x x 2
易错点十七 分式方程去分母时,漏乘无分母的项或处理符号时出错
6 x
1
1 2x
23.
解分式方程:① =—1; ②丄=二三1.
X —
2 X +3
x 2 2 x
【补充】易错点十八 在求分式的值
时,
因所选取字母的值使分式无意义而出错
取的一个合适的数.
厂2
<2-1
— x
(0 — .1
" :T?—加 + 1)- Z+ 1 ,
(1) 当当:八'时,求原代数式的值。

(2)
原代数式的值能等于 I 吗?为什么?
【补充】易错点十九 在分式变形时,因符号处理不当而出错 26.判断下列分式的变形是否正确并说明理由:
4m + 8
vm^ 3
3,解得m = 1.
24.(娄底中考)先化简,再求值:
x —
2 x 2— 1
x + 1
1
x — 4x + 4 x — 1 其中 x 是从一
1 , 0, 1, 2中选
①一 1 ___ x
②二^=3x
2a b — a .
21. 解方程:
1 = - 2
1—x = x 2- 1
25.先化简:
然后解答下列问题。

相关文档
最新文档