人教版七年级数学下册期末考试--选择填空题--易错题集

合集下载

人教版最新教材七年级数学下册经典易错题初一数学

人教版最新教材七年级数学下册经典易错题初一数学

七年级下册经典易错习题一、填空题1.一个数的平方等于它本身,这个数是;一个数的平方根等于它本身,这个数是;一个数的算术平方根等于它本身,这个数是;一个数的立方等于它本身,这个数是;一个数的立方根等于它本身,这个数是;一个数的倒数是它本身,这个数是;一个数的绝对值等于它本身,这个数是。

2.16的平方根为,=16,16的平方根等于 .3.;,则。

4.已知一个正数的两个平方根分别为3x-5和x-7,则这个正数为 .5.17-1的整数部分为;小数部分为;绝对值为;相反数为 .6. 如图,在数轴上,1的对应点是A、B, A是线段BC的中点,则点C所表示的数是。

7.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为。

8.如果∠1=80°,∠2的两边分别与∠1的两边平行,那么∠2= 。

9.已知点A(1+m,2m+1)在x轴上,则点A坐标为。

10.已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为 .11.点P(a-2,2a+3)到两坐标轴距离相等,则a= .12.将点A(1,-3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab=.13.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为________.14.在平面直角坐标系中,已知A(2,-2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有个。

15.点P(a+5,a)不可能在第象限。

16.平面直角坐标系内有一点P(x,y),满足x=0y,则点P在17.方程52=+yx在正整数范围内的解是_____ 。

18.已知x=1,y=﹣8是方程mx+y-1=0的解,则m的平方根是。

19.关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是。

20.如果不等式2x-m≤0的正整数解有3个,则m的取值范围是。

七年级下册数学易错题梳理

七年级下册数学易错题梳理

第三学段错题梳理(一) 姓名: 班级:一:选择题1.当n 为偶数时,()()n m a b b a -∙-与()n m a b +-的关系是( )A .相等.B . 当m 为偶数时互为相反数, 当m 为奇数时相等.C .互为相反数D . 当m 为偶数时相等, 当m 为奇数时互为相反数. 2.下列运算正确的是( )A. ()2222a b a ab b -+=--+ B. ()222244x y x xy y --=++ C. ()222242a b a ab b -=-+ D. 22211224m n m mn n⎛⎫-=-+ ⎪⎝⎭3、下列式子是完全平方式的是( )A 、22a ab b ++B 、222a a ++C 、2244x xy y --- D 、414x x -+4.为参加“爱我校园”摄影赛,小明同学将参与植树活动的照片放大为长a cm ,宽a 43cm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品占的面积是( )2cmA.427432+-a a B. 167432+-a a C. 427432++a a D. 167432++a a 5、下列说法中错误的是( )A .过一点有且只有一条直线与已知直线平行B .两条直线相交,有且只有一个交点C .过一点有且只有一条直线与已知直线垂直D .若两条直线相交所成直角,则两条直线相互垂直二:填空题6.若20.3a =-,23b =-,213c ⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则,,,a b c d 的大小关系是_____________7.把241x +加上一个单项式,使其成为一个完全平方式,请写出所有符合条件的单项式 8、求代数式229647x y x y ++-+的最小值 ;9、计算:()()nn 212333-⨯+-+的结果是10、算式22+22+22+22可化为___________11.若12+=m x ,my 43+=,请用含有x 的代数式表示为___________12、若322x x x k -++有一个因式是1x +,则k 的值为 . 13.若()()3312--+-x x 有意义,则x 的取值范围为_____________.14.若()()m x x nx x +-++3322的乘积中不含2x 和3x 的项,则m=______, n=______15. 已知2216(1)9x k xy y --+是一个完全平方式,则k= .16. 115,x x ⎛⎫+= ⎪⎝⎭44已知:x 则x +=____三:计算 17、(1) 2302121123⎪⎭⎫ ⎝⎛--+--;(2)()()222121a a a a ++-+18. 先化简,再求值:当1,12a b ==-时,求()()()2222216ab ab b a -+⋅⋅的值.19、先化简,再求值:()2()()()2()2x y x y x y y x y y ⎡⎤+---+-÷-⎣⎦,其中2,1x y ==-20.已知2)1(-a 与2+b 互为相反数,求)23)(32()2()2)((2a b b a b a b a b a -------+-的值。

2021-2022学年人教版七年级下册数学易错题

2021-2022学年人教版七年级下册数学易错题

…○………………○…………装学校:___________姓名…………内…………装…………○…………订……绝密★启用前 2021-2022学年人教版七年级下册数学易错题 试卷副标题 xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.若方程()2331a a x y -++=是关于x ,y 的二元一次方程,则a 的值为 A .-3 B .±2 C .±3 D .3 2.下列命题不是真命题的是( ) A .0.3是0.09的平方根 B .(-2)2的算术平方根是-2 C D .已知a ||a = 3.如图,AO ⊥OB 于点O ,⊥BOC =35°,则⊥AOC 的补角等于( ) A .55° B .145° C .125° D .135° 4.不等式组 21523x x -≤⎧⎨-+<⎩ 的解集表示在数轴上为( ) A . B .………线…………○……内…………○…………装…………○… C . D . 5.在同一平面内,两条直线的位置关系可能是( ) A .相交或垂直 B .垂直或平行 C .平行或相交 D .相交或垂直或平行 6.已知关于x 的不等式组3x x a <⎧⎨>⎩有解,则a 的取值范围是( ) A .3a < B .3a ≤ C .3a > D .3a ≥ 7.如果a 是任意实数,则点P (a -2,a -1)一定不在第( )象限 A .一 B .二 C .三 D .四 8.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2022的值为( ) A .-1010 B .-1011 C .-1012 D .-2022 9.平面直角坐标系内AB ∥x 轴,AB =1,点A 的坐标为(-2,3),则点B 的坐标为( ) A .(-1,4) B .(-1,3) C .(-3,3)或(-1,-2) D .(-1,3)或(-3,3) 10.2022年我市有37000名初中毕业生参加了毕业考试,为了解37000名考生的中考成绩,从中抽取了200名考生的试卷进行统计分析,以下说法正确的是( ) A .37000名考生是总体 B .每名考生的成绩是个体 C .200名考生是总体的一个样本 D .样本容量是37000 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题………○学……装………11.在下列实数227,3.1415926-8 1.103030030003…(两个3之间依次多一个0),π中,无理数有_____________ 12.2352x x a -≤⎧⎨-+<⎩关于x 的不等式组只有4个整数解,则a 的取值范围是__________. 13.以下命题中(1)对顶角相等(2)相等的角是对顶角(3)垂直于同一条直线的两直线互相平行(4)平行于同一条直线的两直线互相平行(5)同位角相等,其中真命题的序号为___________14.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____ 15.到x 轴距离为6,到y 轴距离为4的坐标为____. 16.一个正数的平方根分别是1x -+和2x +5,则这个正数是______ 17.已知:234x t y t =+⎧⎨=-⎩,则x 与y 的关系式是_______. 18.已知x ,y 都是实数,且y 4,则yx =________. 19a b ,则2a b ++的值________ 20.在同一平面内,A ∠与B ∠的两边一边平行,另一边垂直,且A ∠比B ∠的3倍少10°.则B ∠______. 21.若⊥A 与⊥B 的两边分别平行,且⊥A 比⊥B 的3倍少40°,则⊥B =_____度. 22.在同一平面内,⊥A 与⊥B 的两边分别垂直,⊥A 比⊥B 的2倍少40°,则⊥B =_____ 三、解答题 23b a b c -+ 24.解方程(组) (1)2(21)4x -= (2)1243231y x x y ++⎧=⎪⎨⎪-=⎩ 25.如图,⊥1+⊥2=180°,⊥A =⊥C ,DB 平分⊥AB C .………○…………装…………○……………○……学校:___________姓名:___________班级:…装…………○…………订…………○…………线…○…………装…………○… (1)探究AE 与CF 的位置关系,并说明理由. (2)探究AD 与BC 的位置关系,并说明理由. (3)BC 平分⊥DBE 吗?为什么?26.某校计划安排七年级全体师生参观红旗渠风景区,现有36座和48座两种客车(不包括驾驶员座位)供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能比租36座的客车少租1辆,且有1辆车没有坐满,但超过了30人,该校七年级共有师生多少人? 27.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P (a ,b )是⊥ABC 的边AC 上任意一点,⊥ABC 经过平移后得到111A B C △,点P 的对应点为1(6,2)P a b +- (1)直接写出点111,,A B C 的坐标. (2)在图中画出111A B C △. (3)连接11,,AA AO AO ,求1AOA 的面积. (4)连接1BA ,若点Q 在y 轴上,且1QBA 的面积为10,求点Q 的坐标. 28.在实施“城乡危旧房改造工程”中,襄城区计划推出A 、B 两种新户型.根据预算,……外…………………装……___________姓名:___………○…………装………………订…………○建成10套A 种户型和30套B 种户型住房共需资金480万元,建成30套A 种户型和10套B 种户型住房共需资金400万元. (1)在危旧房改造中建成一套A 种户型和一套B 种户型住房所需的资金分别是多少万元? (2)襄城区有800套住房需要改造,改造资金由国家危旧房补贴和地方财政共同承担.若国家补贴拨付的改造资金不少于2100万,襄城区财政投入额资金不超过7700万元,其中,国家财政投入到A 、B 两种户型的改造资金分别为每套2万元和3万元. ⊥请你计算求出A 种户型至少可以建多少套,最多可以建多少套? ⊥这项改造工程总投入资金W 万元,建成A 种户型m 套,写出W 与m 的关系式. 29.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D .连接AC ,BD . (1)写出点C ,D 的坐标及四边形ABDC 的面积. (2)在y 轴上是否存在一点P ,连接P A ,PB ,使S 三角形P AB =S 四边形ABDC ?若存在,求出点P 的坐标,若不存在,试说明理由; (3)点Q 是线段BD 上的动点,连接QC ,QO ,当点Q 在BD 上移动时(不与B ,D 重合),给出下列结论:⊥DCQ BOQ CQO ∠+∠∠的值不变;⊥DCQ COQ BQO ∠+∠∠的值不变,其中有且只有一个正确,请你找出这个结论并求值. 30.如图所示,已知AB ∥CD ,分别探索下列四个图形中⊥P 与⊥A ,⊥C 的关系,并证明你的结论.参考答案:1.D【分析】试题分析:依题意知a2-=1且a+3≠0.解得x=3或x=-3(舍去).故选D考点:二元一次方程点评:本题难度较低,主要考查学生对二元一次方程性质知识点的掌握.【详解】请在此输入详解!2.B【分析】利用有关的性质、定义及定理分别对每个小题判断后即可确定正确的选项.【详解】解:A、0.3是0.09的平方根,是真命题;B、()224-=,4的算术平方根是2,是假命题;C、2-D、已知a a=,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是理解有关的定义、定理及性质.3.C【分析】根据题意得90AOB∠=︒,根据⊥BOC=35°,得55AOC∠=︒,再根据互补两角和是180°即可得.【详解】解:⊥AO⊥OB,⊥90AOB∠=︒,⊥⊥BOC=35°,⊥903555AOC AOB BOC∠=∠-∠=︒-︒=︒,⊥⊥AOC的补角为:180=18055=125AOC︒-∠︒-︒︒,故选C.【点睛】本题考查了补角,解题的关键是掌握互补的两个角的和是180°.4.B【分析】求出不等式组的解集即可得.【详解】解:21523xx-≤⎧⎨-+<⎩①②由⊥得,3x≤,由⊥得,1x >-, ⊥不等式组的解集为:13x -<≤, 故选:B . 【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是正确求解出不等式组的解集. 5.C 【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案. 【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C 正确; 故选:C . 【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类. 6.A 【分析】先求出不等式组的解集,即可求解. 【详解】解:⊥关于x 的不等式组3x x a <⎧⎨>⎩有解, ⊥不等式组的解集为3a x <<, ⊥3a <. 故选:A 【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 7.D 【分析】根据题意可得21a a ,然后根据点在第四象限内,横坐标为正,纵坐标为负,即可求解. 【详解】解:根据题意得:21a a , ⊥点在第四象限内,横坐标为正,纵坐标为负, ⊥点P (a -2,a -1)一定不在第四象限. 故选:D 【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键. 8.B 【分析】分别求得a 1,a 2,a 3,a 4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解. 【详解】解:⊥a 1=0,a 2=-|a 1+1|=-1,a 3=-|a 2+2|=-1,a 4=-|a 3+3|=-2,5442a a =--+=-,6553a a =--+=-…, 当下标为偶数时,其值等于下标的一半的相反数, ⊥a 2022的值为-1011. 故选B . 【点睛】本题考查了数字类规律,找到规律是解题的关键. 9.D 【分析】根据平行与横轴上的点纵坐标相等分析计算即可. 【详解】解:⊥AB ∥x 轴, ⊥A 点与B 点纵坐标相同,横坐标之差等于其距离,且AB =1, B 点横坐标为﹣2+1=-1,或-2-1=-3, 故B 点坐标为:(-1,3)或(-3,3), 故选:D . 【点睛】本题考查平行于坐标轴的线上的点的坐标特征,能够掌握数形结合思想是解决本题的关键. 10.B 【分析】根据总体的定义:要考查的全体对象称为总体;个体的定义:组成总体的每一个考查对象称为个体;样本的定义:被抽取的那些个体组成一个样本;样本容量的定义:样本中个体的数目称为样本容量,进行判断即可得. 【详解】解:A 、37000名考生的中考成绩是总体,选项说法错误,不符合题意; B 、每名考生的成绩是个体,选项说法正确,符合题意; C 、200名考生的中考成绩是总体的一个样本,选项说法错误,不符合题意; D 、样本容量是200,选项说法错误,不符合题意; 故选B .【点睛】本题考查了总体,个体,样本,样本容量,解题的关键是掌握这些知识点. 11 1.103030030003…(两个3之间依次多一个0),π 【分析】根据无理数的定义,“无限不循环的小数是无理数”逐个分析判断即可. 【详解】解:在227,3.1415926,-83=,1.103030030003…(两个3之间依次多一个0),π中,227,3.1415926, -83=,1.103030030003…(两个3之间依次多一个0),π是无理数, 1.103030030003…(两个3之间依次多一个0),π 【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:⊥开方开不尽的数,⊥无限不循环小数,⊥含有π的数. 12.23a ≤< 【分析】根据题意,分别解不等式,根据不等式组的解只有4个整数解,可得021a ≤-<,解不等式组即可求解. 【详解】解:解不等式235x -≤,得4x ≤, 解不等式2x a -+<,得2x a >-, x 的不等式组只有4个整数解,1,2,3,4 ∴021a ≤-< 解得23a ≤< 故答案为:23a ≤< 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(1)(4) 【分析】根据平行线的性质以及对顶角的定义和点、线之间的关系分别判断得出即可. 【详解】解:(1)对顶角相等,是真命题, (2)相等的角不一定是对顶角,故原命题不是真命题, (3)在同一平面内,垂直于同一条直线的两直线互相平行, 故原命题不是真命题, (4)平行于同一条直线的两直线互相平行,是真命题, (5)两直线平行,同位角相等,故原命题不是真命题,所以真命题的序号为(1)(4). 故答案为:(1)(4) 【点睛】本题主要考查了判断命题的真假,平行线的性质以及对顶角的定义和点、线之间的关系,熟练掌握相关知识点是解题的关键. 14.12y <- 【分析】根据不等式的性质可得b a -2=,0a >,进而可得0b <,据此即可求解. 【详解】解:⊥关于x 的不等式ax <-b 的解集x <2, ⊥b x a <-,b a -2=,0a >, 0b ∴<, ∴关于y 的不等式by >a 的解集为a y b <, 2b a =-, ⊥1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a =-是解题的关键. 15.(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6). 【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,即可得出答案. 【详解】解:⊥点到x 轴的距离是6,到y 轴的距离是4, ⊥该点的坐标是(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6), 故答案为:(4,6),(﹣4,6),(﹣4,﹣6)或(4,﹣6). 【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值是解题关键. 16.49 【分析】根据题意,结合平方根的性质列出方程,求解方程即可得到结论. 【详解】解:一个正数的平方根有两个,且互为相反数, ∴由一个正数的平方根分别是1x -+和2x +5,可知()()1250x x -+++=, 即60x +=,解得6x =-,∴()221749x -+==, 故答案为:49. 【点睛】本题考查平方根的性质,根据题意列出方程求解是解决问题的关键. 17.x +3y =14 【分析】用y 把t 表示出来,再利用代入消元法可得到x 与y 的关系式.【详解】解:234x t y t =+⎧⎨=-⎩①② 由⊥得:4,t y =- ⊥()234,x y =+- 整理得:314,x y += 故答案为:314+=x y 18.64 【详解】由二次根式有意义的条件得:x =3, ⊥y =4, ⊥yx =43=64, 故答案为:64 19的大小,进而求得,a b 的值,代入代数式即可求解. 【详解】解:⊥12,12<<<, ⊥1,1a b ==, 2112a b ∴++=++= 【点睛】本题考查了无理数的估算,求得,a b 的值是解题的关键. 20.25°或50° 【分析】根据平行线的性质以及垂直的定义即可求解. 【详解】解:∵A ∠与B ∠的两边一边平行,另一边垂直, ∴有两种情况,装…………○…………线…………○_姓名:___________班级:订…………○…………线……内…………○…………装………如下图所示:由题意得,AC ∥BD ,∠A =3∠B -10°,BC ⊥AD ∵AC ∥BD ∴∠C =∠B ∵BC ⊥AD ∴∠A +∠C =90° ∴3∠B -10°+∠B =90°, ∴∠B=25° 如下图所示: 由题意得,AN ∥BM ,∠A =3∠B -10°,BH ⊥AM ⊥AN ∥BM ∴∠A +∠M =180°, ∵BH ⊥AM ∴∠B +∠M =90° ∴∠A -∠B =90° ∵∠A =3∠B -10° 3∠B ﹣10°﹣∠B=90°, ∴∠B =50°, 综上所述,∠B 的度数为25°或50°,……○…………学校:_________装…………○…………订故答案:25°或50°. 【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系. 21.55或20 【分析】根据平行线性质得出⊥A+⊥B =180°⊥,⊥A =⊥B⊥,求出⊥A =3⊥B ﹣40°⊥,把⊥分别代入⊥⊥求出即可. 【详解】解:⊥⊥A 与⊥B 的两边分别平行, ⊥⊥A+⊥B =180°⊥,⊥A =⊥B⊥, ⊥⊥A 比⊥B 的3倍少40°, ⊥⊥A =3⊥B ﹣40°⊥, 把⊥代入⊥得:3⊥B ﹣40°+⊥B =180°, ⊥B =55°, 把⊥代入⊥得:3⊥B ﹣40°=⊥B , ⊥B =20°, 故答案为:55或20. 【点睛】本题考查平行线的性质,解题的关键是掌握由⊥A 和⊥B 的两边分别平行,即可得⊥A =⊥B 或⊥A +⊥B =180° ,注意分类讨论思想的应用. 22.2203或40° 【分析】分两种情况讨论,即可求解. 【详解】解:如图,⊥ADE =⊥BCE =90°, ⊥⊥AED =⊥BEC , ⊥⊥A =⊥B , ⊥⊥A 比⊥B 的2倍少40°,即2⊥B -⊥A =40°, ⊥2⊥A -⊥A =40°,解得:⊥A =40°, ⊥⊥B =40°;线…………○○…………装………如图,连接AB ,⊥ADB =⊥ACB =90°, ⊥⊥BAD +⊥ABD =90°,⊥BAC +⊥ABC =90°,⊥⊥CAD +⊥DBC =180°, ⊥⊥CAD =180°-⊥CBD , ⊥⊥CAD 比⊥CBD 的2倍少40°,即2⊥CBD -⊥CAD =40°, ⊥2⊥CBD -(180°-⊥CBD )=40°,解得:2203CBD ; 综上所述,⊥B 的度数为2203或40°. 故答案为:2203或40° 【点睛】本题主要考查了余角的性质,三角形的内角和定理,利用分类讨论思想解答是解题的关键. 23.2a -b 【分析】由题意得,0a b c <<<,b c <,即0b a ->,0a b +<,0b c +>,根据绝对值的化简性质进行计算即可得. 【详解】解:由题意得,0a b c <<<,b c <, ⊥0b a ->,0a b +<,0b c +>,, ⊥原式=()()()c b a a b b c --++-+ =+c b a a b b c -++-- =2a -b . 【点睛】本题考查了数轴与实数,解题的关键是根据数轴得出各项符号,利用绝对值的化简性质. 24.(1)32x =或12x =- (2)373x y =-⎧⎪⎨=-⎪⎩【分析】(1)利用平方根的定义解方程; (2)将方程组整理后,根据加减消元法解二元一次方程组即可求解. (1) 解:2(21)4x -=,212x -=±, 解得32x =或12x =-; (2) 1243231y x x y ++⎧=⎪⎨⎪-=⎩ 整理得345231y x x y -=⎧⎨-=⎩①②, ⊥+⊥得,26x -=, 将3x =-,代入⊥得, ()3435y -⨯-=, 解得73y =-, ∴方程组的解为373x y =-⎧⎪⎨=-⎪⎩. 【点睛】本题考查了根据平方根解方程,加减消元法解二元一次方程组,正确的计算是解题的关键. 25.(1)AE CF ,理由见解析 (2)AD BC ∥,理由见解析 (3)BC 不一定平分DBE ∠,理由见解析 【分析】(1)先根据邻补角定义可得2180CDB ∠+∠=︒,从而可得1CDB ∠=∠,再根据平行线的判定即可得出结论; (2)先根据平行线的性质可得C CBE ∠=∠,从而可得A CBE ∠=∠,再根据平行线的判定即可得出结论;(3)先根据角平分线的定义可得CBD ABD ∠=∠,再根据平行线的性质可得CBE A ∠=∠,然后根据ABD ∠与A ∠不一定相等可得CBD ∠与CBE ∠不一定相等,由此即可得出结论. (1) 解:AE CF ,理由如下: ⊥12180,2180CDB ∠+∠=︒∠+∠=︒, ⊥1CDB ∠=∠, ⊥AE CF . (2) 解:AD BC ∥,理由如下: ⊥AE CF , ⊥C CBE ∠=∠, ⊥A C ∠=∠, A CBE ∴∠=∠, ⊥AD BC ∥. (3) 解:BC 不一定平分DBE ∠,理由如下: DB 平分ABC ∠, CBD ABD ∴∠=∠, AD BC ∥, CBE A ∴∠=∠, ABD ∠与A ∠不一定相等, ∴CBD ∠与CBE ∠不一定相等, BC ∴不一定平分DBE ∠. 【点睛】本题考查了平行线的判断与性质、角平分线的定义,熟练掌握平行线的判定与性质是解题关键. 26.该校七年级共有师生180人. 【分析】设需租用36座客车x 辆,则该校七年级共有师生36x 人,根据“若只租用48座客车,则能比租36座的客车少租1辆,且有一辆车没有坐满,但超过了30人”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为整数即可确定x 的值,将其代入36x 中即可求出该校七年级共有师生人数. 【详解】解:设需租用36座客车x 辆,则该校七年级共有师生36x 人, 由题意得:()()3648230{36481x x x x -+-><, 解得:4112x <<, 又⊥x 为整数, ⊥x =5, ⊥36x =36×5=180, 答:该校七年级共有师生180人. 【点睛】本题考查了一元一次不等式组的应用,解题的关键是根据各数量之间的关系,正确列出一元一次不等式组. 27.(1)111(3,1),(1,1),(4,2)A B C -- (2)见解析 (3)6 (4)(0,-1.5)或(0,3.5) 【分析】(1)根据平移的性质可得⊥ABC 先向右平移6个单位,再向下平移2个单位得到111A B C △,即可求解; (2)根据点111,,A B C 的坐标描点,即可求解; (3)用1AOA 所在的长方形的面积减去三个直角三角形的面积,即可求解; (4)设Q (0,t ),根据三角形的面积公式,即可求解. (1) 解:⊥P (a ,b )的对应点为1(6,2)P a b +-. ⊥⊥ABC 先向右平移6个单位,再向下平移2个单位得到111A B C △, ⊥A (-3,3),B (-5,1),C (-2,0), ⊥点111(3,1),(1,1),(4,2)A B C --; (2)…………○…………线…………○号:___________ ……………○…………内…………○…………装……解:如图,111A B C △即为所求;(3) 解:1AOA 的面积11163333162222=⨯-⨯⨯-⨯⨯-⨯⨯ 9318622=--- =6 (4) 解:设Q (0,t ), ⊥1(5,1),(3,1)B A -, ⊥1BA x ∥轴, ⊥13(5)8BA =--=, ⊥1QBA 的面积为10, ⊥18|1|102t ⨯⨯-=, 解得t =-1.5或t =3.5, ⊥Q 点的坐标为(0,-1.5)或(0,3.5). 【点睛】本题考查了作图——平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 28.(1)建成一套A 种户型住房所需的资金是9元,一套B 种户型住房所需的资金是13元(2)⊥100300x ≤≤;⊥410400W m =-+ 【分析】(1)设建成一套A 种户型住房所需的资金是a 元,一套B 种户型住房所需的资金是b 元,列出方程组即可解决问题. (2)⊥设A 种户型有x 套,则B 种户型有(800-x )套.列出不等式组即可解决问题.⊥根据总投入资金=建A 种户型的费用+建B 种户型的费用,即可解决问题. (1) 解:设建成一套A 种户型住房所需的资金是a 元,一套B 种户型住房所需的资金是b 元,根据题意得: 10304803010400a b a b +=⎧⎨+=⎩,解得:913a b =⎧⎨=⎩, 答:建成一套A 种户型住房所需的资金是9元,一套B 种户型住房所需的资金是13元; (2) 解:⊥设A 种户型可以建x 套,则B 种户型可以建x 套,根据题意得: ()()()238002100913800238007700x x x x x x ⎧+-≥⎪⎨⎡⎤+--+-≤⎪⎣⎦⎩, 解得:100300x ≤≤, 答:A 种户型至少可以建100套,最多可以建300套; ⊥根据题意得:913(800)410400W m m m =+-=-+, 即W 与m 的关系式为410400W m =-+. 【点睛】本题考查二元一次方程组、一元一次不等式组等知识,解题的关键是学会设未知数,构建方程组、不等式组解决问题,属于中考常考题型. 29.(1)C (0,2),D (4,2),S 四边形ABCD =8; (2)存在,点P 的坐标为(0,4)或(0,-4); (3)结论⊥正确,DCQ BOQ CQO ∠+∠∠=1. 【分析】(1)根据点平移的规律:左减右加,上加下减,即可得到点C 、D 的坐标,利用平行四边形的面积公式计算面积即可; (2)设点P 的坐标为(0,y ),根据三角形的面积公式底乘以高的一半列式计算即可得到答案;○…………装…学校:___________姓名:…○…………订………(3)结论⊥正确.过点Q 作QE ⊥AB ,交CO 于点E ,利用平行线的性质:两直线平行内错角相等证得⊥DCQ +⊥BOQ =⊥CQO ,由此得到结论⊥正确 【详解】(1)⊥将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度, ⊥C (0,2),D (4,2),AB ⊥CD 且AB =CD =4, ⊥四边形ABDC 是平行四边形, ⊥S 四边形ABCD =4×2=8. (2)存在, 设点P 的坐标为(0,y ),根据题意,得12×4×|y |=8. 解得y =4或y =-4. ⊥点P 的坐标为(0,4)或(0,-4). (3)结论⊥正确. 过点Q 作QE ⊥AB ,交CO 于点E . ⊥AB ⊥CD , ⊥QE ⊥CD . ⊥⊥DCQ =⊥EQC ,⊥BOQ =⊥EQO . ⊥⊥EQC +⊥EQO =⊥CQO , ⊥⊥DCQ +⊥BOQ =⊥CQO . ⊥DCQ BOQ CQO ∠+∠∠=1. 【点睛】此题考查点平移的坐标规律,利用面积求点的坐标,平行线的性质,(2)中利用面积求点坐标时,高度为点纵坐标的绝对值,得到纵坐标为两个值,这是题中易错点. 30.(1)⊥A + APC +⊥C =360°,证明见解析;(2)⊥APC =⊥A +⊥C ,证明见解析;(3)⊥C =⊥A +⊥P ,证明见解析;(4)⊥A =⊥C +⊥P ,证明见解析; 【分析】(1)首先过点P 作PE ∥AB ,由AB ∥CD ,即可得AB ∥PE ∥CD ,然后根据两直线平行,同旁内角互补,即可求得答案; (2)首先过点P 作PE ∥AB ,由AB ∥CD ,即可得AB ∥PE ∥CD ,然后根据两直线平行,内错角相等,即可求得答案;(3)由AB∥CD,根据两直线平行,同位角相等,即可求得⊥1=⊥C,又由三角形外角的性质,即可求得答案;(4)由AB∥CD,根据两直线平行,同位角相等,即可求得⊥1=⊥A,又由三角形外角的性质,即可求得答案.【详解】解:(1)⊥A+ APC +⊥C=360°.理由:过点P作PE∥AB,⊥AB∥CD,⊥AB∥PE∥CD,⊥⊥A+⊥1=180°,⊥2+⊥C=180°,⊥⊥A+⊥C+⊥APC=⊥A+⊥1+⊥2+⊥C=360°.(2)⊥APC =⊥A+⊥C.理由:过点P作PE∥AB,⊥AB∥CD,⊥AB∥PE∥CD,⊥⊥1=⊥A,⊥2=⊥C,⊥⊥APC=⊥1+⊥2=⊥A+⊥C.(3)⊥C=⊥A+⊥P.理由:⊥AB∥CD,⊥⊥1=⊥C,⊥⊥1=⊥A+⊥P,⊥⊥C=⊥A+⊥P;(4)⊥A=⊥C+⊥P.理由:⊥AB∥CD,⊥⊥1=⊥A,⊥⊥1=⊥C+⊥P,⊥⊥A=⊥C+⊥P.…………○…………线…………○…号:___________ ……………○…………内…………○…………装…………○【点评】此题考查了平行线的性质与三角形外角的性质.解题的关键是注意掌握两直线平行,同位角相等;两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用,注意辅助线的作法.。

专题04 实数易错题之选择题(30题)七年级数学下册同步易错题精讲精练(人教版)(解析版)

专题04 实数易错题之选择题(30题)七年级数学下册同步易错题精讲精练(人教版)(解析版)

专题04 实数易错题之选择题(30题)Part1 与 平方根 有关的易错题1.(2020·广东汕头市·的算术平方根为( )A . BC .2±D .2【答案】B 【解析】的值,再继续求所求数的算术平方根即可.详解:=2,而2, 故选B .名师点拨:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.2.(2020·河南许昌市·七年级期末)下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±【答案】B 【提示】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果. 【详解】解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误; 故选B . 【名师点拨】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.3.(2020·自贡市期中)已知5a =7=,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-【答案】D 【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.(2020·广西防城港市·七年级期中)若30,a -=则+a b 的值是( ) A .2 B .1 C .0D .1-【答案】B 【解析】试题提示:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.5.(2020·安徽铜陵市·七年级期末)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8【答案】D 【提示】根据单项式的定义可得8m x y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【名师点拨】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 6.(2020·安徽阜阳市·七年级期末)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根【答案】B 【提示】已知正方形面积求边长就是求面积的算术平方根. 【详解】解:面积为44的算术平方根; 故选B . 【名师点拨】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.7.(2020·( ) A .±3 B .3C .9D .±9【答案】A 【提示】根据算术平方根、平方根的定义即可解决问题. 【详解】9=,9的平方根3±. 故选:A . 【名师点拨】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型. 8.(2020·浙江杭州市期末)下列说法正确的是()A .116的平方根是14B .16-的算术平方根是4C .2(4)-的平方根是4-D .0的平方根和算术平方根都是0【答案】D 【提示】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项. 【详解】 解:A 、116的平方根为±14,故本选项错误; B 、-16没有算术平方根,故本选项错误; C 、(-4)2=16,16的平方根是±4,故本选项错误; D 、0的平方根和算术平方根都是0,故本选项正确. 故选D . 【名师点拨】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.9.(2020·河北邯郸市七年级期中)下列说法正确的是( ) A .-5是25的平方根B .25的平方根是5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根【答案】A 【解析】试题提示:A 、B 、C 、D 都可以根据平方根和算术平方根的定义判断即可. 解:A 、﹣5是25的平方根,故选项正确; B 、25的平方根是±5,故选项错误;C 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误. 故选A .10.(2020·江西南昌市·七年级期末)若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3 B .-1C .1D .-3或1【答案】D 【提示】根据平方根的性质列方程求解即可; 【详解】当24=31m m --时,3m =-; 当24310m m +=--时,1m =; 故选:D. 【名师点拨】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.Part2 与 立方根 有关的易错题11.(2020·内蒙古乌兰察布市·七年级期末)64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题提示:∵43=64,∴64的立方根是4, 故选A考点:立方根.12.(2020·)A.±2B.±4C.4D.2【答案】D【提示】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【名师点拨】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义. 13.(2020·河南周口市·七年级期末)有理数-8的立方根为()A.-2B.2C.±2D.±4【答案】A【提示】利用立方根定义计算即可得到结果.【详解】解:有理数-8-2故选A.【名师点拨】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(2020·右玉县期中)立方根等于它本身的有( )A.0,1B.-1,0,1C.0,D.1【答案】B【提示】根据立方根性质可知,立方根等于它本身的实数0、1或-1.【详解】解:∵立方根等于它本身的实数0、1或-1.故选B.【名师点拨】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.(2020·凉州区期末)若,则x和y的关系是().A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】提示:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.名师点拨:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.16.(2020·武威市期中)一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.17.(2020·凉州区期末)下列各组数中互为相反数的是( )A .2-与2B .2-C .2-与12-D .2-【答案】D【提示】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【名师点拨】本题主要考查了相反数的性质应用,准确提示是解题的关键.18.(2020·山东滨州市·七年级期中)一个数的算术平方根与它的立方根的值相同,则这个数是( ) A .1 B .0或1 C .0 D .非负数【答案】B 【提示】根据立方根和平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题. 【详解】∵立方根等于它本身的实数0、1或−1; 算术平方根等于它本身的数是0和1.∴一个数的算术平方根与它的立方根的值相同的是0和1. 故选:B. 【名师点拨】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.19.(2020·浙江杭州市·七年级期末)若24,a =1=-,则+ab 的值是( )A .1B .-3C .1或-3D .-1或3【答案】C 【提示】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=. 故选:C . 【名师点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.20.(2020·武威市期中)若a b a+b 的值是( ) A .4 B .4或0C .6或2D .6【答案】C 【提示】由a a=±2,由b b=4,由此即可求得a+b 的值. 【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2. 故选C . 【名师点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.Part3 与 实数 有关的易错题21.(2020·重庆市期末)黄金分割数12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间【答案】B 【提示】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴, ∴1<1.3, 故选B . 【名师点拨】是解题关键.22.(2020·湖南湘潭市七年级期中)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B 【解析】提示:观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可. 详解:∵43a -<<-,∴34a <<,故A 选项错误; 数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误. 故选B.名师点拨:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.23.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】B 【提示】利用”夹逼法“+1的范围. 【详解】 ∵4 < 6 < 9 , <,即23<<,∴34<<, 故选B.24.(2020·甘南县期末)下列各数中,13.14159 0.131131113 7π⋅⋅⋅--,,,无理数的个数有 A .1个 B .2个C .3个D .4个【答案】B 【解析】试题提示:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .25.(2020·广东河源市七年级期末)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab< 【答案】D 【提示】先由数轴上a ,b 两点的位置确定a ,b 的取值范围,再逐一验证即可求解. 【详解】由数轴上a ,b 两点的位置可知-2<a <-1,0<b <1, 所以a<b ,故A 选项错误; |a|>|b|,故B 选项错误; a+b<0,故C 选项错误;0ab<,故D 选项正确, 故选D. 【名师点拨】本题考查了实数与数轴,实数的大小比较、实数的运算等,根据数轴的特点判断两个数的取值范围是解题的关键. 26.(2020·河北保定市·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.C.D.8【答案】A【解析】解:由题中所给的程序可知:把64取算术平方根,结果为8,∵8是有理数,∴∴y=.故选A.27.(2020·山东枣庄市·七年级期中)现定义一种新运算:a★b=ab+a-b,如:1★3=1×3+1-3=1,那么(-2)★5的值为()A.17B.3C.13D.-17【答案】D【提示】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【名师点拨】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.28.(2020·的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题提示:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵7.84<8<8.41,∴2.82<8<2.92,∴2.82.9,③段上.故选C考点:实数与数轴的关系29.(2020·北京市期末)请你观察、思考下列计算过程:因为112=121,:,因为1112=12321=111…( )A .111111B .1111111C .11111111D .111111111 【答案】D【解析】提示:被开方数是从1到n 再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:=11=111…,…,111 111 111.故选D .名师点拨:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.30.(2020·浙江杭州市·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760【答案】C【提示】根据给定几幅图形中黑点数量的变化可找出其中的变化规律“()2n a n n =+(n 为正整数)”,进而可求出111122n a n n ⎛⎫=- ⎪+⎝⎭,将其代入123191111a a a a ++++…中即可求得结论. 【详解】解:∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个;第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2n a n n =+(n 为正整数)个 ∴111122n a nn ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++…11113815399=++++11111324351921=++++⨯⨯⨯⨯1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C【名师点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.。

最新七年级下册数学易错题精选

最新七年级下册数学易错题精选

初一年级下学期易错题精选(一)第五章相交线与平行线1.下列判断错误的是().A.一条线段有无数条垂线;B.过线段AB中点有且只有一条直线与线段AB垂直;C.两直线相交所成的四个角中,若有一个角为90°,则这两条直线互相垂直;D.若两条直线相交,则它们互相垂直.2.下列判断正确的是().A.从直线外一点到已知直线的垂线段叫做这点到已知直线的距离;B.过直线外一点画已知直线的垂线,垂线的长度就是这点到已知直线的距离;C.画出已知直线外一点到已知直线的距离;D.连接直线外一点与直线上各点的所有线段中垂线段最短.3.如图所示,图中共有内错角().A.2组;B.3组;C.4组;D.5组.4.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的有().A.1个;B.2个;C.3个;D.4个.5.如图所示,下列推理中正确的有().①因为∠1=∠4,所以BC∥AD;②因为∠2=∠3,所以AB∥CD;③因为∠BCD+∠ADC=180°,所以AD∥BC;④因为∠1+∠2+∠C=180°,所以BC∥AD.A.1个;B.2个;C.3个;D.4个.6.如图所示,直线,∠1=70°,求∠2的度数.7.判断下列语句是否是命题. 如果是,请写出它的题设和结论.(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.正解:(1)是命题. 这个命题的题设是:两条直线被第三条直线所截;结论是:内错角相等. 这个命题是一个错误的命题,即假命题.(2)是命题. 这个命题的题设是:两个角是对顶角;结论是:这两个角相等. 这个命题是一个正确的命题,即真命题.(3)不是命题,它不是判断一件事情的语句.8.“如图所示,△A′B′C′是△ABC平移得到的,在这个平移中,平移的距离是线段AA′”这句话对吗?第六章平面直角坐标系1.点A的坐标满足,试确定点A所在的象限.2.求点A(-3,-4)到坐标轴的距离.第七章三角形1.如图所示,钝角△ABC中,∠B是钝角,试作出BC边上的高AE.2.有四条线段,长度分别为4cm,8cm,10cm,12cm,选其中三条组成三角形,试问可以组成多少个三角形?3.一个三角形的三个外角中,最多有几个角是锐角?4.如图所示,在△ABC中,下列说法正确的是().A.∠ADB>∠ADE;B.∠ADB>∠1+∠2+∠3;C.∠ADB>∠1+∠2;D.以上都对.正解:C.正解解析:∵∠ADB是△ADC的一个外角,∴∠ADB=∠1+∠2+∠3,∴∠ADB>∠1+∠2.5.一个多边形的内角和为1440°,求其边数.第八章二元一次方程组1.已知方程组:①,②,③,④,正确的说法是().A.只有①③是二元一次方程组;B.只有③④是二元一次方程组;C.只有①④是二元一次方程组;D.只有②不是二元一次方程组.2.用加减法解方程组.3.利用加减法解方程组.4.两个车间,按计划每月工生产微型电机680台,由于改进技术,上个月第一车间完成计划的120%,第二车间完成计划的115%,结果两个车间一共生产微型电机798台,则上个月两个车间各生产微型电机多少台?若设两车间上个月各生产微型电机台和台,则列方程组为().A.;B.;C..D..第九章不等式与不等式组1.利用不等式的性质解不等式:.2.某小店每天需水1m³,而自来水厂每天只供一次水,故需要做一个水箱来存水. 要求水箱是长方体,底面积为0.81㎡,那么高至少为多少米时才够用?(精确到0.1m)3.解不等式组.第十章数据的收集、整理与描述1.调查一批药物的药效持续时间,用哪种调查方式?2.2011年4月11日《文汇报》报道:据不完全统计,至今上海自愿报名去西部地区工作的专业技术人员和管理人员已达3600多人,其中硕士、博士占4%,本科生占79%,大专生占13%. 根据上述数据绘制扇形统计图表示这些人员的学历分布情况.正解:如下图所示:3.某班组织25名团员为灾区捐款,其中捐款数额前三名的是10元5人,5元10人,2元5人,其余每人捐1元,那么捐10元的学生出现的频率是__________.4.26名学生的身高分别为(身高:cm ):160; 162; 160; 162; 160; 159; 159; 169; 172; 160;161; 150; 166; 165; 159; 154; 155; 158; 174; 161;170; 156; 167; 168; 163; 162.现要列出频率分布表,请你确定起点和分点数据.正解:起点为149.5,分五组:149.5~154.5,154.5~159.5,159.5~164.5,164.5~169.5,169.5~174.5.方程(组)、不等式(组)易错一、填空题1、关于x 的不等式2x-a ≥-2的解集如图所示,则a 的取值范围为_______2、已知3(2x-1)=2-3x 的解与关于x 的方程6-2k=2(x+3)的解相同,则k=_______3、某品牌商品,按标价8折出售,仍可以获得20%的利润,若该商品的标价为30元,则进价为 元。

七年级数学易错题集及答案解析

七年级数学易错题集及答案解析

七年级知识点检测一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()元D.元9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为_________万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米=_________米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有_________条,可以将此多边形分成_________个三角形.12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于_________.15.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE:EC= _________.三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为_________.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a_________b,②﹣a_________﹣b,③|a|_________|b|,④|a|_________a,⑤|b|_________b.18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.20.已知关于x,y的方程组的解为满足x+y=4,求a的值.21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.25.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.26.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?27.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物_________件,依题意,得.28.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?29.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是_________元;参加乙旅行社的费用是_________元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?参考答案与试题解析一.选择题(共8小题)1.(益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()4.(鄂尔多斯)为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价元D.元是底边时,腰长为7.如图,∠BAD=90°,∠ADC=30°,∠BCD=142°,则∠B=()2二.填空题(共7小题)9.(昆明)据报道,2014年4月昆明库塘蓄水量为58500万立方米,将58500万立方米用科学记数法表示为 5.85×104万立方米.10.(普陀区二模)1纳米等于0.000000001米,用科学记数法表示:2014纳米= 2.014×10﹣6米.11.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有9条,可以将此多边12.(思明区模拟)一个多边形的每个外角都等于72°,则这个多边形的边数为5.13.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是10:5114.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于2.PC=215.如图,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=,AE:EC=1:3.AF=AB==AF=,=三.解答题(共15小题)16.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为﹣2.17.(1)在数轴上画出表示﹣2,1.5,﹣|﹣4|,,0.(2)有理数a、b在数轴上如图,用“>、=或<”填空.①a<b,②﹣a>﹣b,③|a|>|b|,④|a|>a,⑤|b|=b.,)∵﹣,﹣=18.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:∠A=∠F.19.解三元一次方程组.,把代入方程,的解为20.已知关于x,y的方程组的解为满足x+y=4,求a的值.,21.(黔东南州)若不等式组无解,求m的取值范围.22.(栖霞市二模)解不等式组并写出它的正整数解.23.已知:如图,点A和点B在直线l同一侧.求作:直线l上一点P,使PA+PB的值最小.24.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.=,cm25.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?26.(禅城区模拟)A、B两市相距300千米.现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问几小时后两车之间的距离为30千米.,小时后两车之间的距离为27.某学校现有学生总数2300人,今年比去年总数增加了15%,其中男生比去年增加了25%,女生比去年减少了25%,问去年男、女生各多少人?28.(柳州)列方程解应用题:今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?解:设张红购买甲礼物x件,则购买乙礼物x+1件,依题意,得.29.(包头)某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?.30.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是1200+600x元;参加乙旅行社的费用是720(x+1)元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?。

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷

人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个 C .3个D .4个 2.若24a =,29b =,且0ab <,则-a b 的值为( ) A .5±B .2-C .5D .5- 3.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数4.下列各式的值一定为正数的是 ( )A .aB .2aC .2(100)a -D .20.01a + 5.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( )①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④6.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .47.a ,小数部分为b ,则a-b 的值为()A .6-B 6C .8D 88.下列各式中,正确的是( )A 34B 34;C 38D 349.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数2P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③33是3的立方根;④无理数是带根号的数;⑤2的算术平方根是2.A .2个B .3个C .4个D .5个二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.若实数a 、b 满足240a b +-=,则a b =_____. 13.写出一个3到4之间的无理数____.14.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.15.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 16.规定运算:()a b a b *=-,其中b a 、为实数,则154)15+=____ 17.49的平方根是________,算术平方根是______,-8的立方根是_____.18.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________. 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(I )解方程:log x 4=2;(Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案) 22.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<,请确定332768是______位数;(2)由32768的个位上的数是8,请确定332768的个位上的数是________,划去32768后面的三位数768得到32,因为333=27,4=64,请确定332768的十位上的数是_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:332768=____;3-110592________=23.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x 的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O ,对于两个不同的点A 和B ,若点A 、 B 到点O 的距离相等,则称点A 与点B 互为基准等距变换点.例如图2,点A 表示数-1,点B 表示数5,它们与基准点O 的距离都是3个单位长度,我们称点A 与点B 互为基准等距变换点.①记已知点M 表示数m ,点N 表示数n ,点M 与点N 互为基准等距变换点.I .若m=3,则n= ;II .用含m 的代数式表示n= ;②对点M 进行如下操作:先把点M 表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N ,若点M 与点N 互为基准等距变换点,求点M 表示的数; ③点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度,对Q 点做如下操作: Q 1为Q 的基准等距变换点,将数轴沿原点对折后Q 1的落点为Q 2这样为一次变换: Q 3为Q 2的基准等距变换点,将数轴沿原点对折后Q 3的落点为Q 4这样为二次变换: Q 5为Q 4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.24.阅读下列材料:问题:如何计算1111122334910++++⨯⨯⨯⨯呢? 小明带领的数学活动小组通过探索完成了这道题的计算.他们的解法如下:解:原式1111111(1)()()()22334910=-+-+-++- 1110=-910= 请根据阅读材料,完成下列问题: (1)计算:111112233420192020++++⨯⨯⨯⨯; (2)计算:111126129900++++; (3)利用上述方法,求式子111115599131317+++⨯⨯⨯⨯的值. 25.规律探究 计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。

人教版七年级数学下册 期末试卷易错题(Word版 含答案)

人教版七年级数学下册 期末试卷易错题(Word版 含答案)

人教版七年级数学下册 期末试卷易错题(Word 版 含答案)一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,点()3,2A -在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列语句中:①同角的补角相等;②雪是白的;③画1AOB ∠=∠;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( ) A .1个 B .2个C .3个D .4个5.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 6.若一个正数的两个平方根分别是2m +6和m ﹣18,则5m +7的立方根是( ) A .9 B .3C .±2D .﹣97.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图所示,已知点A (﹣1,2),将长方形ABOC 沿x 轴正方向连续翻转2021次,点A依次落在点A 1,A 2,A 3,…,A 2021的位置,则A 2021的坐标是( )A .(3038,1)B .(3032,1)C .(2021,0)D .(2021,1)二、填空题9.若,则()m a b +的值为10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为 ___.14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.计算: (1)(3201931232(1)-(2)3339368(1)116--+18.求下列各式中的x 值. (1)2164x -= (2)()318x -=19.阅读并完成下列的推理过程.如图,在四边形ABCD 中,E 、F 分别在线段AB 、AD 上,连结ED 、EF ,已知∠AFE =∠CDF ,∠BCD +∠DEF =180°.证明BC ∥DE ; 证明:∵∠AFE =∠CDF (已知) ∴EF ∥CD ( ) ∴∠DEF =∠CDE ( ) ∵∠BCD +∠DEF =180°( ) ∴ ( ) ∴BC ∥DE ( )20.如图,ABC 在平面直角坐标系中.(1)写出ABC 各顶点的坐标; (2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向右平移1个单位长度后得111A B C △,请画出111A B C △,并写出1A ,1B ,1C 的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.二十二、解答题22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A ,那么点A 表示的数是多少?点A 表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.24.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)26.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的32倍,求∠ABO的度数.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义. 2.D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D解析:D【分析】根据平移的性质即可得出结论.【详解】解:A、能通过其中一个三角形平移得到,不合题意;B、能通过其中一个三角形平移得到,不合题意;C、能通过其中一个三角形平移得到,不合题意;D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.故选:D.【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A(-3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据命题的定义分别对各语句进行判断.【详解】解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.B【分析】根据平行可得出∠DAB +∠CBA =180°,再根据折叠和平角定义可求出1290∠+∠=︒. 【详解】解:由翻折可知,∠DAE =21∠,∠CBF =22∠, ∵//AD BC ,∴∠DAB +∠CBA =180°, ∴∠DAE +∠CBF =180°, 即2122180∠+∠=°, ∴1290∠+∠=︒, 故选:B .【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.B 【分析】根据立方根与平方根的定义即可求出答案. 【详解】解:由题意可知:2m +6+m ﹣18=0, ∴m =4, ∴5m +7=27, ∴27的立方根是3, 故选:B . 【点睛】考核知识点:平方根、立方根.理解平方根、立方根的定义和性质是关键. 7.B 【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解. 【详解】延长DE ,交AB 于点F ,BE平分∠ABD,20∠=︒,DBE∴∠=∠=︒,EBF DBE20∠=∠+∠,∠DEB=80°,DEB DFB EBFEFB DEB EBF∴∠=∠-∠=︒-︒=︒,802060AB CD,//CDE EFB∴∠=∠=︒,60故选B.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解.【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,∵2021÷4=505.....1,∴A2021的纵坐标与A1相同,横坐标=505×6+2=3032,∴A2021(3032,1),故选B.【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法.二、填空题9.-1【解析】解:有题意得,,,,则解析:-1【解析】 解:有题意得,,,,则()m a b + 10.(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵,的角平分线与的外角的角平分线交于点,∴,同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可.【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠,ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠ 190()2ABC ACB =︒-∠+∠ 190(180)2A =︒-︒-∠ 12A =∠, 同理可得1221122A A A ∠=∠=∠, 2331122A A A ∠=∠=∠, ∴2021202112A A ∠=∠, ∵A α∠=, ∴2021202112A α∠=, 故答案为:202112α.【点睛】 本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD ⊥AB ,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.解析:95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【详解】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°−50°−35°=95°,∴∠D=360°−100°−70°−95°=95°.故答案为:95°.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.14.﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a<﹣,0<b<,故|﹣b|+|a+|+=﹣b﹣(a+)﹣a=﹣b﹣a﹣﹣a=﹣2a﹣b解析:﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a0<b故b|+|ab﹣(a ab﹣a a=﹣2a﹣b.故答案为:﹣2a﹣b.【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.三、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=解析:(1)-5;(2)7 4【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式1315-=-;(2)原式= -6+2+1+54=74-.故答案为:(1)-5;(2)7 4 - .【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.18.(1);(2).【分析】(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)解解析:(1)52x=±;(2)3x=.【分析】(1)首先求出2x的值是多少,然后根据平方根的含义和求法,求出x的值即可.(2)根据立方根的含义和求法,可得x-1=2,据此求出x的值是多少即可.【详解】(1)2164x-=2254x=解得:52 x=±故答案为:52 x=±(2)()318x-=12x-=解得:3x=故答案为:3x=【点睛】本题考查了平方根的含义和求法,立方根的含义和求法.19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.【分析】根据平行线的性质与判定填空即可【详解】证明:∵∠AFE=∠CDF(已知)∴EF∥CD(同位角相等,两直线平行)∴∠DEF=∠CDE(两直线平行,内错角相等)∵∠BCD+∠DEF=180°(已知)∴∠BCD+∠CDE=180°(等量代换)∴BC∥DE(同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.20.(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长解析:(1)A(-1,-1),B(4,2),C(1,3);(2)7;(3)画图见解析,A1(0,1),B1(5,4),C1(2,5)【分析】(1)根据平面直角坐标系,确定出所求点坐标即可;(2)由长方形面积减去三个直角三角形面积求出所求即可;(3)直接利用平移的性质进而得出对应点坐标进而得出答案.【详解】解:(1)由图可知:A(-1,-1),B(4,2),C(1,3);(2)根据题意得:S△△ABC=11154243153⨯-⨯⨯-⨯⨯-⨯⨯=7;222(3)如图所示:△A 1B 1C 1为所求,此时A 1(0,1),B 1(5,4),C 1(2,5).【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键. 21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵3134<,c 13∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键.二十二、解答题22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;(3)能,10.-;15【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=22+=,2222故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二十三、解答题23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵PQ ∥MN ,∴∠BJA =∠PBD =50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM ,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.26.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=12∠PAB,∠ABC=12∠ABM,于是得到结论;(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的32倍分情况进行分类讨论即可.【详解】解:(1)∠ACB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分别是∠BAP和∠ABM角的平分线,∴∠BAC=12∠PAB,∠ABC=12∠ABM,∴∠BAC+∠ABC=12(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案为:30°,60°;(3)∵AE、AF分别是∠BAO与∠GAO的平分线,∴∠EAO=12∠BAO,∠FAO=12∠GAO,∴∠E=∠EOQ﹣∠EAO=12(∠BOQ﹣∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=∠EAO+∠FAO=12(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= 12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵有一个角是另一个角的32倍,故有:①∠EAF=32∠F,∠E=30°,∠ABO=60°;②∠F=32∠E,∠E=36°,∠ABO=72°;③∠EAF=32∠E,∠E=60°,∠ABO=120°(舍去);④∠E=32∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO为60°或72°.【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册 选择填空题 易错题集一、选择题 3分/题 (适用于人教版七年级下册)1.下列各式中,正确的是( ) A.16=±4 B.±16=4 C.327-=-3 D.2(4)-=-42.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x a x 3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°4.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PC B A 小刚小军小华5.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)6.若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-7.△ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.都有可能8.用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、①B 、②C 、③D 、④9.地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么54D 3E 21C B A 小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y xB 、⎩⎨⎧=-=-128456836y x y xC 、⎩⎨⎧=-=+128456836x y y xD 、⎩⎨⎧=-=-128456836x y y x10.若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=311.一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 12.如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.413.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。

其中适合用抽样调查的个数有 ( )A 、1个B 、2个C 、3个D 、4个14.某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2b a +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =bD .与ab 大小无关15.如果不等式⎩⎨⎧-bx x <>2无解,则b 的取值范围是( )A .b >-2B . b <-2C .b ≥-2D .b ≤-216.下列式子正确的是( )。

A .49=7±B .337=7--C .25=5±D .2=3-(-3) 17.下列说法正确的是( )。

A .无限小数都是无理数 C .无理数是无限不循环小数B .带根号的数都是无理数D.实数包括正实数、负实数18.已知点P(m ,1)在第二象限,则点Q(-m ,3)在( )。

A .第一象限B .第二象限C .第三象限D .第四象限19.已知在同一平面内三条直线a 、b 、c ,若a ‖c ,b ‖c ,则a 与b 的位置关系是( )。

A .a ⊥bB .a ⊥b 或a ‖bC .a ‖bD .无法确定20.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )。

A .30° C .20°B .25° D .15°21.一个正数x 的平方根是2a -3与5-a ,则x 的值是( )。

火车站李庄23.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( )A .300名学生是总体B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是5024.导火线的燃烧速度为0.8cm /s ,爆破员点燃后跑开的速度为5m /s ,为了点火后能够跑到150m 外的安全地带,导火线的长度至少是( )A .22cmB .23cmC .24cmD .25cm25.不等式组⎩⎨⎧+-ax x x <<5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a26.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个27.下列运动属于平移的是( )A .荡秋千B .地球绕着太阳转C .风筝在空中随风飘动D .急刹车时,汽车在地面上的滑动28.一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间29.已知实数x ,y 满足()0122=++-y x ,则y x -等于( )A .3B .-3C .1D .-130.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A.(1,0) B .(-1,0)C.(-1,1) D .(1,-1)二、填空题 3分/题 1.如果点P(a,2)在第二象限,那么点Q(-3,a)在___________.2.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.3.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度. 4.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.5.若│x 2-25│+3y -=0,则x=_______,y=_______.6.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同A .64B .36C .81D .4922.在平面直角坐标系中,已知点A (-4,0)和B (0,2),现将线段AB 沿着直线AB 平移,使点A 与点B 重合,则平移后点B 坐标是( )。

A .(0,-2)B .(4,2)C .(4,4)D .(2,4)CB ADE F M N P 位角相等;③对于实数a,2a 和a 都是非负数;④垂直于同一条直线的两条直线互相平行。

请把你认为是真命题的命题的序号填在横线上________________ 7.不等式-3≤5-2x <3 的正整数解是_________________.8.如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回●这个数,●=9.数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.10. 311-的相反数是 ,绝对值是 。

11.如果 3=1.732,30=5.477,那么0.0003的平方根是 。

12.命题“同角的余角相等”改写成“如果……那么……”的形式是 。

13.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是 ,理由是14.小刚在小明的北偏东60°方向的500m 处,则小明在小刚的 。

(请用方向和距离描述小明相对于小刚的位置)15.绝对值小于8的所有整数是 .16.已知a 、b 为两个连续的整数,且a <11-11 <b ,则=+b a .17.若()0232=++-n m ,则n m 2+的值是______.18.如图,已知a ∥b ,小亮把三角板的直角顶点放在直线b 上.若∠1=40°,则∠2的度数为 .19.某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.20.设[)x 表示大于x 的最小整数,如[)43=,[)12.1-=-,则下列结论中正确的 是 .(填写所有正确结论的序号)①[)00=; ②[)x x -的最小值是0; ③[)x x -的最大值是0; ④存在实数x ,使[)5.0=-x x 成立.七年级数学下册 选择填空题 易错题集(答案)一、选择二、填空1. 第三象限2. 垂线段最短3. 404. ︒405. 35=±=y x ,6. (3)7. 2、3、48. 89. 65=33+32 10.311- 311- 11. 01732.0±12.如果有两个角是同一个角的余角,那么这两个角相等。

13. PM 垂线段最短 14.南偏西︒60 500m 15. 210±±、、16. -15 17. -1 18. ︒50 19. 216人 20.(4)。

相关文档
最新文档