分式典型易错题难题
八年级数学下册-分式全章难题、易错题-人教新课标版

3 - x 值为整数,则 x 的整数值有___个,分别是______b ,y= b9. 已知:x= b3. 下列各式中,与分式 -a C. aD. - a A. -a x + y 中的 x ,y 的值都扩大 2 倍,则原分式的值.⎝ 3 ⎭= 2 ,3n = 5,求 92 m -n 的值 . b =2 ,求 x-3 3 - x =4 无解,那么 m 的值为_____ m - 2 ÷7. 化简:⎪ ⋅ ⎪ =a ⎪ =15. 若分式 x - 1x +17. 已知实数 x 满足 4 x 2 - 4 x + 1 = 0 ,则代数式 2 x + 1分式难题、易错题1. 从质量为 m kg 的一捆钢筋中截取一段长为 5 米的钢筋,称出这段钢筋的质量为 n kg ,则8. 若 x=2005 , y=2006 ,则 (x + y )⋅ x2 + y 2 =_____x 4 - y 4这捆钢筋的总长度为______米2. 若 3a -b 的值相等的是a-a - b B.a +b b - a b - a4. 若把分式 2 x 2 . ( )( )⎛ 1 ⎫-m11. 已知 ⎪1A.不变B.扩大 2 倍C.扩大 4 倍D.扩大 8 倍12. 关于 x 的方程 (2 - 3a )x = 1 的解为负数,则 a 的取值范围是_____a 2 - ab + b 2 5. 已知aa 2 +b 2的值6. 若 m 等于它的倒数,则分式 m 2 - 6m + 9m-3m 2 - 2m 的值为( )13 如果分式方程 1 +m14. 某地要筑一水坝,需要在规定日期内完成,如果由甲队去做,恰好如期完成;如果由乙队去做,则需超过规定日期三天。
现由甲、乙两队合作2 天后,余下的工程由乙队独做,恰好在规定日期完成,求规定的日期 x (有两种不同的方法做)A.-2B.4C.-2 或 4D. -14⎛ a - 1 ⎫2 ⎛ 1 + a ⎫3 ⎝ a + 1 ⎭ ⎝ 1 - a ⎭a 2 -b 2 ⎛ 2ab + b 2 ⎫÷a + a 2 - ab ⎝ ⎭x + 1 的值为 0,则 x 的值为_____16. 若 1 2 y + 3 3 2 1 1 1 1z = 5, x + y + z = 7 ,则 x + y + z = _____2 x的值为_____⎪ ⋅ x + y - ⎪⎛18. 计算: x - y +⎝4 x y ⎫ ⎛ 4 x y ⎫x - y ⎭ ⎝ x + y ⎭19. 甲乙两位采购员同去一家饲料公司购买两次饲料,第一次饲料的价格为a 元/千克,第二次饲料的价格为 b 元/千克,且 a ≠b 。
(易错题精选)初中数学方程与不等式之分式方程难题汇编含答案

(易错题精选)初中数学方程与不等式之分式方程难题汇编含答案一、选择题1.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 【答案】A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】 213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0, 解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.4.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是 A .5B .-5C .3D .-3 【答案】A【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.5.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x-= D .800800401.25x x -= 【答案】C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800800401.25x x-=, 故选C .【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P=4 9故选:C.【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.若关于x的分式方程233x mx x-=--有增根,则m的值是()A.1-B.1 C.2 D.3【答案】B【解析】【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可.【详解】去分母得:x-2=m,∴x=2+m∵分式方程233x mx x-=--有增根,∴x-3=0,∴x= 3,∴2+m=3,所以m=1,故选:B.【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.8.方程22111x xx x-=-+的解是()A.x=12B.x=15C.x=14D.x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x =15, 经检验x =15是分式方程的解, 故选B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且B . 2 B 3m m >≠C .m<2m 3≠且D .m>2 【答案】B【解析】【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠.【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠故选:B.【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.10.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有x 人,则可列方程为( )A .18018032x x +=- B .18018032x x -=- C .18018032x x +=- D .18018032x x -=- 【答案】D【解析】【分析】 设参加游览的同学共x 人,则原有的几名同学每人分担的车费为:1802x -元,出发时每名同学分担的车费为:180x元,根据每个同学比原来少摊了3元钱车费即可得到等量关系. 【详解】设参加游览的同学共x 人,根据题意得:1801802x x-=-3. 故选:D .【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 【答案】A【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可. 详解:设原计划每天施工x 米,则实际每天施工(x+30)米, 根据题意,可列方程:1000100030x x -+=2, 故选A .点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.九年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了25分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的3倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .1010253x x-= B .1010253x x -= C .10105312x x -= D .10105312x x -= 【答案】D【解析】【分析】 设骑车学生的速度为x 千米/小时,则汽车的速度为3x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程.【详解】解:设骑车学生的速度为x 千米/小时,则汽车的速度为3x 由题意得:10105312x x -= 故答案为D .【点睛】本题考查了出分式方程的应用,明确题意、确定等量关系是解答本题的关键.13.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ).A .3B .CD .【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.14.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x 千米/时,则下面所列方程正确的为( )A .5x +16=52xB .5x =52x +16C .5x +10=52xD .5x-10=52x 【答案】B【解析】【分析】 设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x 千米/小时,校车速度为2x 千米/小时,由题意得,5x =52x +16所以答案为B.【点睛】 本题考查了分式方程,解题的关键是根据实际问题列出分式方程.15.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( )A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A【解析】【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍 ∴900900213x x ⨯=+- 故选A .【点睛】 本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.16.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解,∴a+7>1,解得:a>-6,综上,-6<a<3,且a≠2,则满足上述要求的所有整数a的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a<3且a≠2是解题的关键.17.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.18.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】 首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.【详解】 根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2 C .x =﹣1 D .无解【答案】D【解析】【分析】观察式子确定最简公分母为(x+1)(x﹣1),再进一步求解可得.【详解】方程两边同乘以(x+1)(x﹣1),得:x(x+1)﹣(x2﹣1)=2,解方程得:x=﹣1,检验:把x=﹣1代入x+1=0,所以x=﹣1不是方程的解.故选:D.【点睛】此题考查分式方程的解,掌握运算法则是解题关键。
分式易错题汇编含答案解析

3【答案】D 【解析】 【分析】进行分析即可得出答案. 【详解】故选:D . 【点睛】本题主要考查了零指数幕的性质与同底数幕的乘除法运算,熟练掌握相关概念是解题关键3.在下列四个实数中,最大的数是【答案】C分式易错题汇编含答案解析一、选择题 1.某种病毒变异后的直径为 0.000000102米,将这个数写成科学记数法是( A . 1.02 10 6B . 0.102 10 6 C. 1.02 10 7D . 102 ) 108 【答案】C 【解析】 【分析】 用科学记数法表示比较小的数时, n 的值是第一个不是 0的数字前 上的0. 0的个数, 包括整数位 【详解】 解:0.000000102 =1.02 10 7• 故选:C.【点睛】 此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为 ax 1-n ,其中 1w|a|v10, n 为由原数左边起第一个不为零的数字前面的 0的个数所决定. 2.在等式a ( a) a 9中, "内的代数式为() A . a 6B .C. a 6D . a 7首先利用零指数幕性质将原式化简为9a ,由此利用同底数幕的乘除法法则进一步则原式化简为:a 2 a 9,A .B . 0 C. 2 11D.-【解析】【分析】3根据实数的大小比较法则即可得.【详解】则四个实数的大小关系为因此,最大的数是21故选:C.【点睛】本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.A. X24xx2 46x-得结果是(2xB. -----x 2xD. -----x 2【答案】【解【分析】先通分,【详解】再按照分式的减法法则化简出最简结果即可得答案. 4x2 x 4 x 24x=(x 2)(x 2)4x 2 x 2x=(X 2)(x2)x(x 2)=(x 2)(x 2)xx 2 故选: C.x(x 2) (X 2)(x 2)【点睛】本题考查分式的减法,同分母分式相加减,只把分子相加减,分母不变; 减,先通分变为同分母分式,再按同分母分式相加减的法则运算.异分母分式相加b a 2b b a5.若化简厂1W的结果为77,则W"是(A. aB. bC. aD. b【答案】D 【解析】 【分析】根据题意列出算式,然后利用分式的混合运算法则进行计算. 【详解】 解:由题意得:2abb a b b a 1 a 1 aa 22a 1 1 a a 1 a 1 21 a故选:I 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.X y =3y•/ x 3y ••• x=3y ,• …3y 故选:A . 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.W=-aabI 1D .6•如果x 3y 0,那么代数式 2 2X y c c- 2x 3 x y y的值为()2 A.—3【答案】A B . 2 C. -2D .【分析】先根据分式的混合运算顺序和运算法则化简原式,再将 【详解】x = 3y 代入化简可得.解:2 2j 2x 3x y yx 2y(X y )2y2y 2xy 1------- g ; ---- 3 x y1g 3 x y3y y 3y7. 000 071 5=7.15 10 5,故选 D.&测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为(B. 0.715 X 10A. 0.715 X 【答案】 【解析】4C. 7.15 X 10D . )7.15 X 109.已知 则X 2丄的值是(XA . 49【答案】B . 48C. 47D . 51【分析】将已知等式两边平方, 【详解】利用完全平方公式展开即可得到所求式子的值.11 2已知等式X —7两边平方得:(X -)XX2 1 则 X —=51.X故选D . 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.若式子丁^=在实数范围内有意义,则 X 的取值范围是(V 6x 77 A. X A6【答案】B 7 B . X > 一6 D . 7XV —6【解析】【分根据被开方数大于等于 0,分母不等于0列式计算即可得解. 【详解】••• 6x 7是被开方数,••• 6x 70,又•••分母不能为零, • 6X70,解得,x > I ;故答案为:B. 【点睛】【答案】D【解析】 【分析】解:0.000000007 7 10 9;故选:D . 【点睛】【答案】C 【解析】本题考查的知识点为:分式有意义,分母不为 关键是熟练掌握其意义的条件.0;二次根式的被开方数是非负数,解题的11.华为Mate20手机搭载了全球首款 7纳米制程芯片,7纳米就是0.000000007米.数据 0.000000007用科学记数法表示为 A . 7 10「7B . 0.7 ().10「8C. 7 10「8D . 7 10「9由科学记数法知0.000000007 【详解】7 10本题考查科学记数法;熟练掌握科学记数法a 10n 中a 与n 的意义是解题的关键.12.若代数式 互有意义,则实数X 1x 的取值范围是()A . X 0【答案】B 【解析】 B . X 0且 X 1C. X 0 D . X 0 且 X 1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于 范围. 【详解】0,分母不等于0, 可以求出X 的根据题意得: 解得:x>0且 XM1 故选:B . 【点睛】此题考查分式有意义的条件,二次根式有意义的条件, 次根式的被开方数是非负数.解题关键在于掌握分母不为 0; 二13.下列方程中,有实数根的方程是( A . X 4+16= 02B . X 2+2X +3= 0C.【分析】利用在实数范围内,一个数的偶数次幕不能为负数对A 进行判断;利用判别式的意义对 B进行判断;利用分子为 0且分母不为0对C 进行判断;利用非负数的性质对 D 进行判断. 【详解】解:A 、因为X 4=- 16V 0,所以原方程没有实数解,所以A 选项错误;B 、 因为△= 22- 4X3- 8v 0,所以原方程没有实数解,所以 B 选项错误;C 、 X 2-4= 0且X - 2工0解得x =- 2,所以C 选项正确;D 、由于x = 0且X - 1 = 0,所以原方程无解,所以 故选:C. 【点睛】此题考查判别式的意义,分式有意义的条件,二次根式,214.计算-a—a 11 a 1 .故选B . 【点睛】本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用 及平方差公式的运用.【解析】 【分析】D 选项错误.解题关键在于掌握运算法则1的正确结果是()1 A.—— a 1【答案】B 1 B.—— a 1C.2a 1 a 12a 1 D. ------a 1【分析】先将后两项结合起来, 了.然后再化成同分母分式,按照同分母分式加减的法则计算就可以【详解】原式a 2a a 1 2a1 215.化简-a缶的结果是()A . -a-1【答案】B B . -a+1 C. -ab+1 D . -ab+b将除法转换为乘法,然后约分即可 【详解】故选B.【点睛】 本题考查分式的化简,熟练掌握分式的运算法则是解题关键2a 16.计算— a【分析】先算小括号里的,再算乘法,约分化简即可. 【详解】a b a 2 b 2故选B .【点睛】 本题考查分式的混合运算.【解析】【分析】 分式值为0,则分子为0,且分母不为0即可 【详解】则 x21 01 x 0解得:x=—1 故选:C解:-a a(a 1)b a(a 1);-V(a 1) 117 .分式xU1 x的值为0 ,则x 的取值为()A . 0【答案】C B . C. 1D . 1b 2 a b a b ————的结果是a b2ab1 A. ------a b【答案】B1B. -----a bC. a 一 bD . a + bab a b a b 2ab a b【点睛】本题考查分式方程为 0的情况,注意在涉及到分式方程时,我们都需要考虑分母不为 情况.【答案】B【解析】 【分析】 先通分再计算加法,最后化简 【详解】X 1 X X 21 厂X 1 X 21 X2 1X 2 1 =1, 故选:B.【点睛】此题考查分式的加法运算,正确掌握分式的通分,加法法则是解题的关键19. 00519=5.19 x -彳。
分式题型-易错题-难题-大汇总

分式单元复习(一)、分式定义及有关题型一、分式的概念:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式。
概念分析:①必须形如“BA”的式子;②A 可以为单项式或多项式,没有其他的限制;③B 可以为单项式或多项式,但必须含有字母。
...例:下列各式中,是分式的是 ①1+x1②)(21y x + ③3x ④xm -2 ⑤3-x x ⑥1394y x + ⑦πx练习:1、下列有理式中是分式的有( )A 、m 1 B 、162y x - C 、xy x 7151+- D 、572、下列各式中,是分式的是 ①x 1 ②)(21y x + ③3x ④xm -2 ⑤3-x x ⑥1394y x + ⑦πy+51、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2B 、3C 、4D 、5二、有理式:整式和分式统称有理式。
即:⎪⎩⎪⎨⎧⎩⎨⎧分式多项式单项式整式有理式例:把下列各有理式的序号分别填入相应的横线上①21x②)(51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+⑦y x +2整式: ;分式 。
①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A ) ⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) ⑧分式的值为整数:(分母为分子的约数) 例:当x 时,分式22+-x x 有意义;当x 时,22-x 有意义。
练习:1、当x 时,分式6532+--x x x 无意义。
8.使分式||1xx -无意义,x 的取值是( )A .0B .1C .1-D .1±2、分式55+x x,当______x 时有意义。
分式题型易错题难题大汇总

分式单元复习一、分式定义及有关题型一、分式的概念:形如BAA 、B 是整式;且B 中含有字母;B ≠0的式子;叫做分式.. 概念分析:①必须形如“BA”的式子;②A 可以为单项式或多项式;没有其他的限制;③B 可以为单项式或多项式;但必须含有字母......例:下列各式中;是分式的是 ①1+x1②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πx练习:1、下列有理式中是分式的有A 、m 1 B 、162y x - C 、xy x 7151+- D 、572、下列各式中;是分式的是 ①x1 ②)(21y x + ③3x ④x m -2 ⑤3-x x ⑥1394y x + ⑦πy+51、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有 个..A 、2B 、3C 、4D 、5 二、有理式:整式和分式统称有理式..即:⎪⎩⎪⎨⎧⎩⎨⎧分式多项式单项式整式有理式例:把下列各有理式的序号分别填入相应的横线上①21x ②)(51y x + ③x -3 ④0 ⑤3a ⑥c ab 12+ ⑦y x+2 整式: ;分式 ..①分式有意义:分母不为00B ≠ ②分式无意义:分母为00B =③分式值为0:分子为0且分母不为0⎩⎨⎧≠=0B A ④分式值为正或大于0:分子分母同号⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A ⑤分式值为负或小于0:分子分母异号⎩⎨⎧<>00B A 或⎩⎨⎧><0B A ⑥分式值为1:分子分母值相等A=B⑦分式值为-1:分子分母值互为相反数A+B=0 ⑧分式的值为整数:分母为分子的约数 例:当x 时;分式22+-x x 有意义;当x 时;22-x 有意义.. 练习:1、当x 时;分式6532+--x x x 无意义.. 8.使分式||1xx -无意义;x 的取值是A .0B .1C .1-D .1±2、分式55+x x;当______x 时有意义.. 3、当a 时;分式321+-a a 有意义.4、当x 时;分式22+-x x 有意义.. 5、当x 时;22-x 有意义..分式x--1111有意义的条件是 ..4、当x 时;分式435x x +-的值为1; 2.辨析题下列各式中;无论x 取何值;分式都有意义的是A .121x +B .21x x +C .231x x+ D .2221x x +7当x 为任意实数时;下列分式一定有意义的是A.23x + B.212x - C.1x D. 211x +四、分式的值为零说明:①分式的分子的值等于零;②分母不等于零例1:若分式242+-x x 的值为0;那么x ..例2 . 要使分式9632+--x x x 的值为0;只须 .A 3±=xB 3=xC 3-=xD 以上答案都不对 练习:1、当x 时;分式6)2)(2(2---+x x x x 的值为零..2、要使分式242+-x x 的值是0;则x 的值是 ;3、 若分式6522+--x x x 的值为0;则x 的值为4、若分式2242x x x ---的值为零;则x 的值是5、若分式242+-x x 的值为0;那么x ..6、若分式33x x --的值为零;则x = 7、如果分式2||55x x x-+的值为0;那么x 的值是 A .0 B. 5 C .-5 D .±5分式12122++-a a a 有意义的条件是 ;分式的值等于零的条件是 ..9已知当2x =-时;分式ax bx -- 无意义;4x =时;此分式的值为0;则a b +的值等于 A .-6 B .-2 C .6 D .2使分式x312--的值为正的条件是 若分式9322-+a a 的值为正数;求a 的取值范围2、当x 时;分式xx--23的值为负数.3当x 为何值时;分式32+-x x 为非负数.3、若关于x 的方程ax=3x-5有负数解;则a 的取值范围是 ☆典型题:分式的值为整数:分母为分子的约数 练习1、若分式23+x 的值为正整数;则x= 2、若分式15-x 的值为整数;则x= 8、若x 取整数;则使分式1236-+x x 的值为整数的x 值有 A .3个 B .4个 C .6个 D .8个二分式的基本性质及有关题型分式的基本性质:分式的分子与分母都乘以或除以同一个不等于零的整式;分式的值不变..1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 例1: ①aca b=② y zx xy = 测试:1.填空:aby a xy= ; z y z y z y x +=++2)(3)(6; ()222y x y x +-=()yx -.23xx +=()23x x+; 例2:若A 、B 表示不等于0的整式;则下列各式成立的是 D .AM B M A B A ⋅⋅=M 为整式 B MB MA B A ++=M 为整式 C 22B A B A = D )1()1(22++=x B x A B A 5、下列各式中;正确的是 A .a m ab m b +=+ B .a b a b ++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+题型一:化分数系数、小数系数为整数系数例1不改变分式的值;把分子、分母的系数化为整数.1y x y x 41313221+- 2ba b a +-04.003.02.0练习:1.不改变分式的值;把下列分式的分子、分母的系数化为整数. 1yx y x 5.008.02.003.0+-2b a ba 10141534.0-+ 1.辨析题不改变分式的值;使分式115101139x y x y -+的各项系数化为整数;分子、分母应乘以•A .10B .9C .45D .90 4.不改变分式0.50.20.31x y ++的值;使分式的分子分母各项系数都化为整数;结果是1、不改变分式的值;使分式的分子、分母中各项系数都为整数;0.20.10.5x x -=-- 2、不改变分式52223x y x y -+的值;把分子、分母中各项系数化为整数;结果是 题型二:分式的符号变化:例2不改变分式的值;把下列分式的分子、分母的首项的符号变为正号.1yx y x --+-2ba a ---3ba---1、不改变分式的值;使下列分式的分子与分母的最高次项的系数是正数..①13232-+---a a a a = ②32211x x x x ++--= ③1123+---a a a = 2.探究题下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a bc c-++=-; ④m n m nm m---=-中;成立的是 A .①② B .③④ C .①③ D .②④3.探究题不改变分式2323523x xx x -+-+-的值;使分子、分母最高次项的系数为正数;正确的是•A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型三:分式的倍数变化: 1、如果把分式yx x232-中的x;y 都扩大3倍;那么分式的值2、.如果把分式63xx y-中的x;y 都扩大10倍;那么分式的值 3、把分式22x yx y+-中的x;y 都扩大2倍;则分式的值 A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍 4、把分式2aba +中的a 、b 都扩大2倍;则分式的值 C . A 扩大2倍 B 扩大4倍 C 缩小2倍 D 不变. 7、若把分式xyyx 2+中的x 和y 都扩大3倍;那么分式的值 A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍 2、若x 、y 的值均扩大为原来的2倍;则下列分式的值保持不变的是A 、y x 23B 、223y xC 、y x 232D 、2323yx三分式的运算4. 分式的运算是初中数学的重要内容之一;在分式方程;求代数式的值;函数等方面有重要应用..学习时应注意以下几个问题:1注意运算顺序及解题步骤;把好符号关;2整式与分式的运算;根据题目特点;可将整式化为分母为“1”的分式; 3运算中及时约分、化简; 4注意运算律的正确使用; 5结果应为最简分式或整式.. 一、分式的约分:先将分子、分母分解因式;再找出分子分母的公因式;最后把公因式约去 注意:这里找公因式的方法和提公因式中找公因式的方法相同最简分式:分子、分母中不含公因式..分式运算的结果必须化为最简分式 1、把下列各式分解因式1ab+b 2 22a 2-2ab 3-x 2+9 42a 3-8a 2+8a3.2009年浙江杭州在实数范围内因式分解44-x = _____________. 2、 约分16分1 2912xxy2 a b b a --223 96922+--x x x4 ab a b a +-222例2.计算:)3(3234422+•+-÷++-a a a a a a例5.计算:2222223223y x yx y x y x y x y x --+-+--+.3 、 约分122699x x x ++-= ;2882422+++x x x = ; 4、化简2293m mm --的结果是A 、3+m m B 、3+-m m C 、3-m m D 、m m-3 4.辨析题分式434y x a+;2411x x --;22x xy y x y -++;2222a abab b +-中是最简分式的有A .1个B .2个C .3个D .4个 8、分式a b 8;b a ba +-;22yx y x --;22y x y x +-中;最简分式有 A 1个 B 2个 C 3个 D 4个 9、下列公式中是最简分式的是A .21227ba B .22()ab b a -- C .22x y x y ++ D .22x y x y --5.技能题约分:122699x x x ++-; 22232m m m m -+-.约分:2222bab a aba +++ 例:将下列各式约分;化为最简分式①=z xy yx 2264 ②=+++4422x x x ③ =+--+44622x x x x 14、计算:22696x x x x -+--÷229310x x x ---·3210x x +-.1. 已知:;则的值等于 A.B.C.D.15、已知x+1x=3;求2421x x x ++的值.九、最简公分母1.确定最简公分母的方法:①如果分母是多项式;要先将各个分母分解因式;分解因式后的括号看做一个整体; ②最简公分母的系数:取各分母系数的最小公倍数;③最简公分母的字母因式:取各分母中所有字母因式的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.例:⑴分式231x 和xy 125的最简公分母是 ⑵分式x x +21和xx -23的最简公分母是 题型一:通分例1将下列各式分别通分. 1cb ac a b ab c 225,3,2--; 2ab b b a a 22,--;322,21,1222--+--x x xx xx x ; 4aa -+21,21.在解分式方程:412--x x +2=xx 212+的过程中;去分母时;需方程两边都乘以最简公分母是___________________. 2、分式,21x xyy 51,212-的最简公分母为 .. 例7.计算:1123----x x x x . 正解:原式=111111)1)(1(1111332323-=----=-++---=++--x x x x x x x x x x x x x x x 十、分式通分的方法:①先找出要通分的几个分式的最简公分母;②运用分式的基本性质把它们变形成同分母的分式.. 例:⑴ax 1;bx 1的最简公分母是 ;通分后=ax 1 ;bx1= ..⑵51+zx ;25422-x 的最简公分母是 ;通分后51+zx = ;25422-x = .. 十一、分式的乘法:分子相乘;积作分子;分母相乘;积作分母;如果得到的不是最简分式;应该通过约分进行化简..题型二:约分例2约分: 1322016xy y x -;3nm m n --22;36222---+x x x x .5、计算222a aba b+-= .6、已知a+b =3;ab =1;则ab +b a的值等于 .例:⑴nxmymx ny ⋅= ⑵2221x x x x x +⋅-=十二、分式的除法:把除式的分子、分母颠倒位置后;与被除式相乘..例:⑴2256103x y x y ÷= ⑵xx x x x x +-÷-+-2221112= 九、零指数幂与负整指数幂★n m n m a a +=⋅a ★()mn nm a a =★()n n n b b a a = ★n m n m a a -=÷a 0≠a★n n b a b a =⎪⎭⎫⎝⎛n★n a 1=-n a 0≠a★10=a 0≠a 任何不等于零的数的零次幂都等于1其中m;n 均为整数.. 十、科学记数法a ×10-n ;其中n 是正整数;1≤∣a ∣<10.如=-7101.25⨯10、负指数幂与科学记数法 1.直接写出计算结果:1-3-2 ; 232-= ; 333()2-= ; 40(13)-= . 2、用科学记数法表示 501= .3、一种细菌半径是×10-5米;用小数表示为 米.. 24、|1|2004125.02)21(032-++⨯--- 十三、分式的乘方:分子、分母分别乘方..例:⑴ 22⎪⎭⎫ ⎝⎛-x y = ⑵ 322⎪⎭⎫⎝⎛-c a =十四、同分母的分式相加减:分母不变;只把分子相加减;再把结果化成最简分式.. 例:⑴ab ab 610- = ⑵ba b b a a +++= 十五、异分母的分式相加减:先通 分成同分母的分式;在进行加减..7个0例:⑴a b b b a a -+-= ⑵1111++-x x = 十六、分式的计算:1、xy y y x x 222-+- 2、112---a a a 例3计算:142232)()()(abc ab c c b a ÷-⋅-;222233)()()3(xy x y y x y x a +-÷-⋅+; 3mn mn m n m n n m ---+-+22;4112---a a a ; 5874321814121111x x x x x x x x +-+-+-+--; 6)5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; 7)12()21444(222+-⋅--+--x xx x x x x÷.28.2012遵义化简分式﹣÷ ;并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值.36、222222yx y xy y xy x y x -+-+--;其中0|3|)2(2=-+-y x 1.计算1)1(232)1(21)1(252+-++--++a a a a a a ;2ab abb b a a ----222;3b a c c b a c b c b a c b a c b a ---++-+---++-232; 4b a b b a ++-22; 5)4)(4(b a ab b a b a ab b a +-+-+-; 62121111x x x ++++- 3、b a a b a +--24、)1(111112-⎪⎭⎫⎝⎛-++-x x x 5、111122----÷-a a a a a a 6、⎪⎭⎫ ⎝⎛---÷--225262x x x x1. 11分先化简;再求值:2111x xx x ---+;其中x =2.2.本题6分先化简;再求值:111222---++x x x x x ;其中x =12- 3、8分先化简;再求值:11112-÷⎪⎭⎫ ⎝⎛-+x xx ;其中:x=-2.. 十七、分式的化简:1、计算b a b b a ++-22等于 ..2、化简分式acab c c ab 35123522÷•的结果是 3、计算yx y x y y x y x x ----+-22的结果是 4、计算11--+a aa 的结果是 5、计算yx xx y x y x +•+÷+222)(的结果是 6、化简a ba b a b--+等于 7、分式:①223a a ++;②22a b a b --;③412()aa b -;④12x -中;最简分式有 .8、计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是9、计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1x 111x 112的结果是 十八、化简分式求代数式的值: 1、若32=b a ;则bb a +2的值是 .. 2.先化简后求值11112421222-÷+--⋅+-a a a a a a ;其中a 满足02=-a a . 2已知3:2:=y x ;求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3、1110,()()()a b c b c c a a b a b c++=+++++已知求的值 A 、-2 B 、-3 C 、-4 D 、-5 题型五:求待定字母的值例5若111312-++=--x Nx M x x;试求N M ,的值. 2.已知:222222yx y xy y x y x y x M --=+---;则M =______ ___. 1.若已知132112-+=-++x x x B x A 其中A 、B 为常数;则A=__________;B=__________; 题型三:化简求值题例4已知:21=-xx ;求221x x +的值.例5若0)32(|1|2=-++-x y x ;求yx 241-的值.10、已知411=-ba;求分式bab a bab a ---+222的值..9.2005.杭州市当m =________时;分式2(1)(3)32m m m m ---+的值为零.10.妙法巧解题已知13x y 1-=;求5352x xy yx xy y+---的值.4、已知a 2-3a+1=0; 11、已知bba a Nb a M ab +++=+++==11,1111,1;则M 与N 的关系为 >N =N <N D.不能确定. 题型四:化简求值题例4先化简后求值 1已知:1-=x ;求分子)]121()144[(48122x x x x -÷-+--的值;2已知:432z y x ==;求22232z y x xzyz xy ++-+的值;3已知:0132=+-a a ;试求)1)(1(22a a a a --的值.13、若4x=5y;则222yy x -的值等于 A 41 B 51- C 169 D 259-16、已知n m n m -=+111;则=-nmm n .. 例3已知:311=+yx;求y xy x y xy x +++-2232的值.提示:整体代入;①xy y x 3=+;②转化出yx11+.2.已知:31=+x x ;求1242++x x x 的值.3.已知:311=-ba;求aab b bab a ---+232的值.4.若0106222=+-++b b a a ;求ba ba 532+-的值. 5.如果21<<x ;试化简x x --2|2|xx x x |||1|1+---. 2、当1<x<2时;化简分式xx x x -----1122= ..3、当x 时;122-=+-x x ..4、若3x=2y;则2294xy 的值等于5、若x 等于本身的倒数;则633622-++÷---x x x x x x 的值是 6、当=x 时;121+-x x 的值是1; 7、若3,111--+=-baa b b a b a 则的值是8、若2222,2ba b ab a b a ++-=则= 9、如果b a b a +=+111;则=+baa b . 10、已知23=-+y x y x ;那么xy y x 22+= .11、已知3a m =;则23a -= ;213a -== ;27a-=12、若36,92m n ==;则2413m n -+的值为四、整数指数幂与科学记数法题型一:运用整数指数幂计算例1计算:13132)()(---⋅bc a 22322123)5()3(z xy z y x ---⋅ 324253])()()()([b a b a b a b a +--+--46223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题例2已知51=+-x x ;求122-+x x 的值;2求44-+x x 的值.题型三:科学记数法的计算例3计算:1223)102.8()103(--⨯⨯⨯;23223)102()104(--⨯÷⨯. 练习:的22﹣20120+﹣6÷3;1.计算:120082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- 2322231)()3(-----⋅n m n m 323232222)()3()()2(--⋅⋅ab b a b a ab421222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ;求11-+x x ;222-+x x 的值.7.已知x+1x=3;则x 2+21x = ________ . 10、已知0543≠==c b a ;求分式cb a cb a ++-+323的值..第二讲 分式方程知识要点1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题主要方法1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系;恰当地设末知数. 分式方程化分式为整式解方程验根4写出解1、学完分式运算后;老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是 A .小明 B .小亮 C .小芳 D .没有正确的7. 已知xBx A x x x +-=--1322;其中A 、B 为常数;那么A +B 的值为 A 、-2 B 、2 C 、-4 D 、48. 甲、乙两地相距S 千米;某人从甲地出发;以v 千米/小时的速度步行;走了a 小时后改乘汽车;又过b 小时到达乙地;则汽车的速度 A.Sa b+ B.S av b - C. S ava b-+ D.2Sa b+ 一分式方程题型分析题型一:用常规方法解分式方程例1解下列分式方程 1xx 311=-;20132=--x x ;3114112=---+x x x ;4x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程例2解下列方程 14441=+++x x x x ; 2569108967+++++=+++++x x x x x x x x 提示:1换元法;设y x x=+1;2裂项法;61167++=++x x x .例3解下列方程组题型三:求待定字母的值例4若关于x 的分式方程3132--=-x mx 有增根;求m 的值. 例5若分式方程122-=-+x ax 的解是正数;求a 的取值范围.提示:032>-=a x 且2≠x ;2<∴a 且4-≠a .29、已知关于x 的方程322=-+x mx 的解是正数;则m 的取值范围为 . 24.指出下列解题过程是否存在错误;若存在;请加以改正并求出正确的答案. 题目:当x 为何值;分式有意义解:= ;由x ﹣2≠0;得x≠2. 所以当x≠2时;分式有意义.题型四:解含有字母系数的方程例6解关于x 的方程提示:1d c b a ,,,是已知数;20≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: 1021211=-++-xxx x ; 23423-=--x x x ; 322322=--+x x x ; 4171372222--+=--+x x x x xx 52123524245--+=--x x x x641215111+++=+++x x x x76811792--+-+=--+-x x x x x x x x2.解关于x 的方程: 1bx a 211+=)2(a b ≠;2)(11b a x bb x a a ≠+=+.3.如果解关于x 的方程222-=+-x xx k 会产生增根;求k 的值.4.当k 为何值时;关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解;试求a 的值.二分式方程的特殊解法解分式方程;主要是把分式方程转化为整式方程;通常的方法是去分母;并且要检验;但对一些特殊的分式方程;可根据其特征;采取灵活的方法求解;现举例如下: 一、交叉相乘法例1.解方程:231+=x x二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x 三分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解;求m 的值.. 例2.若关于x 的方程11122+=-+-x x x k x x 不会产生增根;求k 的值.. 例3.若关于x 分式方程432212-=++-x x k x 有增根;求k 的值..例4.若关于x 的方程1151221--=+-+-x k xx k xx 有增根1=x ;求k 的值..9.若m 等于它的倒数;求分式22444222-+÷-++m mm m m m 的值;2. 已知x 2+4y 2-4x+4y+5=0;求22442yxy x y x -+-·22y xy y x --÷y y x 22+2的值. 奥赛初探 1. 若432zy x ==;求222z y x zx yz xy ++++的值. 19.已知且y≠0;则= _________ .十九、分式方程的概念:分母中含有未知数的方程叫做分式方程.. 例:下列方程中式分式方程的有①1025=+x ②104=-πx③1012=-+y y ④102=+x x x 二十、“可化为一元一次方程的分式方程”的解法:①去分母:先看方程中有几个分母;找出它们的最简公分母;在方程的左右两边都乘以它们的最简公分母;约去分母;将分式方程化成一元一次方程.. ②解方程:解去分母得到的这个一元一次方程..③验根:将解一元一次方程得到的解带入最简公分母中计算:如果最简公分母的值为0;则这个解是方程的增根;原分式方程无解;如果最简公分母的值不为0;则这个解就是原分式方程的解..例:解下列分式方程步骤参照教材上的例题 ⑴114=-x ⑵3513+=+x x 5、中考题解: 例1.若解分式方程产生增根;则m 的值是A. B.C.D.分析:分式方程产生的增根;是使分母为零的未知数的值..由题意得增根是:化简原方程为:把代入解得;故选择D..例2. m 为何值时;关于x 的方程会产生增根 解:方程两边都乘以;得整理;得说明:分式方程的增根;一定是使最简公分母为零的根 11、分式方程 1.若1044m xx x--=--无解;则m 的值是 A. —2 B. 2 C. 3 D. —3 2.解方程: 1325+x =13-x 2416222--+-x x x =1 321321-=---x x x .. 15.在一段坡路;小明骑自行车上坡的速度为每小时v 1千米;下坡时的速度为每小时v 2千米;则他在这段路上、下坡的平均速度是每小时 A .千米B .千米C .千米D . 无法确定10.一辆汽车往返于相距akm 的甲、乙两地;去时每小时行mkm;•返回时每小时行nkm;则往返一次所用的时间是_____________. 13、分式方程应用题19、8分甲打字员打9000个字所用的时间与乙打字员打7200个字所用的时间相同;已知甲、乙两人每小时共打5400个字;问甲、乙两个打字员每小时各打多少个字20、10分一名同学计划步行30千米参观博物馆;因情况变化改骑自行车;且骑车的速度是步行速度的倍;才能按要求提前2小时到达;求这位同学骑自行车的速度.. 22.列方程解应用题本题7分从甲地到乙地的路程是15千米;A 骑自行车从甲地到乙地先走;40分钟后;B 乘车从甲地出发;结果同时到达..已知B 乘车速度是A 骑车速度的3倍;求两车的速度..8.小张和小王同时从学校出发去距离15千米的一书店买书;小张比小王每小时多走1千米;结果比小王早到半小时;设小王每小时走x 千米;则可列出的的方程是A 、2115115=-+x x B 、2111515=+-x x C 、2115115=--x x D 、2111515=--x x7、赵强同学借了一本书;共280页;要在两周借期内读完;当他读了一半时;发现平时每天要多读21页才能在借期内读完.他读了前一半时;平均每天读多少页如果设读前一半时;平均每天读x 页;则下列方程中;正确的是A 、1421140140=-+x x B 、1421280280=++x x B 、1211010=++x x D 、1421140140=++x x二十一、增根:使分式方程的最简公分母的值为0的未知数的值..注意:“可化为一元一次方程的分式方程”有增根;那么原方程无解;但这个增根是去分母后得到的一元一次方程的解;能使这个一元一次方程左右两边的值相等.. 例:已知关于x 的分式方程112=-+x a 有增根;则a= 练习:1、若方程87178=----xx x 有增根;则增根是 .. 2、m 取 时;方程323-=--x mx x 会产生增根; 3、若关于x 的方程x a cb x d-=- 有解;则必须满足条件 A. a ≠b ;c ≠d B. a ≠b ;c ≠-d ≠-b ; c ≠d ≠-b ; c ≠-d4、 若分式方程xa xa x +-=+-321有增根;则a 的值是 5、当m=______时;方程233x mx x =---会产生增根.6、若方程42123=----xx x 有增根;则增根是 . 7、关于x 的分式方程442212-=++-x x k x 有增根x=-2;则k= . 2、.关于x 的方程322133x mxx x-++=---无解;m 的值为_______________..例4.2006年常德市先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭;然后选取一个使原式有意义的x 的值代入求值.二十二、零指数幂:任何不等于零的数的零次幂都等于1..例:()01.0-= 020031⎪⎭⎫⎝⎛=二十三、负指数幂:任何不等于零的数的-nn 为正整数次幂;等于这个数的n 次幂的倒数..例:221-⎪⎭⎫⎝⎛= 22--=22221--⎪⎭⎫ ⎝⎛b a = 23)2(---x = 知识点二:整数指数幂的运算1.基本技能题若x-3-2有意义;则x_______; 若x-3-2无意义;则x_______. 2.基本技能题5-2的正确结果是 A .-125 B .125 C .110 D .-1103.已知a ≠0;下列各式不正确的是A.-5a 0=1B.a 2+10=1C.│a │-10=1D.1a=1 6.计算:32-1+320--13-1 2m 2n -3-3·-mn -22·m 2n 0. -2 003÷-18-2 004.二十四、科学记数法:把一个数表示成n a 10⨯或者n a -⨯10的形式;其中n 为正整数;101<≤a 例:用科学记数法表示下列各数⑴ = ⑵= ⑶201300= 练习:1、将下列用科学记数法表示数还原:⑴41025.1-⨯= ⑵ =⨯--410075.2 ⑶6105104.2⨯= 2、用科学记数法表示下列各数 ⑴ = ⑵=3、人体中成熟的红细胞的平均直径为0.0000077米;用科学记数法表示为二十 五、列分式填空:1、某农场原计划用m 天完成A 公顷的播种任务;如果要提前a 天结束;那么平均每天比原计划要多播种 公顷.2、某厂储存了t 天用的煤m 吨;要使储存的煤比预定的多用d 天;那么每天应节约煤的吨数为3、每千克单价为a 元的糖果m 千克与每千克单价为b 元的糖果n 千克混合;则混合后糖果的单价为4、全路全长m 千米;骑自行车b 小时到达;为了提前1小时到达;自行车每小时应多走 千米.10、A 、B 两地相距48千米;一艘轮船从A 地顺流航行至B 地;又立即从B 地逆流返回A 地;共用去9小时;已知水流速度为4千米/时;若设该轮船在静水中的速度为x 千米/时;则可列方程 A 、9448448=-++x x B 、9448448=-++x x C .9448=+x D.9496496=-++x x 二十六、列分式方程填空:1、某煤厂原计划x 天生产120吨煤;由于采用新的技术;每天增加生产3吨;因此提前2天完成任务;列出方程为2、工地调来72人参加挖土和运土;已知3人挖出的土1人恰好能全部运走;怎样调动劳动力才能使挖出的土能及时运走;解决此问题;可设派x 人挖土;其它的人运土;列方程①3172=-xx ②72-x=3x③x+3x=72 ④372=-xx上述所列方程;正确的有 个二十七、列分式方程解应用题:1、某校师生到距学校20千米的公路旁植树;甲班师生骑自行车先走45分钟后;乙班的师生乘汽车出发;结果两班师生同时到达.已知汽车的速度是自行车速度的倍;求两种车的速度各是多少2、•怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召;在本乡建起了农民文化活动室;现要将其装修.若甲、•乙两个装修公司合做需8天完成;需工钱8000元;若甲公司单独做6天后;剩下的由乙公司来做;还需12天完成;共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑;该乡是选甲公司还是选乙公司请你说明理由.3、华溪学校科技夏令营的学生在3名老师的带领下;准备赴北京大学参观;体验大学生活.现有两个旅行社前来承包;报价均为每人2000元;他们都表示优惠;希望社表示带队老师免费;学生按8折收费;青春社表示师生一律按7折收费.经核算;参加两家旅行社费用正好相等. 1该校参加科技夏令营的学生共有多少人2如果又增加了部分学生;学校应选择哪家旅行社7.若关于x 的方程122-=-+x a x 的解为正数;则a 的取值范围是 .4、在社会主义新农村建设中;某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天;•那么剩下的工程还需要两队合做20天才能完成.1求乙工程队单独完成这项工程所需的天数; 2求两队合做完成这项工程所需的天数.分式1.若a 使分式241312a a a-++没有意义;那么a 的值是A 、0B 、13-或0C 、±2或0D 、15-或02.分式111a a--有意义;那么a 的取值范围是3.分式265632x x x --+的值为0;则x 的值为A 、3223-或B 、3223-或C 、23- D 、324.已知111x x x---的值是14-;那么x 的值是5.化简分式()()()()()()b c aa b b c b c c a c a a b ++------的结果是 . 6.化简44xy xy x y x y x y x y ⎛⎫⎛⎫-+⋅+- ⎪ ⎪-+⎝⎭⎝⎭的结果是A 、22y x -B 、22x y -C 、224x y -D 、224x y -7.当222223768112256a a a a a a a ⎛⎫+-⎛⎫⎛⎫=-÷⋅+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭时,代数式的值是6、小明通常上学时走上坡路;通常的速度为m 千米/时;放学回家时;沿原路返回;通常的速度为n 千米/时;则小明上学和放学路上的平均速度为 千米/时 A 、2n m + B 、 n m mn + C 、 n m mn +2 D 、mnnm + 8.甲、乙两人相距k 公里;他们同时乘摩托车出发..若同向而行;则r 小时后并行..若相向而行;则t 小时后相遇;则较快者的速度与较慢者速度之比是A 、r t r t +-B 、r r t -C 、r k r k +-D 、r k r k-+9.已知2220202a b ab a ab b a b-≠+-=+,,那么的值为10.已知2222323423y x y z x z xy yz xz-+==++,则的值是11.已知222225032x y z x zy xy yz zx-+==≠++,那么的值为12.已知1143404323a ab b a a b a ab b++≠+==-+-且,那么13.已知232132xy x xy y x y x y xy +-=----,则的值为A 、53B 、53-C 、35D 、35-14.若1124272a ab b a b a ab b---=+-,则的值是15.一辆汽车从甲地开往乙地;如果车速提高20%;可以比原定时间提前1小时到达;如果要提前2小时到达;那么车速应比原来车速提高 %..16.甲、乙两人从两地同时出发;若相向而行;则a 小时相遇;若同向而行;则b 小时甲追上乙;那么甲的速度是乙的速度的A . a b b +倍B . b a b +C . b a b a +-倍D . b a b a-+倍17.已知a 、b 均为正数;且1a+1b= -1a b+.求22()()b a ab+的值.18.计算:1(1)a a ++1(1)(2)a a +++1(2)(3)a a +++…+1(2005)(2006)a a ++.. 19.已知yx =34;求x x y ++y x y --x x y+的值.20.若x +y =4;xy =3;求yx +x y的值. 21.若b + 1c=1;c + 1a=1;求1ab b+..22.观察下面一列有规律的数: 13;28;315;424;535;648…根据其规律可知第n 个数应是 _______________ n 为整数23;关于x 的分式方程x +1x=c +1c的解是x 1=c ;x 2= 1c;x -1x = c -1c ;即x +1x -=c +1c -的解是x 1=c ;x 2=-1c;x +2x =c +2c 的解是x 1=c ;x 2=2c ; x +3x =c +3c 的解是x 1=c ;x 2=3c. 1请观察上述方程与解的特征;比较关于x 的方程x +m x=c +m cm ≠0与它的关系;猜想它的解是什么;并利用方程解的概念进行验证.2如果方程的左边是未知数与其倒数的倍数的和;方程右边形式与左边的完全相同;只是把其中未知数换成某个常数.那请你利用这个结论解关于x 的方程:x +21x -=a +21a - 24、设0ab >>;2260a b ab +-=;则a bb a+-的值等于 . 25、若实数x y 、满足0xy ≠,则yx m x y=+的最大值是 . 26、一组按规律排列的式子:()0,,,,41138252≠--ab ab a b a b a b ;其中第7个式子是第n 个式子是27.若2222,2ba b ab a b a ++-=则= 28、已知b ab a b ab a b a ---+=-2232,311求 的值 29、若0<x<1;且xx x x 1,61-=+求 的值 行程应用题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路;另一条是全长480Km 的告诉公路..某客车在高速公路上行驶的平均速度比在普通公路上快45Km;由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半;求该客车由高速公路从甲地到乙地所需要的时间..2、从甲地到乙地的路程是15千米;A 骑自行车从甲地到乙地先走;40分钟后;B 骑自行车从甲地出发;结果同时到达..已知B 的速度是A 的速度的3倍;求两车的速度..3、某中学到离学校15千米的某地旅游;先遣队和大队同时出发;行进速度是大队的倍;以便提前半小时到达目的地做准备工作..求先遣队和大队的速度各是多少 4、我军某部由驻地到距离30千米的地方去执行任务;由于情况发生了变化;急行军速度必需是原计划的倍;才能按要求提前2小时到达;求急行军的速度.. 工程问题应用题:1:某工程需在规定日期内完成;若由甲队去做;恰好如期完成;若由乙队去做;要超过规定日期三天完成.现由甲、乙两队合做两天;剩下的工程由乙独做;恰好在规定日期完成;问规定日期是多少天2、某车间加工1200个零件后;采用新工艺;工效是原来的1..5倍;这样加工同样多的零件就少用10小时;采用新工艺前后每时分别加工多少个零件3、现要装配30台机器;在装配好6台后;采用了新的技术;每天的工作效率提高了一倍;结果共用了3天完成任务..求原来每天装配的机器数.4、某车间需加工1500个螺丝;改进操作方法后工作效率是原计划的212倍;所以加工完比原计划少用9小时;求原计划和改进操作方法后每小时各加工多少个螺丝 水流问题:1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等;已知水流速度每小时3千米;求轮船在静水中的速度.2、一船自甲地顺流航行至乙地;用5.2小时;再由乙地返航至距甲地尚差2千米处;已用了3小时;若水流速度每小时2千米;求船在静水中的速度3、小芳在一条水流速度是s 的河中游泳;她在静水中游泳的速度是s;而出发点与河边一艘固定小艇间的距离是60m;求她从出发点到小艇来回一趟所需的时间..四、解下列分式方程:1、23561245x x x x x x x x -----=----- 2、2232511877x x x x x x x ---+=+--+- 3、821261949819965--+--=--+--x x x x x x x x附加题:满分5分;将得分加入总分;但全卷总分不超过100分.. 解分式方程16143132121+=-++++x x x x 13、的最小值是分式221012622++++x x x x例2:已知;求的值..分析:若先通分;计算就复杂了;我们可以用替换待求式中的“1”;将三个分式化成同分母;运算就简单了.. 解:原式例4:已知a 、b 、c 为实数;且;那么的值是多少分析:已知条件是一个复杂的三元二次方程组;不容易求解;可取倒数;进行简化.. 解:由已知条件得:所以即又因为所以例2、已知:;则_________..解:说明:分式加减运算后;等式左右两边的分母相同;则其分子也必然相同;即可求出M.. 例2. 解方程分析:直接去分母;可能出现高次方程;给求解造成困难;观察四个分式的分母发现的值相差1;而分子也有这个特点;因此;可将分母的值相差1的两个分式结合;然后再通分;把原方程两边化为分子相等的两个分式;利用分式的等值性。
分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析一、错用分式得基本性质例1化简错解:原式分析:分式得基本性质就是“分式得分子与分母都乘以(或除以)同一个不等于零得整式,分式得值不变”,而此题分子乘以3,分母乘以2,违反了分式得基本性质.正解:原式二、错在颠倒运算顺序例2计算错解:原式分析:乘除就是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误、正解:原式三、错在约分例1 当为何值时,分式有意义?[错解]原式。
由得、∴时,分式有意义、[解析]上述解法错在约分这一步,由于约去了分子、分母得公因式,扩大了未知数得取值范围,而导致错误。
[正解]由得且。
∴当且,分式有意义、四、错在以偏概全例2 为何值时,分式有意义?[错解]当,得、∴当,原分式有意义.[解析]上述解法中只考虑得分母,没有注意整个分母,犯了以偏概全得错误。
[正解],得,由,得.∴当且时,原分式有意义、五、错在计算去分母例3 计算、[错解]原式=。
[解析]上述解法把分式通分与解方程混淆了,分式计算就是等值代换,不能去分母,、[正解]原式。
六、错在只考虑分子没有顾及分母例4 当为何值时,分式得值为零.[错解]由,得。
∴当或时,原分式得值为零。
[解析]当时,分式得分母,分式无意义,谈不上有值存在,出错得原因就是忽视了分母不能为零得条件。
[正解]由由,得.由,得且。
∴当时,原分式得值为零.典例分析类型一:分式及其基本性质ﻫ1、当x为任意实数时,下列分式一定有意义得就是()ﻫA、B、C、D.2。
若分式得值等于零,则x=_______;3 ﻫ、求分式得最简公分母。
【变式1】(1)已知分式得值就是零,那么x得值就是( )A。
-1B、0 C.1D、±1ﻫ(2)当x________时,分式没有意义、ﻫ【变式2】下列各式从左到右得变形正确得就是()ﻫ A、 B. C. D.类型二:分式得运算技巧(一) 通分约分4、化简分式:【变式1】顺次相加法计算:【变式2】整体通分法计算:(二)裂项或拆项或分组运算ﻫ5。
分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析分式方程典型易错点及典型例题分析一、错用分式的基本性质例1化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.正解:原式二、错在颠倒运算顺序例2计算错解:原式分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.正解:原式三、错在约分例1 当为何值时,分式有意义?[错解]原式.由得.∴时,分式有意义.[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.[正解]由得且.∴当且,分式有意义.四、错在以偏概全例2 为何值时,分式有意义?[错解]当,得.∴当,原分式有意义.[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.[正解] ,得,由,得.∴当且时,原分式有意义.五、错在计算去分母例3 计算.[错解]原式=.[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,.[正解]原式.六、错在只考虑分子没有顾及分母例4 当为何值时,分式的值为零. [错解]由,得.∴当或时,原分式的值为零.[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.[正解]由由,得.由,得且.∴当时,原分式的值为零.典例分析类型一:分式及其基本性质1.当x为任意实数时,下列分式一定有意义的是()A. B.C.D. 2.若分式的值等于零,则x=_______;3.求分式的最简公分母。
【变式1】(1)已知分式的值是零,那么x的值是()A.-1B.0 C.1D.±1(2)当x________时,分式没有意义.【变式2】下列各式从左到右的变形正确的是()A.B.C.D.类型二:分式的运算技巧(一) 通分约分4.化简分式:【变式1】顺次相加法计算:【变式2】整体通分法计算:(二)裂项或拆项或分组运算5.巧用裂项法计算:【变式1】分组通分法计算:【变式2】巧用拆项法计算:类型三:条件分式求值的常用技巧6.参数法已知,求的值.【变式1】整体代入法已知,求的值.【变式2】倒数法:在求代数式的值时,有时出现条件或所求分式不易变形,但当分式的分子、分母颠倒后,变形就非常的容易,这样的问题适合通常采用倒数法.已知:,求的值.【变式3】主元法:当已知条件为两个三元一次方程,而所求的分式的分子与分母是齐次式时,通常我们把三元看作两元,即把其中一元看作已知数来表示其它两元,代入分式求出分式的值.已知:,求的值.类型四:解分式方程的方法解分式方程的基本思想是去分母,课本介绍了在方程两边同乘以最简公分母的去分母的方法,现再介绍几种灵活去分母的技巧.(一)与异分母相关的分式方程7.解方程=【变式1】换元法 解方程:32121---=-x x x (二)与同分母相关的分式方程8.解方程3323-+=-x x x【变式1】解方程87178=----x x x【变式2】解方程125552=-+-x x x 类型五:分式(方程)的应用9.甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?【变式1】 甲开汽车,乙骑自行车,从相距180千米的A 地同时出发到B .若汽车的速度是自行车的速度的2倍,汽车比自行车早到2小时,那么汽车及自行车的速度各是多少?【变式2】 A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车原来的速度和乙车的速度.【主要公式】1.同分母加减法则:()0b c b c a a a a±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bd a d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m●a n =a m+n; a m÷a n =a m-nn=6.积的乘方与幂的乘方:(ab)m=a m b n , (a m)mna7.负指数幂: a-p=1a0=1pa8.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b2 ;(a±b)2= a2±2ab+b2。
分式典型易错题难题

分式一分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0)增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
一、分式的基本概念【例1】 在下列代数式中,哪些是分式哪些是整式1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx-,323a a a +【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) 个 个 个 个练习:下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .二、分式有意义的条件【例3】 求下列分式有意义的条件:⑴1x ⑵33x + ⑶2a b a b +-- ⑷21n m + ⑸22x y x y ++ ⑹2128x x -- ⑺293x x -+【例4】 ⑴x 为何值时,分式1111x++有意义 ⑵要使分式241312a a a -++没有意义,求a 的值.【例5】 x 为何值时,分式1122x ++有意义 x 为何值时,分式1122x x+-+有意义【例6】 若分式25011250x x-++有意义,则x ;若分式2501250x x-++无意义,则x ;【例7】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;练习:当x 有何值时,下列分式有意义1、(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-2、要使分式23xx -有意义,则x 须满足的条件为 .3、若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对4、x 为何值时,分式29113x x-++有意义三、分式值为零的条件【例8】 当x 为何值时,下列分式的值为0⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++⑸2231x x x +-- ⑹2242x x x-+ (7)4|1|5+--x x (8)223(1)(2)x x x x --++【例9】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例10】 x 为何值时,分式29113x x-++分式值为零练习:1、若分式41x x +-的值为0,则x 的值为 .2、当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x (4)562522+--x x x(5)213x x -+(6)2656x x x --- (7)221634x x x -+-(8)288xx +(9)2225(5)x x --(10)(8)(1)1x x x -+-四、关于分式方程的增根与无解它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:【例11】解方程2344222+=---x x x x【例12】 解方程22321++-=+-xxx x .【例13】 例3若方程32x x --=2mx-无解,则m=——.【例14】(1)当a 为何值时,关于x 的方程223242ax x x x +=--+会产生增根(2)若将此题“会产生增根”改为“无解”,即:a 为何值时,关于x 的方程223242ax x x x +=--+无解 练习:1、当k 为何值时,方程x x kx --=-133会出现增根2、已知分式方程3312x ax x +++=有增根,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式一分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 整式与分式统称为有理式.在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<0B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A +B=0)增根的意义:(1)增根是使所给分式方程分母为零的未知数的值。
(2)增根是将所给分式方程去分母后所得整式方程的根。
一、分式的基本概念【例1】 在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +【例2】 代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A.1个 B.1个 C.1个 D.1个练习:下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有:ﻩﻩ .二、分式有意义的条件【例3】 求下列分式有意义的条件:⑴1x ⑵33x + ﻩ⑶2a b a b +--ﻩ⑷21n m + ⑸22x y x y ++ﻩ⑹2128x x --ﻩﻩ⑺293x x -+【例4】 ⑴x 为何值时,分式1111x++有意义? ⑵要使分式241312a a a -++没有意义,求a 的值.【例5】 x 为何值时,分式1122x ++有意义? x 为何值时,分式1122x x+-+有意义?【例6】 若分式25011250x x-++有意义,则x ;若分式2501250x x-++无意义,则x ;【例7】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;练习:当x 有何值时,下列分式有意义1、(1)44+-x x (2)232+x x (3)122-x ﻩ(4)3||6--x xﻩ(5)xx 11-2、要使分式23xx -有意义,则x 须满足的条件为 ﻩ ﻩ .3、若33aa-有意义,则33a a -( ).A. 无意义B. 有意义 C. 值为0 D. 以上答案都不对4、x 为何值时,分式29113x x-++有意义?三、分式值为零的条件【例8】 当x 为何值时,下列分式的值为0?⑴1x x+ﻩ ⑵211x x -+ﻩ ⑶33x x -- ﻩ ⑷237x x ++ﻩﻩ⑸2231x x x +-- ⑹2242x x x-+ (7)4|1|5+--x x (8)223(1)(2)x x x x --++【例9】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例10】 x 为何值时,分式29113x x-++分式值为零?练习:1、若分式41x x +-的值为0,则x 的值为ﻩ .2、当x 取何值时,下列分式的值为0.(1)31+-x x ﻩﻩ(2)42||2--x x(3)653222----x x x x (4)562522+--x x x(5)213x x -+ﻩ ﻩ(6)2656x x x --- (7)221634x x x -+-ﻩ(8)288xx + ﻩ(9)2225(5)x x --ﻩ(10)(8)(1)1x x x -+-ﻩ四、关于分式方程的增根与无解它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:【例11】解方程2344222+=---x x x x【例12】 解方程22321++-=+-xxx x .【例13】 例3若方程32x x --=2mx-无解,则m=——.【例14】(1)当a为何值时,关于x 的方程223242ax x x x +=--+会产生增根(2)若将此题“会产生增根”改为“无解”,即:a 为何值时,关于x 的方程223242ax x x x +=--+无解?练习:1、当k 为何值时,方程x x kx --=-133会出现增根?2、已知分式方程3312x ax x +++=有增根,求a 的值。
3、分式方程x x m x x x -+-=+111有增根x =1,则m 的值为多少?4、a为何值时,关于x的方程4121x x x ax x -+=+-()有解?5、关于x的方程3-x x -2=3-x m 有一个正数解,求m 的取值范围。
6、使分式方程x x m x --=-3232产生增根的m 的值为___________7、当m 为何值时,去分母解方程2x -2 +\f (mx ,x2-4) =0会产生增根。
8、若方程4412212--=--+x xx k x 会产生增根,则( ) A 、2±=k B 、k=2 C 、k=-2 D 、k 为任何实数9、若解分式方程21112x x m x x x x+-++=+产生增根,则m的值是( ) A. -1或-2 B. -1或2 C . 1或2 D. 1或-210、已知关于x 的方程xmx x --=-323有负数解,求m 的取值范围。
11、当m为何值时,关于x的方程21112x x m x x x ---=+-无实根分式二分式的基本性质及有关题型1.分式的基本性质:MB MA MB M A B A ÷÷=⨯⨯=(M不为0)2.分式的变号法则:bab a b a b a =--=+--=--【例15】 分式基本性质:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例16】 分子、分母的系数化为整数不改变分式的值,把分子、分母的系数化为整数.(1)yx yx 41313221+-ﻩﻩ(2)b a b a +-04.003.02.0 (3)yx y x 5.008.02.003.0+-ﻩ (4)b a b a 10141534.0-+练习:不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例17】 分子、分母的首项的符号变为正号不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x yx --+-ﻩ (2)b a a --- ﻩ(3)b a ---练习:212a a ---; (2)322353a a a a -+---【例18】 未知数同时扩大或缩小相同的倍数1、若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ﻩ ⑵xyx y- ﻩ⑶22x y x y -+2、若x ,y 的值都缩小为原来的,下列分式的值如何变化?(1)y x y x 2332-+ (2)yx 54x y 2- (3)22x yx y -+练习: 1.如果=3,则=( )A .B. x yC. 4D.2.如果把的x 与y 都扩大10倍,那么这个代数式的值( )A.不变 B . 扩大50倍C . 扩大10倍D.缩小到原来的3.若分式中的a 、b 的值同时扩大到原来的10倍,则分式的值( )A. 是原来的20倍B. 是原来的10倍C.是原来的D . 不变4.如果把分式中的x和y的值都缩小为原来的,那么分式的值( )A. 扩大3倍B.缩小为原来的C .缩小为原来的D.不变 5.如果把分式中的x 和y 都扩大为原来的4倍,那么分式的值( )A. 扩大为原来的4倍 B.缩小为原来的 C. 扩大为原来的16倍 D. 不变6.若把分式中的x 和y 都扩大到原来的3倍,那么分式的值( )A. 扩大3倍 B . 缩小3倍C. 缩小6倍D . 不变7.如果把yx y322-中的x 和y都扩大5倍,那么分式的值( )A扩大5倍 B 不变 C缩小5倍 D 扩大4倍8、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A 、y x 23 B、223y x C 、y x 232D 、2323yx【例19】 直接通分化简1、已知:511=+y x ,求yxy x yxy x +++-2232的值.2、已知:311=-b a ,求aab b b ab a ---+232的值. 3、若3,111--+=-ba ab b a b a 则的值是多少?练习: 1、已知711=+y x ,求xyy x xyy x 52++-+ 2、已知111=-b a ,求bab a bab a ---+2232的值3、已知511=+y x ,求yxy x y xy x +++-2232的值.(8分) 4、已知:21=-x x ,求221xx +的值. 5、如果b a b a +=+111,则=+ba ab .【例20】 先化简成x+x 1或x x 1-,再求值 1、若0132=+-x x ,求x+x 1,x 2+21x, x x 1-的值.2、已知:0132=+-a a ,试求)1)(1(22a a aa --的值.3、已知:31=+x x ,求1242++x x x 的值. 练习已知:21-=xx ,求12242++x x x 的值.【例21】 利用非负性求分数的值1、若0)32(|1|2=-++-x y x ,求yx 241-的值.2、若0106222=+-++b b a a ,求ba ba 532+-的值.练习:若0)32(|1|2=-++-x y x ,求yx 241-的值.若0136422=+-++b b a a ,求ba ba 533+-的值.【例22】 求待定字母的值1、若111312-++=--x Nx M x x ,试求N M ,的值.2、已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值.练习:1、已知:222222yx y xy y x y x y x M --=+---,则M =______ ___. 2、若已知132112-+=-++x x x B x A (其中A 、B 为常数),则A =__________,B =__________;【例23】 较难分式化简求值)5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x练习:【例24】 代数式值为整数1、当a 为何整数时,代数式24+a 的值是整数,并求出这个整数值.2、当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.练习:1、当a 为何整数时,代数式2-318a 的值是整数,并求出这个整数值.2、当a 为何整数时,代数式36519++a a 的值是整数,并求出这个整数值.分式三一.分式的意义及分式的值例题1、当x =3时,分式bx a x 352-+的值为0,而当x =2时,分式无意义,则求ab 的值时多少?例题2、不论x 取何值,分式mx x +-212总有意义,求m 的取值范围。