初中毕业生学业考试数学卷7

合集下载

2023黄石中考数学试题

2023黄石中考数学试题

黄石市2023年初中毕业生学业水平考试数学试题卷一、选择题:本题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.实数a 与b 在数轴上的位置如图所示,则它们的大小关系是()A .a b> B.a b = C.a b< D.无法确定2.下列图案中,()是中心对称图形A. B. C. D.3.下列运算正确的是()A.224326x x x += B.()32626x x -=- C.326x x x ⋅= D.2322–623x y x y y÷=-4.如图,根据三视图,它是由()个正方体组合而成的几何体A.3B.4C.5D.65.函数1y x =-的自变量x 的取值范围是()A.0x ≥ B.1x ≠ C.0x ≥且1x ≠ D.1x >6.我市某中学开展“经典诵读”比赛活动,8个班在此次比赛中的得分分别是:9.19.89.19.29.99.19.99.1,,,,,,,,这组数据的众数和中位数分别是()A.9.19.1, B.9.19.15, C.9.19.2, D.9.99.2,7.如图,已知点()()1,0,4,A B m ,若将线段AB 平移至CD ,其中点()()2,1,,C D a n -,则m n -的值为()A.3- B.1- C.1 D.38.如图,在ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于E ,F 两点,EF 和BC 交于点O ;②以点A 为圆心,AC 长为半径画弧,交AB 于点D ;③分别以点D ,C 为圆心,大于12CD 的长为半径画弧,两弧相交于点M ﹐连接AM AM ,和CD 交于点N ,连接ON 若9,5AB AC ==,则ON 的长为()A.2B.52C.4D.929.如图,有一张矩形纸片ABCD .先对折矩形ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平.再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ﹐同时得到线段BN ,MN .观察所得的线段,若1AE =,则MN =()A.2B.1C.3D.210.已知二次函数2(0)y ax bx c a =++≠的图像经过三点()()()1122,,,,3,0A x y B x y C -,且对称轴为直线=1x -.有以下结论:①0a b c ++=;②230c b +=;③当121x -<<-,201x <<时,有12y y <;④对于任何实数0k >,关于x 的方程()21ax bx c k x ++=+必有两个不相等的实数根.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题:本题共8小题,第11~14小题每题3分,第15~18小题每题4分,共28分11.因式分解:()()141x y y -+-=________.12.计算:(2112cos 603-⎛⎫-+--︒= ⎪⎝⎭________.13.据《人民日报》(2023年5月9日)报道,我国海洋经济复苏态势强劲,在建和新开工的海上风电项目建设总规模约为18000000千瓦,比上年同期翻一番其中18000000用科学记数法表示为___________.14.“神舟”十四号载人飞行任务是中国空间站建造阶段的首次载人飞行任务,也是空间站在轨建造以来情况最复杂、技术难度最高、航天员乘组工作量最大的一次载人飞行任务.如图,当“神舟”十四号运行到地球表面P 点的正上方的F 点处时,从点F 能直接看到的地球表面最远的点记为Q 点,已知6400km 9PF ≈,20,cos 200.9FOQ ∠=︒︒≈,则圆心角POQ ∠所对的弧长约为_____km (结果保留π).15.如图,某飞机于空中A 处探测到某地面目标在点B 处,此时飞行高度1200AC =米,从飞机上看到点B 的俯角为37︒飞机保持飞行高度不变,且与地面目标分别在两条平行直线上同向运动.当飞机飞行943米到达点D 时,地面目标此时运动到点E 处,从点E 看到点D 的仰角为47.4︒,则地面目标运动的距离BE 约为_______米.(参考数据:310tan 37,tan 47.449︒≈︒≈)16.若实数a 使关于x 的不等式组213x x a -<-<⎧⎨->⎩的解集为14x -<<,则实数a 的取值范围为_________.17.如图,点5,A a a ⎛⎫ ⎪⎝⎭和5,B b b ⎛⎫⎪⎝⎭在反比例函数()0k y k x =>的图象上,其中0a b >>.过点A 作AC x ⊥轴于点C ,则AOC 的面积为_______;若AOB 的面积为154,则ab=_______.18.如图,将ABCD Y 绕点A 逆时针旋转到A B C D '''' 的位置,使点B '落在BC 上,B C ''与CD 交于点E 若33,4,2AB AD BB '===,则BAB '∠=_________(从“1,2,3行”中选择一个符合要求的填空);DE =________.三、解答题:本题共7小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:22221369m m m m -⎛⎫+÷⎪--+⎝⎭,然后从1,2,3,4中选择一个合适的数代入求值.20.如图,正方形ABCD 中,点M ,N 分别在AB ,BC 上,且BM CN =,AN 与DM 相交于点P .(1)求证:ABN ≌DAM ;(2)求APM ∠的大小.21.健康医疗大数据蕴藏了丰富的居民健康状况、卫生服务利用等海量信息,是人民健康保障的数据金矿和证据源泉.目前,体质健康测试已成为中学生的必测项目之一.某校某班学生针对该班体质健康测试数据开展调查活动,先收集本班学生八年级的《体质健康标准登记表》,再算出每位学生的最后得分,最后得分记为x ,得到下表成绩频数频率不及格(059x ≤≤)6及格(6074x ≤≤)20%良好(7589x ≤≤)1840%优秀(90100x ≤≤)12(1)请求出该班总人数;(2)该班有三名学生的最后得分分别是68,88,91,将他们的成绩随机填入表格□□□,求恰好得到的表格是88,91,68的概率;(3)设该班学生的最后得分落在不及格,及格,良好,优秀范围内的平均分分别为a ,b ﹐c ,d ,若23641275a b c d +++=,请求出该班全体学生最后得分的平均分,并估计该校八年级学生体质健康状况.22.关于x 的一元二次方程210x mx +-=,当1m =时,该方程的正根称为黄金分割数.宽与长的比是黄金分割数的矩形叫做黄金矩形,希腊的巴特农神庙采用的就是黄金矩形的设计;我国著名数学家华罗庚的优选法中也应用到了黄金分割数.(1)求黄金分割数;(2)已知实数a ,b 满足:221,24a ma b mb +=-=,且2b a ≠-,求ab 的值;(3)已知两个不相等的实数p ,q 满足:2211p np q q nq p +-=+-=,,求pq n -的值.23.某工厂计划从现在开始,在每个生产周期内生产并销售完某型号设备,该设备的生产成本为10万元/件.设第x 个生产周期设备的售价为z 万元/件,售价z 与x 之间的函数解析式是15,012,1220x z mx n x <≤⎧=⎨+<≤⎩,其中x 是正整数.当16x =时,14z =;当20x =时,13z =.(1)求m ,n 的值;(2)设第x 个生产周期生产并销售完设备的数量为y 件,且y 与x 满足关系式520y x =+.①当1220x <≤时,工厂第几个生产周期获得的利润最大?最大的利润是多少万元?②当020x <≤时,若有且只有3个生产周期的利润不小于a 万元,求实数a 的取值范围.24.如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求A F A B的值.25.如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于两点()()3,0,4,0A B -,与y 轴交于点()0,4C.(1)求此抛物线的解析式;(2)已知抛物线上有一点()00,P x y ,其中00y <,若90CAO ABP ∠+∠=︒,求0x 的值;(3)若点D ,E 分别是线段AC ,AB 上的动点,且2AE CD =,求2CE BD +的最小值.。

2020年贵州省贵阳中考数学试卷(附答案与解析)

2020年贵州省贵阳中考数学试卷(附答案与解析)

绝密★启用前2020年贵州省贵阳市初中毕业学业水平(升学)考试数 学同学你好!答题前请认真阅读以下内容:1.全卷共8页,三个大题,共25小题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A .6-B .1-C .1D .6 2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )ABCD3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( ) A .直接观察B .实验C .调查D .测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )(第4题图)A .150︒B .120︒C .60︒D .30︒5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x-D .1x x +6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )AB CD7.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .328.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >9.如图,Rt ABC △中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为 ( )(第9题图)A .无法确定B .12C .1D .210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20(0)ax bx c n n m +++=<<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为________.(第12题图)13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.14.如图,ABC △是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是________度.(第14题图)15.如图,ABC △中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为________.(第15题图)三、解答题:本大题10小题,共100分.16.(本题满分8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数.图①图②图③(第16题图)17.(本题满分10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图(第17题图)(1)本次共调查的学生人数为________,在表格中,m =________;(2)统计的这组数据中,每天听空中黔课时间的中位数是________,众数是________; (3)请就疫情期间如何学习的问题写出一条你的看法.18.(本题满分10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =. (1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.(第18题图)19.(本题满分10分)如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数ky x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.(第19题图)20.(本题满分10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率; (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 21.(本题满分8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12m EF =,EF CB ∥,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈1.7≈) (1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).图①图②(第21题图)22.(本题满分10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________元?23.(本题满分10分)如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(第23题图)(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC ∠的值. 24.(本题满分12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示915x <≤)(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点? 25.(本题满分12分)如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ与BO 的数量关系是________,位置关系是________;(2)问题探究:如图②,AO E '△是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E '△是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB △的面积.图①图②图③(第25题图)2020年贵州省贵阳市初中毕业学业水平(升学)考试数学答案解析一、1.【答案】A【解析】原式利用异号两数相乘的法则计算即可求出值.解:原式326=-⨯=-,故选:A .【考点】有理数的乘法 2.【答案】D【解析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.解:第一个袋子摸到红球的可能性110=;第二个袋子摸到红球的可能性;第三个袋子摸到红球的可能性51102==;第四个袋子摸到红球的可能性63105==.故选:D .【考点】可能性大小的计算 3.【答案】C【解析】根据得到数据的活动特点进行判断即可.解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C . 【考点】数据的获得方式 4.【答案】A【解析】根据对顶角相等求出1∠,再根据互为邻补角的两个角的和等于180︒列式计算即可得解.解:1260∠∠=︒+,12∠=∠(对顶角相等), 130∴∠=︒,1∠与3∠互为邻补角,3180118030150∴∠=︒-∠=︒-︒=︒.故选:A .【考点】对顶角相等的性质,邻补角的定义 5.【答案】B【解析】由分式有意义的条件分母不能为零判断即可.1xx -,当1x =时,分母为零,分式无意义.故选B. 【考点】分式有意义的条件6.【答案】D【解析】根据太阳光下的影子的特点:①同一时刻,太阳光下的影子都在同一方向;②太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.选项A 、B 中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A 、B 错误;选项C 中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C 错误;选项D 中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D 正确.故选:D . 【考点】太阳光下的影子的特点 7.【答案】B【解析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解:如图所示,根据题意得1842AO =⨯=,1=632BO ⨯=, 四边形ABCD 是菱形,AB BC CD DA ∴===,AC BD ⊥,AOB ∴△是直角三角形,5AB ∴==,∴此菱形的周长为:5420⨯=.故选:B .【考点】菱形的性质 8.【答案】D【解析】根据不等式的性质解答.解:A 、不等式a b <的两边同时减去1,不等式仍成立,即11a b --<,故本选项不符合题意;B 、不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a b <的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b ++<,故本选项不符合题意;D 、不等式a b <的两边同时乘以m ,当0m >,不等式仍成立,即ma mb <;当0m <,不等号方向改变,即ma mb >;当0m =时,ma mb =;故Rt CDF △不一定成立,故本选项符合题意,故选:D .【考点】不等式的性质 9.【答案】C【解析】当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,再根据角平分线的性质可知,当GP AB ⊥时,1GP CG ==.解:由题意可知,当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,90C ∠=︒,∴当GP AB ⊥时,1GP CG ==,故答案为:C .【考点】角平分线的尺规作图,角平分线的性质 10.【答案】B【解析】由题意可得方程20ax bx c ++=的两个根是3-,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.二次函数2y ax bx c =++的图象经过(3,0)-与DG BD =两点,即方程20ax bx c ++=的两个根是3﹣和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3,由1到3移动2个单位,可得另一个根为5-.由于0n m <<,可知方程20ax bx c n +++=的两根范围在5~3--和1~3,由此判断B 符合该范围.故选B .【考点】二次函数图象与一元二次方程的综合二、11.【答案】2x【解析】直接去括号然后合并同类项即可.解:22(1)x x x x x x x -+=-+=,故答案为:2x .【考点】整式运算,单项式乘以多项式,合并同类项 12.【答案】3【解析】根据反比例函数3y x=的图象上点的坐标性得出3xy =,进而得出四边形OBAC 的面积.解:如图所示:可得3OB AB xy k ⨯===,则四边形OBAC 的面积为:3,故答案为:3. 【考点】反比例函数()0ky xk =≠系数k 的几何意义 13.【答案】16【解析】随着试验次数的增多,变化趋势接近与理论上的概率.解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16.故答案为:16.14.【答案】120【解析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题. 解:连接OA ,OB ,作OH AC ⊥,OM AB ⊥,如下图所示: 因为等边三角形ABC ,OH AC ⊥,OM AB ⊥, 由垂径定理得:AH AM =,又因为OA OA =,故OAH OAM HL △≌△(.OAH OAM ∴∠=∠.又OA OB =,AD EB =,OAB OBA OAD ∴∠=∠=∠,()ODA OEB SAS ∴△≌△,DOA EOB ∴∠=∠,DOE DOA AOE AOE EOB AOB ∴∠=∠+∠=∠+∠=∠.又60C ∠=︒以及同弧AB ,120AOB DOE ∴∠=∠=︒.故本题答案为:120.【考点】圆与等边三角形的综合 15.【答案】【解析】如图,延长BD 到点G ,使DG BD =,连接CG ,则由线段垂直平分线的性质可得CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,根据等腰三角形的性质和三角形的内角和定理可得2EFC A CBE ∠=∠=∠,再根据三角形的外角性质和等腰三角形的判定可得FC FG =,设CE EF x ==,则可根据线段间的和差关系求出DF 的长,进而可求出FC 的长,然后根据勾股定理即可求出CD 的长,再一次运用勾股定理即可求出答案.解:如图,延长BD 到点G ,使DG BD =,连接CG ,则CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,EA EB =,A EBA ∴∠=∠,AEB CEF ∠=∠,22EFC A CBE G ∴∠=∠=∠=∠, EFC G FCG ∠=∠+∠, G FCG ∴∠=∠, FC FG ∴=,设CE EF x ==,则11AE BE x ==-,8113DE x x ∴=--=-(), 33DF x x ∴=--=(),8DG DB ==, 5FG ∴=,5CF ∴=,在Rt CDF △中,根据勾股定理,得4CD ==,BC ∴===故答案为:【考点】等腰三角形的判定和性质,三角形的内角和定理,三角形的外角性质,勾股定理以及线段垂直平分线的性质三、16.【答案】(1)图①(或其他合理答案)(2)图②(或其他合理答案)(3)图③(或其他合理答案)【解析】(1)画一个边长为3,4,5的三角形即可.具体解题过程参照答案.(2)利用勾股定理,找长为4的线段,画三角形即可.具体解题过程参照答案.(3、.具体解题过程参照答案.【考点】勾股定理的应用 17.【答案】(1)50 22 (2)3.5h3.5h(3)认真听课,独立思考.(或其他合理答案)【解析】(1)根据已知人数和比例算出学生总人数,再利用所占比例求出m 的值.学生人数2560ax x +-=.2x =.故答案为:50,22.(2)根据中位数和众数的概念计算即可.50225÷=,所以中位数为第25人所听时间为3.5h ,人数最多的也是3.5h ,故答案为:3.5h ,3.5h .(3)任写一条正能量看法即可.具体解题过程参照答案. 【考点】扇形统计图,统计基础运算18.【答案】(1)解:四边形ABCD 是矩形,AD BC ∴∥,AD BC =. CF BE =,CF EC BE EC ∴+=+,即EF BC =. EF AD ∴=,∴四边形AEFD 是平行四边形.(2)解:如图,连接ED ,四边形ABCD 是矩形,90B ∴∠=︒,在Rt ABE ∆中,4AB =,2BE =,∴由勾股定理得,216420EA =+=,即EA =AD BC ∥, DAE AEB ∠=∠∴.EH x =,ABE DEA ∴△∽△.BE EAEA AD =∴10AD =. 由(1)得四边形AEFD 是平行四边形, 又10EF =,高4AB =,10440AEFDS EF AB =⋅=⨯=∴.【解析】(1)直接利用矩形的性质结合BE CF =,可得EF AD =,进而得出答案.具体解题过程参照答案.(2)在a中利用勾股定理可计算EA =ABE DEA △∽△得BE EAEA AD=,进而求出AD 长,由AEFDSEF AB =⋅即可求解.具体解题过程参照答案. 【考点】矩形和平行四边形的性质以及判定,相似三角形的判定和性质,勾股定理,熟练运用勾股定理和相似三角形性质求线段长是解题的关键. 19.【答案】解:(1)一次函数1y x =+的图象与反比例函数ky x=的图象的一个交点的横坐标是2,∴当2x =时,3y =,∴其中一个交点是(2,3).236k ∴=⨯=.∴反比例函数的表达式是6y x=.(2)解:一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-.联立6y x=及1y x =-,可得一元二次方程260x x --=,解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3)--,(3,2).(3)设一次函数为()0y ax b a =+≠, 经过点(0,5),则5b =,5y ax ∴=+,联立5y ax =+以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点, 则25240a ∆=+<,解得:2524a <-, 25y x ∴=-+(或其他合理答案). 【解析】(1)将2x =代入一次函数,求出其中一个交点是(2,3),再代入反比例函数ky x=即可解答.具体解题过程参照答案.(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答.具体解题过程参照答案.(3)设一次函数为()0y ax b a =+≠,根据题意得到5b =,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.具体解题过程参照答案.【考点】一次函数与反比例函数图象交点问题,函数图象平移问题20.【答案】解:(1)先将《消防知识手册》《辞海》《辞海》分别记作A ,1B ,2B ,然后列表如下:2张卡片都是《辞海》的有2种:21(,)B B ,12(,)B B所以,P (2张卡片都是《辞海》)2163==; (2)解:设再添加x 张和原来一样的《消防知识手册》卡片,由题意得:1537x x +=+,解得,4x =,经检验,4x =是原方程的根,答:应添加4张《消防知识手册》卡片.【解析】(1)根据题意画出列表,由概率公式即可得出答案.具体解题过程参照答案. (2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可.具体解题过程参照答案. 【考点】列表法,概率公式21.【答案】(1)解:房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF CB ∥,AG EF ∴⊥,162EG EF ==,35AEG ACB ∠=∠=︒.在Rt AGE △中,90AGE ∠=︒,35AEG ∠=°,tan GAE GG A E ∠=,6EG =,tan350.7︒≈. 6tan3542AG ∴=≈°(米)答:屋顶到横梁的距离AG 约是4.2米. (2)过点E 作EH CB ⊥于点H ,设EH x =, 在Rt EDH △中,90EHD ∠=︒,60EDH ∠=︒,tan EH EDH DH ∠=,tan60xDH ∴=︒, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=︒,tan EH ECH CH ∠=,tan35xCH =︒∴. 8CH DH CD -==,8tan35tan60x x-=︒︒∴, tan350.7︒≈1.7≈,解得9.52x ≈.4.29.5213.7214AB AG BG =+=+=≈∴(米)答:房屋的高AB 约是14米.【解析】(1)EF CB ∥可得35AEG ACB ∠=∠=︒,在Rt AGE △中由tan AGEGAEG ∠=即可求AG .具体解题过程参照答案.(2)设EH x =,利用三角函数由x 表示DH 、CH ,由8DH CH -=列方程即可求解.具体解题过程参照答案.【考点】仰角的定义,解直角三角形的应用22.【答案】(1)解:设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支,根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了.(2)解:设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-, 整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<, x 取整数,20x ∴=,21.当20x =时,420782a =⨯-=, 当21x =时,421786a =⨯-=, 所以笔记本的单价可能是2元或者6元.【解析】(1)根据题意列出方程解出答案判断即可.具体解题过程参照答案(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.具体解题过程参照答案 【考点】方程及不等式的列式和计算23.【答案】解:(1)在O 中,ABD ∠与ACD ∠都是AD 所对的圆周角,ABD ACD ∠=∠∴, CAD ABD ∠=∠, ACD CAD ∴∠=∠. AD CD ∴=.数学试卷 第21页(共26页) 数学试卷 第22页(共26页)(2)解:AF 是O 的切线,AB 是O 的直径,90FAB ACB ADB ADF ∴∠=∠=∠=∠=︒. 90FAD BAD ∠+∠=︒,90ABD BAD ∠+∠=︒, FAD ABD ∴∠=∠.又ABD CAD ∠=∠,CAD FAD ∴∠=∠. AD AD =,Rt Rt ()ADE ADF ASA ∴△≌△,AE AF ∴=,ED FD =.在Rt BAF ∆中,4AB =,5BF =,3AF ∴=,即3AE =.1122AB AF BF AD ⋅=⋅, 125AD ∴=. 在Rt ADF ∆中,95FD =, 975255BE =-⨯=∴.BEC AED ∠=∠,且ECB EDA ∠=∠,BEC AED ∴△∽△,BE BC AE AD =∴,即2825BC =. BDC ∠与BAC ∠都是BC 所对的圆周角, BDC BAC ∠=∠∴.在Rt ACB △中,90ACB ∠=︒,7sin 25BC BAC AB ∠==∴,即7sin 25BDC ∠=. 【解析】(1)利用同弧所对的圆周角相等可得ABD ACD ∠=∠,由CAD ABD ∠=∠得ACD CAD ∠=∠,根据等角对等边可得结论.具体解题过程参照答案.(2)先证明FAD ABD ∠=∠,CAD FAD ∠=∠,由ASA 证明Rt Rt ADE ADF △≌△,得AE AF =,ED FD =;再求125AD =,75BE =,再证明BEC AED △∽△得2825BC =,利用BDC BAC ∠=∠可得结论.具体解题过程参照答案.【考点】切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形24.【答案】(1)解:根据表中数据的变化趋势可知: ①当09x ≤≤时,y 是x 的二次函数. 当0x =时,0y =,∴二次函数的关系式可设为2y ax bx =+.当1x =时,170y =;当3x =时,450y =.将它们分别代入关系式得17045093a ba b =+⎧⎨=+⎩,解得10180a b =-⎧⎨=⎩.∴二次函数的关系式为210180y x x =-+.将表格内的其他各组对应值代入此关系式,均满足. ②当915x <≤时,810y =.y ∴与x 的关系式为210180,09810,915x x x y x ⎧-+=⎨⎩≤≤<≤.(2)设第x 分钟时的排队人数是W ,根据题意,得21018040,09,4081040,915x x x x W y x x x ⎧-+-≤≤=-=⎨-<≤⎩, ①当09x ≤≤时,221014010(7)490W x x x =-+=--+.∴当7x =时,490W =最大.数学试卷 第23页(共26页) 数学试卷 第24页(共26页)②当915x <≤时,81040W x =-,W 随x 的增大而减小,210450W ∴≤<.∴排队人数最多时是490人.要全部考生都完成体温检测,根据题意, 得81040=0x -, 解得20.25x =.∴排队人数最多时是490人,全部考生都完成体温检测需要20.25分钟.(3)设从一开始就应该增加m 个检测点, 根据题意,得1220(2)810m ⨯+≥,解得318m ≥.m 是整数,318m ∴≥的最小整数是2.∴一开始就应该至少增加2个检测点.【解析】(1)先根据表中数据的变化趋势猜想:①当09x ≤≤时,y 是x 的二次函数.根据提示设出抛物线的解析式2y ax bx =+,再从表中选择两组对应数值,利用待定系数法求函数解析式,再检验其它数据是否满足解析式,从而可得答案.具体解题过程参照答案.(2)设第x 分钟时的排队人数是W ,列出W 与第x 分钟的函数关系式,再根据函数的性质求排队的最多人数,利用检测点的检测人数列方程求解检测时间.具体解题过程参照答案.(3)设从一开始就应该增加m 个检测点,根据题意列出不等式,利用不等式在正整数解可得答案.具体解题过程参照答案.【考点】根据实际的数据探究各数据符合的函数形式,待定系数法求解函数解析式,二次函数的实际应用,二次函数的性质,一元一次方程的应用,一元一次不等式的应用25.【答案】(1)解:点P 和点Q 分别为CB ,BO 的中点,PQ ∴为BOC △的中位线,四边形ABCD 是正方形,AC BO ∴⊥,12PQ BO ∴=,PQ BO ⊥; 故答案为:12PQ BO =,PQ BO ⊥; (2)解:PQB △的形状是等腰直角三角形.理由如下: 连接O P '并延长交BC 于点F ,由正方形的性质及旋转可得AB BC =,90ABC =︒∠,AO E '△是等腰直角三角形,O E BC '∥,O E O A '='.O EP FCP ∴∠'=∠,'PO E PFC ∠=∠.又点P 是CE 的中点,CP EP ∴=.()O PE FPC AAS ∴'△≌△.''O E FC O A ∴==,'O P FP =. AB O A CB FC ∴-'=-,BO BF ∴'=.'O BF ∴△为等腰直角三角形.'BP O F ∴⊥,'O P BP =.BPO ∴'△也为等腰直角三角形.又点Q 为'O B 的中点,'PQ O B ∴⊥,且PQ BQ =.PQB∴△的形状是等腰直角三角形.(3)解:延长O E'交BC边于点G,连接PG,'O P.四边形ABCD是正方形,AC是对角线,45ECG∴∠=︒.由旋转得,四边形O ABG'是矩形,O G AB BC∴'==,90EGC∠=︒.EGC∴△为等腰直角三角形.点P是CE的中点,PC PG PE∴==,90CPG∠=︒,45EGP∠=︒.'()O GP BCP SAS∴△≌△.O PG BPC∴∠'=∠,O P BP'=.90O PG GPB BPC GPB∴∠'-∠=∠-∠=︒.'90O PB∴∠=︒.O PB∴'△为等腰直角三角形.Q是O B'的中点,∴12PQ O B BQ='=,PQ O B⊥'.1AB =,2O A ∴'=,O B'==4BQ∴=.1132216PQBS BQ PQ∆=⋅==∴.【解析】(1)根据题意可得PQ为BOC△的中位线,再根据中位线的性质即可求解.具体解题过程参照答案.(2)连接O P'并延长交BC于点F,根据题意证出O PE FPC'△≌△,'O BF△为等腰直角三角形,BPO'△也为等腰直角三角形,由'PQ O B⊥且PQ BQ=可得PQB△是等腰直角三角形.具体解题过程参照答案.(3)延长O E'交BC边于点G,连接PG,'O P.证出四边形O ABG'是矩形,EGC△为等腰直角三角形,'O GP BCP△≌△,再证出O PB'△为等腰直角三角形,根据图形的性质和勾股定理求出O A',O B'和BQ的长度,即可计算出PQB△的面积.具体解题过程参照答案.【考点】正方形的性质,等腰直角三角形的判定与性质,旋转图形的性质,三角形中位线定理,全等三角形的判定与性质,勾股定理数学试卷第25页(共26页)数学试卷第26页(共26页)。

2024年黑龙江龙东地区初中数学学业考试试卷真题(含答案详解)

2024年黑龙江龙东地区初中数学学业考试试卷真题(含答案详解)

黑龙江省龙东地区2024年初中毕业学业统一考试数学试题考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1.下列计算正确的是()A .326a a a ⋅=B .()527a a =C .()339328a b a b -=-D .()()22a b a b a b-++=-2.下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .3.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A .3B .4C .5D .64.一组数据2,3,3,4,则这组数据的方差为()A .1B .0.8C .0.6D .0.55.关于x 的一元二次方程()22420m x x -++=有两个实数根,则m 的取值范围是()A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠6.已知关于x 的分式方程2333x xkx -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-7.国家“双减”政策实施后,某班开展了主题为“书香满校园”的读书活动.班级决定为在活动中表现突出的同学购买笔记本和碳素笔进行奖励(两种奖品都买),其中笔记本每本3元,碳素笔每支2元,共花费28元,则共有几种购买方案()A .5B .4C .3D .28.如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是()A .4.5B .3.5C .3D .2.59.如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A B .5C .5D 10.如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sin 10NBC ∠=;④BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题(每小题3分,共30分)11.国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为.12.在函数y =中,自变量x 的取值范围是.13.已知菱形ABCD 中对角线AC BD 、相交于点O ,添加条件可使菱形ABCD成为正方形.14.七年一班要从2名男生和3名女生中选择两名学生参加朗诵比赛,恰好选择1名男生和1名女生的概率是.15.关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,则a 的取值范围是.16.如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD∠︒.17.若圆锥的底面半径为3,侧面积为36π,则这个圆锥侧面展开图的圆心角是︒.18.如图,在Rt ABC △中,90ACB ∠=︒,1tan 2BAC ∠=,2BC =,1AD =,线段AD 绕点A 旋转,点P 为CD 的中点,则BP 的最大值是.19.矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.20.如图,在平面直角坐标系中,正方形OMNP 顶点M 的坐标为()3,0,OAB 是等边三角形,点B 坐标是()1,0,OAB 在正方形OMNP 内部紧靠正方形OMNP 的边(方向为O M N P O M →→→→→→ )做无滑动滚动,第一次滚动后,点A 的对应点记为1A ,1A 的坐标是()2,0;第二次滚动后,1A 的对应点记为2A ,2A 的坐标是()2,0;第三次滚动后,2A 的对应点记为3A ,3A 的坐标是1322⎛⎫-⎝⎭;如此下去,……,则2024A 的坐标是.三、解答题(满分60分)21.先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.22.如图,在正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,3B -,()5,2C -.(1)画出ABC 关于y 轴对称的111A B C △,并写出点1B 的坐标;(2)画出ABC 绕点A 逆时针旋转90︒后得到的22AB C ,并写出点2B 的坐标;(3)在(2)的条件下,求点B 旋转到点2B 的过程中所经过的路径长(结果保留π)23.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,其中()1,0B ,()0,3C .(1)求抛物线的解析式.(2)在第二象限的抛物线上是否存在一点P ,使得APC △的面积最大.若存在,请直接写出点P 坐标和APC △的面积最大值;若不存在,请说明理由.24.为贯彻落实教育部办公厅关于“保障学生每天校内、校外各一小时体育活动时间”的要求,某学校要求学生每天坚持体育锻炼.学校从全体男生中随机抽取了部分学生,调查他们的立定跳远成绩,整理如下不完整的频数分布表和统计图,结合下图解答下列问题:组别分组(cm )频数A 50100x <≤3B 100150x <≤m C150200x <≤20D 200250x <≤14E250300x <≤5(1)频数分布表中m =,扇形统计图中n =.(2)本次调查立定跳远成绩的中位数落在组别.(3)该校有600名男生,若立定跳远成绩大于200cm 为合格,请估计该校立定跳远成绩合格的男生有多少人?25.甲、乙两货车分别从相距225km 的A 、B 两地同时出发,甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,乙货车沿同一条公路从B 地驶往A 地,但乙货车到达配货站时接到紧急任务立即原路原速返回B 地,结果比甲货车晚半小时到达B 地.如图是甲、乙两货车距A 地的距离()km y 与行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)甲货车到达配货站之前的速度是km/h ,乙货车的速度是km/h ;(2)求甲货车在配货站卸货后驶往B 地的过程中,甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式;(3)直接写出甲、乙两货车在行驶的过程中,出发多长时间甲、乙两货车与配货站的距离相等.26.已知ABC 是等腰三角形,AB AC =,12MAN BAC ∠=∠,MAN ∠在BAC ∠的内部,点M 、N 在BC 上,点M 在点N 的左侧,探究线段BM NC MN 、、之间的数量关系.(1)如图①,当90BAC ∠=︒时,探究如下:由90BAC ∠=︒,AB AC =可知,将ACN △绕点A 顺时针旋转90︒,得到ABP ,则CN BP =且90PBM ∠=︒,连接PM ,易证AMP AMN △≌△,可得MP MN =,在Rt PBM △中,222BM BP MP +=,则有222BM NC MN +=.(2)当60BAC ∠=︒时,如图②:当120BAC ∠=︒时,如图③,分别写出线段BM NC MN 、、之间的数量关系,并选择图②或图③进行证明.27.为了增强学生的体质,某学校倡导学生在大课间开展踢毽子活动,需购买甲、乙两种品牌毽子.已知购买甲种品牌毽子10个和乙种品牌毽子5个共需200元;购买甲种品牌毽子15个和乙种品牌毽子10个共需325元.(1)购买一个甲种品牌毽子和一个乙种品牌毽子各需要多少元?(2)若购买甲乙两种品牌毽子共花费1000元,甲种品牌毽子数量不低于乙种品牌毽子数量的5倍且不超过乙种品牌毽子数量的16倍,则有几种购买方案?(3)若商家每售出一个甲种品牌毽子利润是5元,每售出一个乙种品牌毽子利润是4元,在(2)的条件下,学校如何购买毽子商家获得利润最大?最大利润是多少元?28.如图,在平面直角坐标系中,等边三角形OAB 的边OB 在x 轴上,点A 在第一象限,OA 的长度是一元二次方程2560x x --=的根,动点P 从点O 出发以每秒2个单位长度的速度沿折线OA AB -运动,动点Q 从点O 出发以每秒3个单位长度的速度沿折线OB BA -运动,P 、Q 两点同时出发,相遇时停止运动.设运动时间为t 秒(0 3.6t <<),OPQ △的面积为S .(1)求点A的坐标;(2)求S与t的函数关系式;(3)在(2)的条件下,当S M在y轴上,坐标平面内是否存在点N,使得以点O、P、M、N为顶点的四边形是菱形.若存在,直接写出点N的坐标;若不存在,说明理由.1.C【分析】本题主要考查同底数幂的乘法,幂的乘方与积的乘方,平方差公式,运用相关运算法则求出各选项的结果后再进行判断即可.【详解】解:A 、3256a a a a ⋅=≠,故选项A 计算错误,此选项不符合题意;B 、()52107a a a =≠,故选项B 计算错误,此选项不符合题意;C 、()339328a b a b -=-,此选项计算正确,符合题意;D 、()()()()22a b a b b a b a b a -++=-+=-,故选项D 计算错误,此选项不符合题意;故选:C .2.B【分析】本题主要考查了轴对称图形和中心对称图形,根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 选项不合题意;B 、既是轴对称图形又是中心对称图形,故B 选项符合题意;C 、是轴对称图形,不是中心对称图形,故C 选项不合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:B .3.B【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B .【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.4.D【分析】本题主要考查了方差的计算,解题的关键是方差的计算公式的识记.根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果.【详解】平均数为:()233443+++÷=方差为:()()()()222221233333434S ⎡⎤=⨯-+-+-+-⎣⎦()110014=⨯+++0.5=故选:D .5.D【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=-的意义得到20m -≠且0∆≥,即244(2)20m -⨯-⨯≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x -++=有实数根,20m ∴-≠且0∆≥,即244(2)20m -⨯-⨯≥,解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠.故选:D .6.A【分析】本题考查了解分式方程无解的情况,理解分式方程无解的意义是解题的关键.先将分式方程去分母,化为整式方程,再分两种情况分别求解即可.【详解】解:去分母得,2(3)3kx x --=-,整理得,(2)9k x -=-,当2k =时,方程无解,当2k ≠时,令3x =,解得1k =-,所以关于x 的分式方程2333x xkx -=--无解时,2k =或1k =-.故选:A .7.B【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设购买x 支笔记本,y 个碳素笔,利用总价=单价⨯数量,即可得出关于x ,y 的二元一次方程,再结合x ,y 均为正整数,即可得出购买方案的个数.【详解】解:设购买x 支笔记本,y 个碳素笔,依题意得:3228x y +=,3142y x ∴=-.又x ,y 均为正整数,∴211x y =⎧⎨=⎩或48x y =⎧⎨=⎩或65x y =⎧⎨=⎩或82x y =⎧⎨=⎩,∴共有4种不同的购买方案.故选:B .8.A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,证明AFE ODE ∽,有AF AE EF OD OE DE ==,根据E 为AO 的中点,可得AF OD =,EF DE =,进而有1122EF DE DF a ===,162A AF OD y a===,可得6B y OD a ==,2B x a =,则有32BE BD DE a =-=,问题随之得解.【详解】如图,过点A 作AF BD ⊥,垂足为F ,设12,A a a ⎛⎫ ⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥,∴AF y ∥轴,DF a =,∴AFE ODE ∽,∴AF AE EF OD OE DE==,∵E 为AO 的中点,∴AE OE =,∴1AF AE EF OD OE DE===,∴AF OD =,EF DE=∴1122EF DE DF a ===,162A AF OD y a ===,∵B OD y =,∴6B y OD a ==,∴2B x a =,∴2B BD x a ==,∴32BE BD DE a =-=,∴11639 4.52222ABE S AF BE a a =⨯⨯=⨯⨯== ,故选:A .9.C【分析】本题主要考查了解三角形,菱形的性质、直角三角形斜边中线等于斜边一半.先由菱形性质可得对角线AC 与BD 交于点O ,由直角三角形斜边中线等于斜边一半可得2OA OC OM ===,进而由菱形对角线求出边长,由sin sin 5MAC OBC ∠=∠=解三角形即可求出sin 5MC AC MAC =∠=,tan 5MN BM OBC =∠=.【详解】解:连接AC ,如图,∵菱形ABCD 中,AC 与BD 互相垂直平分,又∵点O 是BD 的中点,∴A 、O 、C 三点在同一直线上,∴OA OC =,∵2OM =,AM BC ⊥,∴2OA OC OM ===,∵8BD =,∴142OB OD BD ===,∴BC ===21tan 42OC OBC OB ===∠,∵90ACM MAC ∠+∠=︒,90ACM OBC ∠+∠=︒,∴MAC OBC∠=∠∴sin sin OC MAC OBC BC ∠=∠==∴sin MC AC MAC =∠=∴55BM BC MC =-=-=,∴1tan 525MN BM OBC =∠=⨯=故选:C .10.A【分析】连接DG,可得BD AB=AC 垂直平分BD ,先证明点B 、H 、D 、F 四点共圆,即可判断①;根据AC 垂直平分BD ,结合互余可证明DG FG =,即有DG FG BG ==,则可判断②正确;证明ABM DBN ∽,即有BN BD BM AB ==212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,根据12AH D H =可得3AH AD =,再证明AHM CBM ∽,可得13AHM ABM S HM S BM == ,即可判断⑤;根据点H 是AD 的中点,设2AD =,即求出BH =,同理可证明AHM CBM ∽,可得23BM BH ==,即可得BN ==,进而可判断③.【详解】连接DG ,如图,∵四边形ABCD 是正方形,∴45BDC BAC ADB ∠=∠=∠=︒,BD AB=90BAD ADC ∠=∠=︒,AC 垂直平分BD ,∴90CDP ∠=︒,∵DF 平分CDP ∠,∴1452CDF CDP CDB ∠=∠=︒=∠,∴90BDF CDF CDB ∠=∠+∠=︒,∵90BHF BDF ∠=︒=∠,∴点B 、H 、D 、F 四点共圆,∴45HFB HDB ∠=∠=︒,DHF DBF ∠=∠,∴18045HBF HFB FHB ∠=︒-∠-∠=︒,故①正确,∵AC 垂直平分BD ,∴BG DG =,∴BDG DBG ∠=∠,∵90BDF ∠=︒,∴90BDG GDF DBG DFG ∠+∠=︒=∠+∠,∴GDF DFG ∠=∠,∴DG FG =,∴DG FG BG ==,∴点G 是BF 的中点,故②正确,∵90BHF BAH ∠=︒=∠,∴90AHB DHF AHB ABH ∠+∠=︒=∠+∠,∴DHF ABH ∠=∠,∵DHF DBF ∠=∠,∴ABH DBF ∠=∠,又∵45BAC DBC ∠=∠=︒,∴ABM DBN ∽,∴BN BD BM AB==,∴BN =,故④正确,∴212ABM DBN S AB S BD ⎛⎫== ⎪⎝⎭ ,若12AH D H =,则()1122AH HD AD AH ==-,∴3AH AD =,∴13=AH AD ,即13H H A A BC AD ==,∵AD BC ∥,∴AHM CBM ∽,∴13HM AH BM BC ==,∴13AHM ABM S HM S BM == ,∴3ABM AHM S S = ,∵12ABM DBN S S = ,∴26BND ABM AHM S S S == △,故⑤错误,如图,③若点H 是AD 的中点,设2AD =,即2AB BC AD ===,∴112AH AD ==,∴BH ==,同理可证明AHM CBM ∽,∴12HM AH BM BC ==,∴32HM BM BH BM BM+==,∴23BM BH ==,∵BN =,∴BN =,∵2BC =,∴在Rt BNC △中,23NC ==,sin NC NBC BN ∠==,故③正确,则正确的有:①②③④,故选:A .【点睛】本题是一道几何综合题,主要考查了正方形的性质,相似三角形的判定与性质,正弦,圆周角定理以及勾股定理等知识,证明点B 、H 、D 、F 四点共圆,ABM DBN ∽,是解答本题的关键.11.121.390810⨯【分析】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.【详解】1 亿81.010=⨯,13908亿48121.39081010 1.390810=⨯⨯=⨯故答案为:121.390810⨯12.3x ≥##3x≤【分析】本题主要考查函数自变量取值范围,分别根据二次根式有意义的条件和分式有意义的条件列出不等式求解即可.【详解】解:根据题意得,30x -≥,且20x +≠,解得,3x ≥,故答案为:3x ≥.13.AC BD =或AB BC⊥【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:AC BD =;根据有一个角是直角的菱形是正方形,可添加的:AB BC ⊥;故添加的条件为:AC BD =或AB BC ⊥.14.35【分析】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画树状图,共有12种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有6种,再由概率公式求解即可.【详解】解:画树状图如下:由图可知,共有20种等可能的结果,其中选取的2名学生恰好是1名男生、1名女生的结果有12种,∴选取的2名学生恰好是1名男生、1名女生的概率为:123205=,故答案为:35.15.102a -≤<【分析】本题考查解一元一次不等式(组),一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.先解出不等式组中每个不等式的解集,然后根据不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,即可得到关于a 的不等式组,然后求解即可.【详解】解:由420-≥x ,得:2x ≤,由102x a ->,得:2x a >, 不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有3个整数解,∴这3个整数解是0,1,2,120a ∴-≤<,解得102a -≤<,故答案为:102a -≤<.16.65【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵ AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒-︒=︒,故答案为:65.17.90【分析】此题主要考查了圆锥的侧面积公式以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.根据圆锥的侧面积公式πS rl =求出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】根据圆锥侧面积公式:πS rl =,可得π336πl ⨯⨯=解得:12l =,2π1236π360n ⨯∴=,解得90n =,∴侧面展开图的圆心角是90︒.故答案为:90.18.12【分析】本题考查了解直角三角形,三角形中位线定理,旋转的性质,解题的关键是找出BP 取最大值时B 、P 、M 三点的位置关系.取AC 的中点M ,连接PM 、BM ,利用解三角形求出BM ==,利用三角形中位线定理推出1122PM AD ==,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值.【详解】解:取AC 的中点M ,连接PM 、BM .∵90ACB ∠=︒,1tan 2BAC ∠=,2BC =,∴124tan 2BC AC BAC ==÷=∠,∴122AM CM AC ===,∴BM ===∵P 、M 分别是CD AC 、的中点,∴1122PM AD ==.如图,当AD 在AC 下方时,如果B 、P 、M 三点共线,则BP 有最大值,最大值为12BM MP +=+,故答案为:12.19.52或72或10【分析】本题考查了矩形与折叠问题,解直角三角形,先根据点B 的对称点落在矩形对角线所在的直线上的不同位置分三种情况,画出对应的图形,再根据矩形性质,利用解直角三角形求出PC 即可.【详解】解:①点B 的对称点落在矩形对角线BD 上,如图1,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,由折叠性质可知:BB AP '⊥,∴BAP BPA BPA CBD∠+∠=∠+∠∴=BAP CBD∠∠∴3tan =tan =4CD BAP CBD BC ∠∠=,∴39tan 642BP AB BAP =∠=⨯=∴97822PC BC BP =-=-=;②点B 的对称点B '落在矩形对角线AC 上,如图2,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴532B C AC AB ''=-=-=∴452cos 52B C PC ACB '==÷=∠;③点B 的对称点B '落在矩形对角线CA 延长线上,如图3,∵在矩形ABCD 中,3AB CD ==,4BC AD ==,90B Ð=°,∴5AC ===,∴4cos 5BC ACB AC ∠==,由折叠性质可知:=90ABP AB P '∠=∠︒,3AB AB '==,∴538B C AC AB ''=+=+=∴4810cos 5B C PC ACB '==÷=∠;综上所述:则PC 长为52或72或10.故答案为:52或72或10.20.()1,3【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A 的对应点1A ,2A , ,12A 的坐标,发现规律即可解决问题.【详解】解: 正方形OMNP 顶点M 的坐标为()3,0,3OM MN NP OP ∴====,OAB 是等边三角形,点B 坐标是()1,0,∴等边三角形高为2,由题知,1A 的坐标是()2,0;2A 的坐标是()2,0;3A 的坐标是1322⎛⎫- ⎪ ⎪⎝⎭;继续滚动有,4A 的坐标是()3,2;5A 的坐标是()3,2;6A 的坐标是5,32⎛ ⎝⎭;7A 的坐标是()1,3;8A 的坐标是()1,3;9A 的坐标是52⎫⎪⎪⎝⎭;10A 的坐标是()0,1;11A 的坐标是()0,1;12A 的坐标是12⎛ ⎝⎭;13A 的坐标是()2,0; 不断循环,循环规律为以1A ,2A , ,12A ,12个为一组, 2024121688÷= ,∴2024A 的坐标与8A 的坐标一样为()1,3,故答案为:()1,3.21.1m -+,12【分析】本题主要考查分式的化简求值及特殊三角函数值,先对分式进行化简,然后利用特殊三角函数值进行代值求解即可.【详解】解:原式()()()()21111m m m m m m-+=⋅+--1m =-+,当1cos 602m =︒=时原式12=.22.(1)作图见解析,()12,3B (2)作图见解析,()23,0B -【分析】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据题意画出即可;关于y 轴对称点的坐标横坐标互为相反数,纵坐标不变;(2)根据网格结构找出点B 、C 以点A 为旋转中心逆时针旋转90︒后的对应点,然后顺次连接即可;(3)先求出AB 90︒,利用弧长公式即可求出.【详解】(1)解:如图,111A B C △为所求;点1B 的坐标为()2,3,(2)如图,22AB C 为所求;()23,0B -,(3)AB =,点B 旋转到点2B =.23.(1)223y x x =--+(2)存在,点P 的坐标是315,24P ⎛⎫- ⎪⎝⎭,APC △的面积最大值是278【分析】本题主要考查二次函数的图象与性质以及与几何综合:(1)将B ,C 两点坐标代入函数解析式,求出b ,c 的值即可;(2)过点P 作PE x ⊥轴于点E ,设()2,23P x x x --+,且点P 在第二象限,根据APC APE AOC PCOE S S S S =+- 梯形可得二次函数关系式,再利用二次函数的性质即可求解.【详解】(1)解:将()1,0B ,()0,3C 代入2y x bx c =-++得,103b c c -++=⎧⎨=⎩解得:23b c =-⎧⎨=⎩223y x x ∴=--+(2)解:对于223y x x =--+,令0,y =则2230,x x --+=解得,123,1x x =-=,∴()3,0A -,∴3,OA =∵()0,3C ,∴3OC =,过点P 作PE x ⊥轴于点E ,如图,设()2,23P x x x --+,且点P 在第二象限,∴,3,OE x AE x =-=+∴APC APE AOCPCOE S S S S =+- 梯形()111222AE PE OC PE OE OA OC =⨯++⨯-⨯()()()()2211132332333222x x x x x x =+--++--+--⨯⨯23327228x ⎛⎫=-++ ⎪⎝⎭∵302-<,∴S 有最大值,∴当32x =-时,S 有最大值,最大值为278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭24.(1)8,40(2)C(3)估计该校立定跳远成绩合格的男生有228人【分析】本题主要考查了扇形统计图和频数表、中位数,用样本估计总体,(1)用A 组的频数除以所占的百分比,即可求出调查的总人数;用总人数减去其它组的人数,即可求得B 组的人数,用C 组的人数除以总人数即可求解;(2)根据中位数的求法,即可求解;(3)用总人数乘以样本中立定跳远成绩合格的男生人数所占,即可求解.【详解】(1)解:被抽取的学生数为:36%50÷=(人)故503201458m =----=(人),%205040%n =÷=,即40n =,故答案为:8,40;(2)解:把这组数据从小到大排列,第25和第26个数据的平均数为这组数据的中位数,382526+<< ,5142526+<<,∴把这组数据从小到大排列,第25和第26个数据都在C 组,故本次调查立定跳远成绩的中位数落在C 组,答案为:C ;(3)解:14560022850+⨯=(人)答:该校立定跳远成绩合格的男生有228人.25.(1)30,40(2)EF 的函数解析式是()802154 5.5y x x =-≤≤(3)经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等【分析】本题考查一次函数的应用,待定系数法求一次函数解析式的运用,认真分析函数图象,读懂函数图象表示的意义是解题关键.(1)由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,乙货车到达配货站路程为120km ,到达后返回,所用时间为6h ,根据速度=距离÷时间即可得;(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象结合已知条件可知(4,105)E 和点(5.5,225)F ,再利用待定系数法求出y 与x 的关系式即可得答案;(3)分两车到达配货站之前和乙货车到达配货站时接到紧急任务立即原路原速返回B 地后、甲货车卸货,半小时后继续驶往B 地,三种情况与配货站的距离相等,分别列方程求出x 的值即可得答案.【详解】(1)解:由图象可知甲货车到达配货站路程为105km ,所用时间为3.5h ,所以甲货车到达配货站之前的速度是105 3.5=30÷(km/h )∴乙货车到达配货站路程为225105=120(km)-,到达配货站时接到紧急任务立即原路原速返回B 地,总路程为240km ,总时间是6h ,∴乙货车速度240640km /h =÷=,故答案为:30;40(2)甲货车从A 地出发途经配货站时,停下来卸货,半小时后继续驶往B 地,由图象可知(4,105)E 和点(5.5,225)F 设(4 5.5)EF y kx b x =+≤≤∴41055.5225k b k b +=⎧⎨+=⎩解得:21580b k =-⎧⎨=⎩,∴甲货车距A 地的距离()km y 与行驶时间()h x 之间的函数解析式()802154 5.5y x x =-≤≤(3)设甲货车出发h x ,甲、乙两货车与配货站的距离相等,①两车到达配货站之前:1053012040x x -=-,解得:32x =,②乙货车到达配货站时开始返回,甲货车未到达配货站:1053040120x x -=-,解得:4514x =,③甲货车在配货站卸货后驶往B 地时:0802151054012x x =---,解得:5x =,答:经过1.5h 或45h 14或5h 甲、乙两货车与配货站的距离相等.26.图②的结论是:222BM NC BM NC MN ++⋅=;图③的结论是:222BM NC BM NC MN +-⋅=;证明见解析【分析】本题主要考查等边三角形的性质,全等三角形的判定与性质,30度角所对的直角边等于斜边的一半,勾股定理等知识,选②,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,构造全等三角形,得出AN AQ =,CAN QAB ∠=∠,再证明AQM ANM △≌△,得到MN QM =;在Rt QHM△中由勾股定理得222QH HM QM +=,即222122BQ BM BQ QM ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎝⎭,整理可得结论;选③方法同②【详解】解:图②的结论是:222BM NC BM NC MN ++⋅=证明:∵,60,AB AC BAC =∠=︒∴ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,以点B 为顶点在ABC 外作60ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又30CAN BAM ∠+∠=︒30BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM ∴=;∵60,60,ABQ ABC ∠=︒∠=︒∴60QBH ∠=︒,∴30,BQH ∠=︒12B BH Q ∴=,2QH BQ =∴12HM BM BH BM BQ =+=+,在Rt QHM △中,可得:222QH HM QM +=即222122BQ BM BQ QM ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭整理得222BM BQ B Q M M B Q ⋅++=222NC B M N N B M M C ∴=⋅++图③的结论是:222BM NC BM NC MN +-⋅=证明:以点B 为顶点在ABC 外作30ABK ∠=︒,在BK 上截取BQ CN =,连接QA QM 、,过点Q 作QH BC ⊥,垂足为H ,AB AC = ,C ABQ ∠=∠,CN BQ=ACN ABQ∴△≌△AN AQ ∴=,CAN QAB∠=∠又60CAN BAM ∠+∠=︒60BAM QAB ∴∠+∠=︒即QAM MAN∠=∠又AM AM = ,AQM ANM ∴△≌△,MN QM∴=在Rt BQH 中,60QBH ∠=︒,30BQH ∠=︒12B BH Q ∴=,QH BQ =12HM BM BH BM BQ =-=-,在Rt QHM △中,可得:222QH HM QM +=即222122BQ BM BQ QM ⎛⎫⎛⎫+-= ⎪ ⎪ ⎪⎝⎭⎝⎭整理得222BM BQ B Q M M B Q ⋅+-=222NC B M N N B M M C ∴=⋅+-27.(1)购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元(2)共有3种购买方案(3)学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元【分析】本题考查了二元一次方程组、一元一次不等式组以及一次函数的应用,(1)设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元,根据题意列出二元一次方程组,问题得解;(2)设购买甲种品牌毽子x 个,购买乙种品牌毽子31002x ⎛⎫- ⎪⎝⎭个,根据题意列出一元一次不等式组,解不等式组即可求解;(3)设商家获得总利润为y 元,即有一次函数3541002y x x ⎛⎫=+- ⎪⎝⎭,根据一次函数的性质即可求解.【详解】(1)解:设购买一个甲种品牌毽子需a 元,购买一个乙种品牌毽子需b 元.由题意得:1052001510325a b a b +=⎧⎨+=⎩,解得:1510a b =⎧⎨=⎩,答:购买一个甲种品牌毽子需15元,购买一个乙种品牌毽子需10元;(2)解:设购买甲种品牌毽子x 个,购买乙种品牌毽子1000153100102x x -⎛⎫=- ⎪⎝⎭个.由题意得:3510023161002x x x x ⎧⎛⎫≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪≤- ⎪⎪⎝⎭⎩,解得:14586417x ≤≤,x 和31002x ⎛⎫-⎪⎝⎭均为正整数,60x ∴=,62,64,3100102x -=,7,4,∴共有3种购买方案.(3)设商家获得总利润为y 元,3541002y x x ⎛⎫=+- ⎪⎝⎭,400y x =-+,10k =-< ,y ∴随x 的增大而减小,∴当60x =时,340y =最大,答:学校购买甲种品牌毽子60个,购买乙种品牌毽子10个,商家获得利润最大,最大利润是340元.28.(1)点A的坐标为(A(2)()())2202233 3.6t S t t ⎧<≤⎪⎪⎪=+<≤⎨⎪⎪+<<⎪⎩(3)存在,(12,4N +,()24N,(3N -,4N ⎛ ⎝【分析】(1)运用因式分解法解方程求出OA 的长,根据等边三角形的性质得出6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,求出AC 的长即可;(2)分02t <≤,23t <≤和3 3.6t <<三种情况,运用三角形面积公式求解即可;(32=2t =,得4OP =,分OP 为边和对角线两种情况可得点N 的坐标;当2+=+时不存在以点O 、P 、M 、N 为顶点的四边形是菱形【详解】(1)解:2560x x --=,解得16x =,21x =-OA 的长度是2560x x --=的根,6OA ∴=∵OAB 是等边三角形,∴6,60OA OB AC OAB AOB ABO ===∠=∠=∠=︒,过点A 作AC x ⊥轴,垂足为C ,在Rt AOC 中,60,AOC ∠=︒∴30,OAC ∠=︒116322OC OA ∴==⨯=,∴AC ===∴点A 的坐标为(A (2)解:当02t <≤时.过P 作PD x ⊥轴,垂足为点D ,∴2OP t =,3OQ t =,30OPD ∴∠=︒∴,OD t =∴PD ==,2113222S OQ PD t t ∴=⨯⨯=⨯⨯=;当23t <≤时,过Q 作QE OA ⊥,垂足为点E∵60,A ∠=︒∴30,AQE ∠=︒又123,AQ t =-∴13622AE AQ t ==-,2t QE =又2OP t =,21222S t ⎛⎫∴=⨯⨯=+ ⎪ ⎪⎝⎭当3 3.6t <<时,过O 作OF AB ⊥,垂足为F∴()1823185PQ t t t =-+=-,同理可得,132BF OB ==,∴2233OF OB BF =-=;()11533185327322S t t ∴=⨯⨯-=-+综上所述()()()223302233632321532733 3.62t t S t t t t t ⎧<≤⎪⎪⎪=-+<≤⎨⎪⎪-+<<⎪⎩(3)解:当233263t =时,解得,2,t =∴224OP =⨯=,过点P 作PG x ⊥轴于点G ,则12,2OG OP ==∴2222423,PG OP OG =--∴点P 的坐标为(2,3;当OP 为边时,将OP 沿y 轴向下平移4个单位得()2,34N ,此时()0,4M -,四边形POMN 是菱形;将OP 沿y 轴向上平移4个单位得()2,34N ,此时()0,4M ,四边形POMN 是菱形;如图,作点P 关于y 轴的对称点(2,N -,当(0,M 时,四边形PMNO 是菱形;当OP 为对角线时,设OP 的中点为T ,过点T 作TM OP ⊥,交y 轴于点M ,延长MT 到N ,使,TN TM =连接ON ,过点N 作NH x ⊥轴于点H ,则30,MOT NOT HON ∠=∠=∠=︒2,OT =∴2,ON TN =∴222ON OT TN =+,即222122ON ON ⎛⎫=+ ⎪⎝⎭,解得,ON =∴NH =2,OH =。

黑龙江省龙东地区2022年初中毕业学业统一考试数学试题及答案

黑龙江省龙东地区2022年初中毕业学业统一考试数学试题及答案
(1)求购进一根A种跳绳和一根B种跳绳各需多少元?
(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?
(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?
28.如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程 的两个根 , ,动点P从点D出发以每秒1个单位长度的速度沿折线 向点B运动,到达B点停止.设运动时间为t秒, 的面积为S.
(2)将 绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将 绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
27.学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.
A.5B.6C.7D.8
【答案】A
【解析】
【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.
【详解】解:设购买毛笔x支,围棋y副,根据题意得,
15x+20y=360,即3x+4y=72,
∴y=18- x.
又∵x,y均为正整数,
A.5B.6C.7D.8
8.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数 的图象上,顶点A在反比例函数 的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()

2024年浙江初中毕业生学业模拟考试(台州卷)数学试题+答案+答题卡

2024年浙江初中毕业生学业模拟考试(台州卷)数学试题+答案+答题卡

2024年浙江省初中毕业生学业模拟考试(台州卷)数 学 试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平. 答题时,请注意以下几点:1. 全卷共4页,满分120分,考试时间120分钟.2. 答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3. 答题前,请认真阅读答题纸上的“注意事项”,按规定答题.4. 本次考试不得使用计算器.一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. “中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为380 000米,数据380 000用科学计数法可表示为( ▲ ).A. 38×104B.3.8×106C.3.8×105D.0.38×106 2.下列四个2024年巴黎奥运会项目图标中,既是轴对称图形又是中心对称图形的是( ▲ ).A. B. C. D.3. 下列计算正确的是( ▲ ).A .32x x xB .523)(x xC .33)x x (D .326x x x4. 如图,直线AB ∥CD ,BC 平分∠ABD ,若∠1=55°,则∠2=( ▲ ).A .70°B .65°C .60°D .55°5. 对于平面图形上的任意两点P ,Q ,如果经过某种变换得到新图形上的对应点P ′,Q ′,保持PQ =P ′Q ′,我们把这种变换称为“保距变换”,下列变换中不一定是“保距变换”的是( ▲ ). A . 平移 B. 旋转 C. 轴对称 D. 位似 6. 小明的期中与期末测试成绩如下表:A.小明期末与期中总分相同B.小明英语期末名次一定在中等以上C.小明数学期末成绩比期中有进步D.小明语文期末成绩比期中有退步(第4题) (第7题) (第10题)DC B AG FE D C B A 2 1 D C B A7. 如图,Rt △ABC 中,∠ABC =90°,AB =3,BC =2,以点C 为圆心,BC 长为半径作圆弧交AC 于点D ,则AD 长在( ▲ ).A. 0与1之间 B . 1与2之间 C. 2与3之间 D. 3与4之间8. 有如下数列:a 1,a 2,a 3,a 4,a 5,a 6,...,a n-2,a n-1,a n ,...,满足a n -2·a n =2a n -1,已知a 1=1,a 3=4, 则a 2024=(▲).A.8B.6C.4D.29. 学校要制作一块广告牌,请来两名工人,已知甲单独完成需4天,乙单独完成需6天,若先由乙做1天,再两人合作,完成任务后共得到报酬900元,若按各人的工作量计算报酬,则分配方案为( ▲ ). A .甲360元,乙540元B .甲450元,乙450元C .甲300元,乙600元D .甲540元,乙360元10. 如图,在Rt △ABC 中,∠ACB =90°,以AB 为边向三角形外作正方形ABDE ,作EF ⊥BC 于点F ,交对角线AD 于点G ,连接BG. 要求△BFG 的周长,只需要知道( ▲ ). A.线段BF 的长度 B.线段AC 的长度 C.线段FG 的长度 D.线段BC 的长度 二、填空题(本题有6小题,每小题4分,共24分) 11. 分解因式:x 2 xy = ▲ .12. 一个不透明的口袋中有3个质地相同的小球,其中2个红色,1个蓝色. 随机摸取一个小球是红色小球的概率是 ▲ .13. 小明用刻度尺(单位:cm )测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,D 是AB 的中点,点A ,B 对应的刻度分别是1,8,则CD = ▲ cm .14. 某绿化队原来用漫灌方式浇绿地,a 天用水m 吨,现改用喷灌方式,可使这些水所用的天数为2a 天,现在比原来每天节约用水 ▲ 吨.(用含a ,m 的代数式表示)15. 在平行四边形ABCD 中,点E ,F 在BC 边上,把△ABE 沿直线AE 折叠,△CDF 沿直线DF 折叠,使点B ,C 落在对角线AC 上的点G 处,若∠AGD =110°,则∠B 的度数为 ▲ .(第13题) (第15题)16. 已知抛物线k x a y +=2)2(-上有A (-2,y 1),B (1,y 2),C (4,y 3),D (5,y 4)四个点,某数学兴趣小组研究后得到三个命题:①若y 1+y 3 > y 2+y 4,则a > 0;②若y 2-y 3 > 0,则y 1-y 4 > 0; ③若y 2 y 3 = 0,则y 1 y 4 > 0. 属于真命题是 ▲ .(填写序号)三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分) 17.π0(2)2 .18. 解不等式组:14,23.x x xEGFDCBAA BC D19. 图1是太阳能路灯的实物图,图2是其示意图,AB 垂直于地面l ,AB =800 cm ,BC =105 cm ,∠ABC=108°,求点C 离地面的高度. (结果精确到1cm ,参考数据:sin18°≈0.31,cos18°≈0.95 ,tan18°≈0.31 )20. 如图,一次函数b kx y 与反比例函数xcy的图象相交于A ,B 两点,A ,B 的坐标分别为(2,n ),(-4,-2).(1)分别求出一次函数和反比例函数的解析式;(2)已知点M (m ,c ),B (m ,d ),分别在一次函数和反比例函数上,当c >d 时,直接写出m 的取值范围.(第20题) (第21题)21. 如图,在△ABC 中,∠ABC 的平分线BD 交AC 边于点D ,已知∠ADB =2∠ABD .(1)求证:AB ²=AD AC ;(2)若DC =2AD =2,求∠A 的度数.22. 某中学开展专家讲座,帮助学生合理规划周末使用手机的时间,并在讲座前后对本校学生周末手机使用时间情况进行随机抽样调查,制成如下统计图表(数据分组包含左端值不包含右端值).(1)在讲座开展前抽取的学生中周末使用时长在哪个区间的人数最多?占抽取人数的百分之几? (2)该校共有学生1500人,请估计讲座开展后全校周末使用手机8小时以上的学生人数;(3)小军认为,活动开展后的样本中周末使用手机6小时以上的人数与讲座前相比变化不大,所以讲座并没有起到效果.请结合统计图表,对小军分析数据的方法及讲座宣传活动的效果谈谈你的看法.DCBAlD BCA图1 图223. 图1是某校园的紫藤花架,图2是其示意图,它是以直线AB 为对称轴的轴对称图形,其中曲线AC ,AD ,BE ,BF 均是抛物线的一部分.图1 图2 图3素材1:某综合实践小组测量得到点A ,B 到地面距离分别为5米和4米.曲线AD 的最低点到地面的距离是4米,与点A 的水平距离是3米;曲线BF 的最低点到地面的距离是289米,与点B 的水平距离是4米.素材2:按图3的方式布置装饰灯带GH ,GI ,KL ,MN ,HJ ,布置好后成轴对称分布,其中GI ,KL ,MN ,HJ 垂直于地面, GI 与HJ 之间的距离比KL 与MN 之间的距离多2米.任务一:(1)在图2中建立适当的平面直角坐标系,求曲线AD 的函数解析式; 任务二:(2)若灯带GH 长度为d 米,求 MN 的长度.(用含d的代数式表示); 任务三:(3)求灯带总长度的最小值.24. 如图,半圆O 的直径AB =6.点C 在半圆O 上,连结AC ,BC ,过点O 作OD ∥AC 分别交BC , AB于点E ,D ,连结AD 交BC 于点F . (1)求证:点D 是 BC的中点; (2)将点O 绕点F 顺时针旋转90 °到点G .①当点G 在线段AD 上,求AC 的长;②当点G 在线段AC 上,求sin ∠ABC 的值.(第24题)FBOA E CDBO备用图A数学答案第1页共5页2024年浙江省初中毕业生学业模拟考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案CACADBBDBD二、填空题(本题有6小题,每小题4分,共24分)11.x (x -y )12.2313.3.514.2m a15.75°16.①③三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)解:原式=3+1-4…3分=0…6分18.(6分)解:由①得:5x <-…2分由②得:1x <…4分∴不等式组的解集为:5x <-.…6分19.(6分)解:过点C 作CE ⊥AD ,垂足为E∵CE ⊥AD ,∴∠CEB =90°∴∠C =∠ABC -∠AEC =18°…2分∵BE =BC sin ∠C ,∴BE =105×0.31=32.55≈33(cm )…4分AE =AB +BE =833cm…6分答:点C 距离地面的高度是833cm20.(8分)解:(1)将B (-4,-2)代入xcy =42-=-c 得解得c=8…2分∴反比例函数的解析式:xy 8=令x=2代入得y=4∴A(2,4)将点A (2,4),点B (-4,-2)代入y =kx +b 得⎩⎨⎧+-=-+=bk b k 4224…4分数学答案第2页共5页解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2…6分(2)-4<m <0或m >2(写对一个一分共2分)21.(8分)解证明:(1)∵BD 平分∠ABC ∴∠ABC =2∠ABD =2∠DBC∵∠ADB =2∠ABD ∴∠ABC =2∠ADB ……………1分∵∠ADB =∠DBC +∠C ∴∠ABD =∠C………………2分∴△ABD ∽△ACB ………………3分∴ACABAB AD =即AB ²=AD ⋅AC ………………4分(2)由(1)得∠DBC =∠C ∴BD =CD =2……………1分∵2AD =2∴AD =1∴AC =3∵AB ²=AD ⋅AC ∴AB=3……………2分∴AB ²+AD ²=BD ²……………3分∴∠A =90°……………4分22.(10分)(1)在开展前周末手机使用时长为4~6小时的同学最多.……2分5+8+15+12+10=50(人)15÷50×100%=30%……4分(2)16+24+40+16+4=100(人)4÷100×100%=4%1500×4%=60(人)……2分由样本估计总体,全校讲座开展后周末使用手机8小时以上大约有60人……3分(3)因为忽略了两次样本容量的差异,所以小军分析的方法不合理……1分样本中周末使用手机时长6小时以上的人数由44%下降为20%,所以此次讲座宣传活动是有效果的.……2分(未运用统计量说明的给1分)23.(10分)(1)如图,以地面所在直线为x 轴,AB 所在直线为y 轴,建立如图所示的直角坐标系.设()234y a x =-+,代入()05A ,得:()25034a =-+,解得:19a =,()21349y x =-+ (3)分数学答案第3页共5页(2)2H d x =,12M d x =-,2113492M d y ⎛⎫=--+ ⎪⎝⎭214523699d d =-+214523699MN d d =-+…4分(3)设曲线BF 的函数解析式为:()22849y a x =-+,代入()04B ,得:()2284049a =-+解得:118a =,()21284189y x =-+设灯带总长度为w ,GH d =,22w MN HJ GH=++22145212822436991829d d d d⎡⎤⎛⎫⎛⎫=-++-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2111761239d d =-+,当2x =时,1739w =最小值.…3分24.(12分)解:(1)解法一:∵AB 是半圆O 直径∴∠C =90°……………………2分∵OD ∥AC∴∠OEB =∠C =90°,即OD ⊥BC……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法二:∵OD ∥AC ∴∠D =∠CAD ……………………1分∵OA =OD ∴∠D =∠OAD …………………2分∴∠OAD =∠CAD……………………3分∴ BD= CD ,即点D 是 BC 的中点……………………4分解法三:连结CO ∵AB 是半圆O 直径∴∠ACB =90°……………………2分∵OD ∥AC ∴∠OEB =∠ACB =90°,即OD ⊥BC……………………3分∵OB =OC ,OE =OE ∴Rt △BOE ≌Rt △COE (HL )∴∠BOD =∠COD ∴ BD = CD ,即点D 是 BC的中点……………………4分(说明:各种方法合理均可.)(2)①解法一:连结OF ,作FG =OF∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分FBOAE CDF OAEC D G数学答案第4页共5页又∵OD ∥AC∴∠D =∠CAD ,∠C =∠DEC ∴△ACF ≌△DEF (AAS )……………………2分(由平行线直接得△ACF ∽△DEF 也给分.)∴AC =DE ∵O 是AB 中点,OD ∥AC ∴AC =2OE ……………………3分∵直径AB =6∴OE +DE =OD =3∴AC =2……………………4分解法二:连结OF ,BD ,作FG =OF ∵点O 绕点F 顺时针旋转90°到点G ∴∠OFG =90°∴AF =DF……………………1分又∵AB 是半圆O 直径∴∠ADB =90°∴OF ∥BD∴△OEF ∽△DEB ,OF :BD =1:2……………………2分∴DE =2OE ∵直径AB =6∴OE =1……………………3分∵O 是AB 中点,OD ∥AC ∴AC =2OE =2……………………4分(2)②解法一:如图,构造对应图形易证△CFG ≌△EOF………………1分∴OE =CF 由①得,AC =2OE ,△ACF ∽△DEF .设OE =CF =x ,则AC =2x ,DE =3-x ∴CF :AC =EF :DE =1:2∴EF =……………………2分∴CE =BE =CF +EF =∴在Rt △BOE 中,解得:x =1.8……………………3分∴sin ∠ABC ==0.6……………………4分(说明:各种方法合理均可.如:连结BD,通过比例和勾股定理求BD 的长等也可解决问题)解法二:如图,构造对应图形,作FH ⊥AB 于点H 易证△CFG ≌△EOF……………………1分∴OE =CF ,EF =CG ,∠OFE =∠CGF 易证△CFG ≌△HFO ,△CFA ≌△HFA ∴AC =AH =3,∠OFE =∠CGF =∠BOF ∴AG =AO =BO =BF =3……………………2分F B OAEC DGFBO AECD GF B O AE C DGH由①得,AC=2OE.设OE=CF=x,EF=CG=y,则AC=2x ∴2x-y=AG=3,x+y+y=BF=3(BC=2CE=2x+2y,再由AC2+BC2=AB2也可)解得:x=1.8……………………3分∴sin∠ABC==0.6……………………4分数学答案第5页共5页19.(本题满分6分)(第19题)21.(本题满分8分)(1)(4分)(第21题)(2)(4分)考号[0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9][0][1][2][3][4][5][6][7][8][9]20.(本题满分8分)(1)(6分)(2)(2分).(第20题)一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)18.(本题满分6分)解不等式组:1423.x x x ⎧⎨⎩+<-,<+2024年中考模拟考试(一)数学答题卷学校班级姓名说明1、准考证号和选择题请用2B 铅笔填涂;2、除选择题外请用0.5mm 黑色中性笔答题;3、保持答题卷整洁,请勿折叠.缺考标记:[](考生不得填涂)二、填空题(本题有6小题,每小题4分,共24分)11..12..13..14..15..16...17.(本题满分6分)计算:9+(π-2)0+|-2|.三、解答题(本题有8小题,第17~19题每题6分,第20,21题每小题8分,第22,23题每题10分,第24题12分,共66分)◤□■◤◥24.(本题满分12分)(1)(4分)(第24题)(2)①(4分)②(4分)22.(本题满分10分)(1)(4分)(2)(3分)(3)(3分)23.(本题满分10分)(1)(3分)(图2)(2)(4分)(图3)(3)(3分)模拟(一)数学答题卷第3页共4页模拟(一)数学答题卷第4页共4页。

2007、2008、2009、2010年安徽省初中毕业学业考试数学试卷及答案

2007、2008、2009、2010年安徽省初中毕业学业考试数学试卷及答案

安徽省2007年初中毕业学业考试数 学 试 卷考生注意:本卷共八大题,计 23 小题,满分 150 分,考试时间 120 分钟。

一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。

每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.34相反数是………………【 】 A.43 B.43- C.34 D. 34-2.化简(-a 2)3的结果是………………【 】A .-a 5 B. a 5 C .-a 6 D. a 63.今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元。

若用科学记数法表示,则94亿可写为…………………………【 】A .0.94×109 B. 9.4×109 C . 9.4×107 D. 9.4×108 4.下列调查工作需采用的普查方式的是………………【 】 A .环保部门对淮河某段水域的水污染情况的调查 B.电视台对正在播出的某电视节目收视率的调查 C .质检部门对各厂家生产的电池使用寿命的调查 D.企业在给职工做工作服前进行的尺寸大小的调查5.下列图形中,既是中心对称又是轴对称的图形是…………………【 】6.化简211x x x骣÷ç-÷ç÷ç桫+的结果是………………………………【 】 A .-x -1 B .-x +1 C.11x -+ D. 11x + 题号 一 二 三 四 五 六 七 八 总 分 得分第7题图PDCBA7.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB=4,CD=7,AD=10,则AP 的长等于【 】 A.4011 B.407 C.7011 D. 7048.挂钟分针的长10cm ,经过45分钟,它的针尖转过的弧长是……………【 】 A.152cm p B. 15cm p C. 752cm pD. 75cm p 9.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是…【 】10.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ =…………………………………………【 】A .60° B. 65° C . 72° D. 75° 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.5-5的整数部分是_________12.如图,已知∠1=100°,∠2=140°,那么∠3=______13.两个小组进行定点投篮对抗赛,每组6名组员,每人投10次。

2022年湖北省鄂州市初中毕业生学业水平考试数学真题及答案

2022年湖北省鄂州市初中毕业生学业水平考试数学真题及答案
2022年湖北省鄂州市初中毕业生学业水平考试数学真题
一、选择题(本大题共10小题,每小题3分,共计30分)
1.实数9的相反数等于( )
A.﹣9B.+9C. D.﹣
2.下列计算正确的是( )
A.b+b2=b3B.b6÷b3=b2C. (2b)3=6b3D.3b﹣2b=b
3.孙权于公元221年4月自公安“都鄂”,在西山东麓营建吴王城,并取“以武而昌”之意,改鄂县为武昌,下面四个汉字中,可以看作是轴对称图形的是( )
【详解】解:由作图得, ,
∴ 为等腰三角形,

∵∠BCA=150°,

∵l1 l2

故选B
【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出 是解答本题的关键.
6.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()
23.某数学兴趣小组运用《几何画板》软件探究y=ax2(a>0)型抛物线图象.发现:如图1所示,该类型图象上任意一点M到定点F(0, )的距离MF,始终等于它到定直线l:y=﹣ 上的距离MN(该结论不需要证明),他们称:定点F为图象的焦点,定直线l为图象的准线,y=﹣ 叫做抛物线的准线方程.其中原点O为FH的中点,FH=2OF= ,例如,抛物线y= x2,其焦点坐标为F(0, ),准线方程为l:y=﹣ .其中MF=MN,FH=2OH=1.
6.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是()

2024年浙江省舟山市普陀区初中毕业生学业水平适应性考试数学试题

2024年浙江省舟山市普陀区初中毕业生学业水平适应性考试数学试题

2024年浙江省舟山市普陀区初中毕业生学业水平适应性考试数学试题一、单选题1.2024年5月1日至5月5日18时,汽车进出甬舟高速总流量达43.3万辆次,数据43.3万用科学记数法表示为( ) A .54.3310⨯B .44.3310⨯C .443.310⨯D .343310⨯2.下列计算正确的是( ) A .326x x x ⨯=B .()()22a b a b b a -++=-C .3251362x x x ⎛⎫÷= ⎪⎝⎭D .()22224a b a b -=-3.如图所示,几何体的俯视图是( )A .B .C .D .4.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积为( )2cm A .15B .8C .15πD .8π5.2023年杭州亚运会有三种吉祥物,分别是“宸宸”“琮琮”和“莲莲”,这三种吉祥物各自代表着杭州的一处世界文化遗产.现甲、乙两名同学从三种吉祥物中挑选一个作为纪念品,则两人挑选的吉祥物相同的概率是( ) A .15B .14C .13D .126.如图,小慧的眼睛离地面的距离为1.6m ,她用三角尺测量广场上的旗杆高度,仰角恰与三角板60︒角的边重合,量得小慧与旗杆之间的距离BC 为5m ,则旗杆AD 的高度(单位:m )为( )A .6.6B .11.6C .1.6D .1.6+7.在ABC V 中,只用无刻度直尺和圆规比较B ∠与C ∠的大小.除了“叠合法”外,嘉琪又想出两种方法:方法一:作ABC V 的高AD 和角平分线AE ,若E 点在线段BD 上,则说明B C ∠<∠. 方法二:作BC 边中垂线MN ,若MN 与AB 边相交(不包括A 点),则说明.B C ∠<∠ 下列说法正确的是( ) A .方法一可行,方法二不可行 B .方法二可行,方法一不可行 C .两种方法都可行D .两种方法都不可行8.一次函数y kx b =+的图象经过点(2,3)-,则下列关系式不可能成立的是( ) A .2kb =B .1kb =C .1kb =-D .2kb =-9.如图,点G 是ABC V 的重心,连接BG ,作B G D ∠,使B G D ∠与ABC ∠互补,GD 交边BC 于点D ,6BD =,4CD =,则BG 的长为( )A.B .C .D .9210.二次函数()2<0y ax bx c a =++的图象经过点()6,c ,向左平移()0t t >个单位长度后得到新抛物线,直线()0p y px q =+>与新抛物线有两个交点()12,P t y ,()222,Q t y +,则t 的取值范围为( )A .02t <<B .03t <<C .302t <<D .203t <<二、填空题11.因式分解221x x -+=.12.小聪同学在学习了七年级下册“多项式的乘法”、“乘法公式”两堂课后,发现学习内容是逐步特殊化的过程,请在横线上填写适当的代数式,感受这种特殊化的学习过程.13.如图,正三角形ABC 的边长为1,D 是AC 边上的一点,过D 作BC 边的垂线,交BC 于G ,用x 表示线段BG 的长度,显然线段Rt CGD △的长度y 是线段长度x 的函数,这个函数的表达式是.14.如图,AB 是⊙O 的直径, BC 切⊙O 于点B ,AC 交⊙O 于点D .若⊙O 的半径为3,∠C =40°,则»BD 的长为.(结果保留π)15.如图,在Rt ABC △中,90ACB ∠=︒,2AC b =,2BC a =,点D ,E 分别为BC 、AB 的中点,将BDE V 绕着点B 顺时针旋转,得到BD E ''△,当C ,E ',D ¢在同一直线上时,则CE '的长为.16.如图,已知反比例函数(0)ky x x=>的图象上有A ,B 两点,连接AO ,BO ,且A O B O =,C 是y 轴上的点,连接BC ,且135OCB ∠=︒,连接AC ,交BO 于点D ,连接AB ,若2DO B D =,点C 坐标(0,3),则ABO V 面积为.三、解答题17.(1)计算:()03.146cos60-π+︒(2)化简:2111x x x+-- 18.小敏与小霞两位同学解方程()()2333x x -=-的过程如下框:你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.19.已知平行四边形ABCD ,观察如图所示的尺规作图痕迹.(1)求证:四边形ABEF 是菱形;(2)连接AE,若6AE=,8BF=,求菱形ABEF的周长.20.中国大学生篮球一级联赛(CUBAL)东南赛区的赛事,3月30日晚在浙江舟山普陀体育馆迎来巅峰对决,最终广东工业大学男篮获封“东南王”,以下是决赛中广东工业大学和宁波大学各节分数的条形统计图和扇形统计图:(1)填空:在扇形统计图中,第二节所在扇形的圆心角为________;(2)请完成表中所缺的数据(单位:分);(3)已知宁波大学得分的方差为222.6875分,请你计算广东工业大学各节得分的方差,并运用以上数学统计知识来说明广东工业大学为什么能夺冠.21.某跨海大桥东西走向,双向四条车道,在旅游旺季经常拥堵,交警部门为了缓解交通压力,他们对该路段的汽车流量(辆/分钟)和时间进行了统计和分析,得到以下表格,发现时间和汽车流量的变化规律符合一次函数的特征.(1)请用一次函数分别表示1y 与x 、2y 与x 之间的函数关系.(2)如图,交警希望启用“潮汐式”通行方式来缓解交通压力,根据汽车流量情况改变车道的行车方向:大流量方向的汽车可在该路段借用相邻的对向机动车道通行,对向机动车道实行双向通行.单位时间内交通总量为12y y y =+总,车流量大的方向交通量为m y ,经查阅资料得:当23m y y ≥总,需要使用“潮汐式”通行方式以改善交通情况.该路段从8时至20时,如何设置“潮汐式”通行方式以缓解交通拥堵(在何时间段借用何方向机动车道通行),并说明理由. 22.在综合与实践课上,王老师以“等腰直角三角形的折叠”为主题开展数学活动. (1)操作验算如图1,ABC V 是等腰直角三角形纸片,90ACB ∠=︒,D 为AB 上一点,30ACD ∠=︒.甲同学沿EF 对折,使点C 的对应点落在射线CD 上,折痕分别交射线CA 、射线CB 于点E 、点F .①求CECF的值;②若AD BD 、ADBD的值; (2)迁移探究如图2,ABC V 是等腰直角三角形纸片,90ACB ∠=︒,D 为线段AB 上任意一点.乙同学沿EF 对折,使点C 的对应点落在射线CD 上,折痕分别交射线CA 、射线CB 于点E 、点F .探究CE CF与ADBD 的数量关系,并说明理由; (3)拓展应用如图3,ABC V 是等腰直角三角形纸片,90ACB ∠=︒,丙同学在AB 取点D ,使12AD BD =,沿EB 对折,使点C 的对应点落在射线CD 上,折痕交线段CA 于点E ,连接DE ,求证:3BE DE =.23.抛物线2(y ax bx c a =++,b ,c 是常数,0)a ≠.(1)若0a b c ++=,且该抛物线的图象经过(1,4)A -,(0,1)B -,(1,1)C 三个点中的其中两个点,求该抛物线的函数解析式;(2)若抛物线与x 轴两个交点的横坐标为k 、2(0)k k -≠,求证:220b ac +=; (3)若抛物线的对称轴为直线22c ax +-=,函数图象过点(1,0),当a b c >≥时,求222a b c ++的最小值.24.已知:如图1,AB 是O e 的直径,弦AC 与半径OD 平行.(1)求证:»»CDBD =; (2)如图2,过点D 作AB 的垂线,交O e 于点E ,交AB 于点F ,连接AE ,若10AB =,3AC BF =,求AE 的长;(3)在(2)的条件下,如图3,连接CD 、CE ,延长AC 、ED ,相交于点G , ①请在图中找出与ACE △相似的所有三角形?并选择其中一对说明理由? ②求GCD V 的周长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业生学业考试数学卷 与高中阶段学校招生考试
数学试卷
“没有比人更高的山,没有比脚更长的路”.亲爱的同学们,准备好了吗?请相信自己,沉着应答,你一定能愉快地完成这次测试之旅,祝你成功!
第一卷
(选择题,满分 40分,共2页)
一、精心选一选(本大题共l0小题,每小题4分,共40分.
每小题给出四个答案,其中只有一个是正确的). 1.已知,则a 的值是
A.
D.1.4
2.下列交通标志中,既是轴对称图形又是中心对称图形的是
3.下列的运算中,其结果正确的是
A.+=
B.16x 2-7x 2 = 9
C.x 8÷x 2 = x 4
D.x (-xy)2=x 2y 2 4.下列图形中可能是正方体展开图的是
5.某校师生总人数为l000人,其中男学生、女学生和教师所占的比例如图所示,则该校男学生人数为
A. 430人
B. 450人
C. 550人
D. 570人
6.下列各图中,沿着虚线将正方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成下
角形和梯形的是
7.今年,我市某果农的荔枝又获丰收,预计比去年增产15 %,去年他卖荔枝收人3万元,若今年的价格和去年的持平,都是6元/公斤,则他今年的荔枝约可卖
A.4.5×104元
B. 4×104元
C.3.45×104元
D.5×104元
8.如图,小明想用皮尺测最池塘A 、B 间的距离,但现有皮尺无法直接测量,学习数学有关知识后,他想出了一个主意:先在地上取一个可以直接到达A 、B
两点的点O ,连接OA 、OB ,分别在OA 、OB 上取中点C 、D ,连接CD ,并测得CD = a , 由此他即知道A 、B 距离是 A.
1
2
a B.2a C.a D.3a 9.已知点P 是反比例函数(0)k
y k x
=
≠的图像上任一点,过P 点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为 A.2 B.-2 C.±2 D.4
10.为了估计湖里有多少条鱼,先从湖里捕捞100条鱼都做上标记,然后放回湖中去,经过一段时
间,待有标记的鱼完全混合于鱼群后,第二次再捕捞
100条鱼,发现其中10条有标记,那么你估计湖里大约有鱼
A. 500条
B. 600条
C. 800 条
D. 1000条
茂名市2006年初中毕业生学业考试
与高中阶段学校招生考试
数 学 试 卷
第二卷(非选择题,满分 110 分,共 8 页)
二、耐心填一填(本大题共5小题,每小题4分,共20分.请你把答案填在横线的上方). 11.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图
都完全相同的是 (填上序号即可). 12.分解因式:ax 2
+6ax+9a= .
13.如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁
从点A 沿其表面爬到点B 的最短路程是 . 14. 若
1233215,7x y z x y z ++=++=,则111
x y z
++= . 15. 甲、乙、丙、丁四人参加某校招聘教师考试,试后甲、乙两人去询问成绩。

请你根据下面回答
者对甲、乙两人回答的内容进行分析,则这四人的名次排列共可能有 种不同情况。

三、细心做一做(本大题共3小题,每小题8分,共24分)
16.已知:两个分式1111A x x =
-+-.221
B x =-.其中 x ≠±1.下面三个结论:①A=B ,②A 、B 为倒数, ③A 、B 互为相反数。

请问这三个结论中哪一个结论 正确?为什么? 解:
17. 如图,在平面直角坐标系xoy 中,直角梯形OABC, BC//AO,
A (-2, 0),
B (-l, 1),将直角梯.形OAB
C 绕点O 顺时针旋转900
后,点A 、B 、C 分别落在点A ′、B ′、C ′处.请你解答下列问题:
(l )在如图直角坐标系xoy 中画出旋转后的梯形O ′A ′B ′C ′; (4分) (2)求点A 旋转到A ′所经过的弧形路线长 (4分)
18.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转
动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜。

清你解决下列问题:
(l )利用树状图(或列表)的方法表示游戏所有可能出现的结果; (4分) (2)求甲、乙两人获胜的概率。

(4分)
解:
四、沉着冷静,周密考虑(本大题2小题,每小题8分,共16分)
19.现从我市区近期卖出的不同面积的商品房中
随机抽取1000套进行统计,并根据结果绘出
如图所示的统计图,请结合图中的信息,
解答下列问题:
(l)卖出面积为110-130cm2,的商品房有
套,并在右图中补全统计图;(4分)
(2)从图中可知,卖出最多的商品房约占全部
卖出的商品房的 %; (2分)
(3)假如你是房地产开发商,根据以上提供的
信息,你会多建住房面积在什么范围内的住房?为什么? (2 )解:
20. 先阅读,再填空解题:
(1)方程:x2-x-2=0 的根是:x1=-3, x2=4,则x1+x2=1,x1·x2=12;
(2)方程2x2-7x+3=0的根是:x1=1
2
, x2=3,则x1+x2=
7
2
,x1·x2=
3
2

(3)方程x2-3x+1=0的根是:x1= , x2= .
则x1+x2= ,x1·x2= ;
根据以上(1)(2)(3)你能否猜出:
如果关于x的一元二次方程mx2+nx+p=0(m≠0且m、n、p为常数)的两根为x1、x2,那么x1+x2、x1、x2与系数m、n、p有什么关系?请写出来你的猜想并说明理由.
解:
五、开动脑筋,再接再厉(本大题共3小题.每小题10分,共30分) 21.(本小题满分10分)
七巧板是我们祖先的一项创造,被誉为“东方魔板”, 如图是一副七巧板,若已知S △BPC =1,请你根据七巧板 制作过程的认识,解决下列问题:
(1)求一只妈蚁从点A 沿A →B →C →H →E 所走的路线 的总长(结果精确到0.01);(5分) (2)求平行四边形EFGH 的面积.(5分) 解:
22.(本小题满分10分)
为了鼓励居民节约用水,我市某地水费按下表规 定收取:
(l )若某户用水量为x 吨,需付水费为y 元,则水费y (元)与用水量x(吨)之间的函数关系式是:
(010);(10).
x y x ≤≤⎧⎪=⎨>⎪⎩(4分)
(2)若小华家四月份付水费17
元,问他家四月份用水多少吨? (3分)
(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含
15吨),求该月用水量不超过10吨的居民最多可能有多少户? (3分)
23. (本小题满分10分)
如图,已知△ABC内接于⊙O,AB是直径,D是BC的中点,
连接DO并延长到F使AF=OC.
(1)写出途中所有全等的三角形(不用证明);(4分)
(2)探究:当∠1等于多少都市,四边形OCAF是菱形?请回答并
给予证明.(6分)
解:
六、充满信心,成功在望(本大题共2小题,每小题10分,共20分)
24.(本小题满分10分)
已知:半径为1的⊙O1与X轴交于A、B 两点,圆心O1
的坐标为(2, 0),二次函数y=-x2+bx+c的图象经过A、B
两点,其顶点为F.
(1)求 b、c的值及二次函数顶点F的坐标; (4分)
(2)写出将二次函数y=-x2+bx+c的图象向下平移1个
单位再向左平移2个单位的图象的函数表达式;
(2分)
(3)经过原点O的直线l与⊙O相切,求直线l的函数表达式.(4分)解:
25.(本小题满分10分)
如图,李华晚上在路灯下散步.已知李华的
身高AB=h,灯柱的高OP=O/P/=l,两灯柱之间的距离
OO/=m.
(l)若李华距灯柱OP的水平距离OA=a,求他影
子AC的长;(3分)
(2)若李华在两路灯之间行走
.......,则他前后的两个影子的长度之和(DA+AC)是否是定值?请说
明理由;(3分)
v匀速行走,
(3)若李华在点A朝着影子(如图箭头)的方向以
1
v. (4分)
试求他影子的顶端在地面上移动的速度
2
解:
初中毕业生学业考试数学卷
数学试卷参考答案及评分标准
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

相关文档
最新文档