实验一 肌肉的收缩特征
肌肉收缩实验报告

肌肉收缩实验报告实验目的:了解肌肉收缩的基本原理和影响因素,观察不同条件下肌肉收缩的变化。
实验材料:1. 实验动物:小白鼠/或其他动物。
2. 实验器材:肌肉刺激装置、生理记录装置、电极、测力计、数字示波器等。
实验步骤:1. 准备工作:选择一只小白鼠,给予适当的麻醉。
2. 刺激装置准备:将电极插入小白鼠的肌肉中,并与肌肉刺激装置相连接。
3. 肌肉刺激:使用肌肉刺激装置对插入电极的肌肉进行刺激。
可以调节刺激的强度和频率,观察肌肉的收缩情况。
4. 记录数据:使用生理记录装置记录肌肉收缩的电信号,并使用测力计记录肌肉的张力。
5. 分析数据:观察记录的数据,分析不同刺激条件下肌肉收缩的变化。
可以比较肌肉收缩的幅度、频率等指标。
6. 结果展示:将实验结果以图表形式展示,并根据数据进行分析和讨论。
实验注意事项:1. 实验过程中应注意动物的福利,避免对动物造成不必要的伤害和痛苦。
2. 实验设备和仪器操作应安全可靠,以避免意外事故的发生。
3. 实验条件和操作方法应精确控制,以保证实验结果的可靠性和准确性。
4. 实验人员应遵守实验室的安全规范,注意个人防护,并正确处理和处置实验废液和废材。
实验结果展示和讨论:根据实验数据的分析,可以得出不同刺激条件下肌肉收缩的特点和变化规律。
例如,刺激强度和刺激频率对肌肉收缩幅度的影响,肌肉收缩的快慢与刺激强度和刺激频率的关系等。
还可以讨论其他影响肌肉收缩的因素,如温度、酸碱度等。
同时,对实验结果的差异和不确定性进行分析和讨论,提出可能的改进方案或进一步深入研究的建议。
附实验报告中所需的格式要求(如实验目的、材料、步骤、结果展示等),以及相应的数据分析和讨论。
实验1骨骼肌的单收缩与强直收缩

实验1骨骼肌的单收缩与强直收缩实验一骨骼肌的单收缩与强直收缩一、目的要求1、熟练掌握神经肌肉标本的制备;2、观察骨骼肌收缩反应的形式,分析肌肉收缩的特征;3、观察刺激频率对骨骼肌收缩形式的影响,强直收缩形成的条件。
二、实验内容1、制备神经肌肉标本2、骨骼肌的单收缩与强直收缩的描记三、基本原理一次短促的有效刺激产生一次单收缩,给予标本相继两个最适刺激,若刺激间隔大于单收缩的时程,则肌肉出现两个分离的单收缩;使两次刺激的间隔小于该肌肉收缩的总时程时,则会出现一连续的收缩,叫复合收缩。
将神经-肌肉标本用一连串的电刺激,若刺激间隔大于单收缩的时程,则肌肉出现几个分离的单收缩;若刺激间隔小于单收缩的时程而大于不应期,则前一次收缩和舒张尚未结束,新的收缩在此基础上出现,称为强直收缩。
新刺激落在前一次收缩的舒张期所出现的强而持久的收缩过程称不完全强直收缩;新刺激落在前一次收缩的收缩期,所出现的强而持久的收缩过程称完全强直收缩。
四、动物与器材蛙,手术器械,玻璃解剖针,锌铜弓,计算机采集系统(Pclab),张力传感器,肌槽(神经屏蔽盒),培养皿,任氏液,滴管,棉线五、方法与步骤(一) 制备坐骨神经-腓肠肌标本1.毁髓左手握蛙背部向上,用食指按压其头部前端,拇指压住躯干的背部使头向前俯,右手持毁髓针由两眼之间沿中线向后方触划,触及两耳中间的凹陷处即是枕骨大孔的位置。
将毁髓针向凹陷处垂直刺入,刺破皮肤即入枕骨大孔。
然后将针尖向前刺入颅腔,在颅腔内搅动,以捣毁脑组织。
如毁髓针确在颅腔内,实验者可感到针触颅骨,此时的动物称为单毁髓动物。
脑组织捣毁后,将毁髓针退出至枕骨大孔处,针尖转向后方,与脊柱平行刺入椎管,以捣毁脊髓。
彻底捣毁脊髓时可看到蛙后肢突然蹬直,然后瘫软,此时的动物称为双毁髓动物。
脑与脊髓完全破坏后,动物四肢肌肉的紧张性完全消失。
如仍能表现四肢肌肉紧张或活动自如,必须重新毁髓。
2.剥皮在蛙前肢下方处,左手用镊子夹起背部皮肤,右手用剪刀将皮肤作一环形切口。
肌肉收缩类型及特点

肌肉收缩类型及特点引言肌肉收缩是指肌肉在神经刺激下发生的一系列生理反应,负责产生力量和运动。
根据肌肉收缩类型的不同,肌肉可以实现不同的功能和动作。
本文将详细探讨四种主要的肌肉收缩类型及其特点。
1. 等长收缩(等收缩)等长收缩是指肌肉在阻力不变的情况下发生收缩,肌肉长度保持不变。
这种收缩方式主要发生在保持姿势和抵抗重力的情况下。
特点:•肌肉产生的力量与阻力相等,没有明显的肌肉长度改变。
•肌肉保持紧张状态时的能力较强。
•等长收缩能够保持身体姿势的稳定性。
•例子:保持直立姿势时,腿部肌肉的等长收缩。
2. 等宽收缩(等张收缩)等宽收缩是指肌肉在负载不变的情况下发生收缩,肌肉张力保持不变。
这种收缩方式主要用于抵抗外部力量的作用。
特点:•肌肉收缩时产生的张力保持不变。
•肌肉的长度会发生变化。
•等宽收缩主要用于保持姿势和锁定关节。
•例子:握拳时,手部肌肉的等宽收缩。
3. 同心收缩同心收缩是指肌肉在受到神经刺激时缩短,通过减小关节角度来实现运动。
这种收缩方式是最常见的肌肉收缩方式。
特点:•肌肉收缩时产生的力量大于阻力,导致肌肉缩短。
•同心收缩用于提供力量和推动身体。
•例子:肱二头肌在做弯举运动时的同心收缩。
4. 异心收缩异心收缩是指肌肉在负荷作用下发生收缩,但肌肉长度增加,主要用于减缓运动或控制力度。
这种收缩方式常见于一些特定的肌肉活动。
特点:•肌肉产生的力量小于阻力,导致肌肉缓慢伸长。
•异心收缩用于控制运动的速度和减缓运动。
•例子:腿部肌肉在下蹲动作中的异心收缩。
总结肌肉收缩类型及其特点对于理解人体运动和肌肉功能至关重要。
等长收缩主要用于保持姿势的稳定性,等宽收缩主要用于抵抗外部力量的作用,同心收缩提供力量和推动身体,异心收缩用于控制运动的速度和减缓运动。
对于不同类型的肌肉收缩,我们可以通过训练和锻炼来改善肌肉的功能和运动效果。
参考文献•Powers, S. K., & Howley, E. T. (2012). Exercise physiology: theory and application to fitness and performance. New York, NY: McGraw-Hill.。
肌肉收缩实验报告

肌肉收缩实验报告肌肉收缩实验报告引言:肌肉收缩是人体运动的基本过程之一,也是肌肉功能的核心。
在本次实验中,我们将探讨肌肉收缩的机制和影响因素,并通过实验验证相关理论。
一、肌肉收缩的机制肌肉收缩是由神经冲动引起的,这些冲动通过神经传递到肌肉纤维,触发肌肉收缩。
在神经冲动到达肌肉纤维时,肌肉细胞内的钙离子释放,与肌纤维中的肌动蛋白结合,形成肌肉收缩的基本单位——肌节。
肌节的形成使肌肉纤维缩短,并产生力量。
二、影响肌肉收缩的因素1. 神经传导速度:神经冲动的传导速度会直接影响肌肉收缩的快慢。
神经传导速度越快,肌肉收缩反应也越迅速。
2. 肌肉纤维类型:人体肌肉纤维可分为慢收缩纤维和快收缩纤维。
慢收缩纤维适合进行耐力性运动,而快收缩纤维则更适合进行爆发性、高强度的运动。
3. 肌肉负荷:肌肉受到的负荷越大,肌肉收缩的力量也越大。
这是因为负荷的增加会刺激肌纤维更多地参与到收缩中。
4. 肌肉长度:肌肉在不同长度下的收缩力量也会有所不同。
在肌肉处于最佳长度时,肌肉收缩力量最大。
三、实验设计与结果在本次实验中,我们选择了小鼠的背部肌肉作为研究对象,通过电刺激的方式触发肌肉收缩,并记录相关数据。
首先,我们将小鼠固定在实验台上,并在背部肌肉上植入电极。
然后,通过电刺激器向肌肉纤维传递电流,以触发肌肉收缩。
我们分别调节电刺激的强度、频率和持续时间,观察肌肉的收缩情况,并记录相关数据。
实验结果显示,当电刺激强度适中时,肌肉的收缩力量最大。
而当电刺激频率较高时,肌肉收缩的速度也较快。
此外,我们还观察到在肌肉最佳长度下,肌肉收缩力量也达到了最大值。
四、讨论与启示通过本次实验,我们对肌肉收缩的机制和影响因素有了更深入的了解。
我们发现神经传导速度、肌肉纤维类型、肌肉负荷和肌肉长度等因素都会对肌肉收缩产生影响。
这些研究结果对于运动训练和康复治疗具有重要意义。
在运动训练中,根据肌肉纤维类型的差异,可以制定不同的训练计划,以达到更好的训练效果。
肌肉收缩_实验报告

一、实验目的1. 了解肌肉收缩的基本原理和影响因素。
2. 掌握实验操作技能,观察和分析不同刺激条件下肌肉收缩的变化。
二、实验原理肌肉收缩是肌肉组织在受到刺激后产生的一种机械运动,其过程涉及肌肉细胞的兴奋、收缩和舒张。
肌肉收缩的基本原理是:当肌肉细胞受到一定强度的刺激时,细胞内的钙离子浓度升高,促使肌肉纤维中的肌动蛋白和肌球蛋白发生相互作用,从而产生肌肉收缩。
三、实验材料与仪器1. 实验材料:蟾蜍坐骨神经腓肠肌标本、玻璃分针、探针、木锤、镊子、培养皿、任氏液、蛙板、保护电极、肌槽、张力转换器、锌铜弓、微机生物信号处理系统。
2. 实验仪器:电子刺激器、信号采集处理系统、计算机。
四、实验步骤1. 制作标本:将蟾蜍坐骨神经腓肠肌标本固定在蛙板上,剪去多余的脂肪和结缔组织,暴露出坐骨神经和腓肠肌。
2. 连接仪器:将保护电极插入坐骨神经,连接到电子刺激器。
将肌槽插入腓肠肌,连接到张力转换器。
将张力转换器连接到信号采集处理系统,再将信号采集处理系统连接到计算机。
3. 单刺激实验:打开计算机软件,设置刺激强度和频率,对蟾蜍腓肠肌进行单刺激。
观察并记录肌肉收缩的幅度和持续时间。
4. 重复刺激实验:在单刺激实验的基础上,逐渐增加刺激频率,观察并记录肌肉收缩的变化。
5. 强直收缩实验:在重复刺激实验的基础上,继续增加刺激频率,观察并记录肌肉收缩的变化,直至出现强直收缩。
6. 实验数据整理:将实验数据整理成表格,分析不同刺激条件下肌肉收缩的变化。
五、实验结果与分析1. 单刺激实验:在一定的刺激强度下,肌肉收缩幅度和持续时间随着刺激频率的增加而增加。
2. 重复刺激实验:当刺激频率增加时,肌肉收缩幅度和持续时间逐渐减小,表现为不完全强直收缩。
3. 强直收缩实验:当刺激频率继续增加时,肌肉收缩幅度和持续时间趋于稳定,出现完全强直收缩。
六、实验结论1. 肌肉收缩的幅度和持续时间受刺激强度和频率的影响。
2. 当刺激频率较低时,肌肉表现为单收缩;随着刺激频率的增加,肌肉收缩形式逐渐转变为不完全强直收缩和完全强直收缩。
实验一 肌肉的收缩特征

实验一肌肉的收缩特征[目的和原理]目的:观察肌肉收缩的形式及刺激频率与肌肉收缩反应之间的关系。
原理:当给神经肌肉标本一个阈上刺激时,肌肉即发生一次收缩反应。
用记录仪描记收缩过程,可得到一次单收缩曲线。
每个单收缩曲线依次分为三个时期,即潜伏期、收缩期与舒张期。
如相继给两个以上阈刺激,刺激之间的间隔超过一个单收缩的持续时间,则肌肉将出现一连串各自分离的单收缩;若刺激间隔时间比单收缩的持续时间短,则前一个收缩还未结束就开始后一个收缩,这样两次收缩就会重叠起来,这种现象称复合收缩。
如果后一个收缩是在前一个收缩的舒张期内发生,各自收缩复合的结果,会出现一持续的锯齿状的收缩曲线,这种收缩称为不完全强直收缩。
若刺激之间的间隔时间比单收缩的收缩期短,后一收缩就在前一收缩期内发生,结果会出现一持续的收缩曲线,完全看不到舒张期的形迹,这样的持续收缩状态称为完全强直收缩。
[实验动物]蟾蜍[实验器材与药品]肌槽、万能支台、蛙板、蛙类手术器械、肌肉张力换能器、RM6240多道生理信号采集处理系统、任氏液。
[实验步骤](一)制作坐骨神经腓肠肌标本1、破坏脑和脊髓:取蟾蜍一只,左手握住蟾蜍,用食指压住头部前端使头前俯,右手持探针从枕骨大孔垂直刺入(图4-1A),然后向前刺入颅腔,左右搅动捣毁脑组织;将探针抽出再由枕骨大孔向后刺入脊椎管捣毁脊髓,此时如蟾蜍的四肢松软,表示脑脊髓已完全破坏,否则应按上法再进行捣毁。
2、剪除躯干上部及内脏:在骶髂关节水平以上0.5~1 cm处剪断脊柱(图4-1B),左手握蟾蜍后肢,用拇指压住骶骨,蟾蜍头与内脏自然上垂,右手持大剪刀沿两侧除内脏及头胸部(图4-1C),仅留下后肢、髋骨、脊柱及由它发出的坐骨神经。
3、剥皮:左手提脊柱断端,右手捏住其上的皮肤边缘(图4-1D),向下剥掉全部后肢皮肤将标本放在盛有任氏液的培养皿中。
图4-1 蛙类手术操作示意图4、将手及用过的剪刀、镊子等全部手术器械洗净,再进行下述步骤。
骨骼肌收缩实验报告

骨骼肌收缩实验报告引言:人体骨骼肌的收缩是我们进行各种活动的基础,如行走、跑步、举重等。
了解骨骼肌收缩机制和其对运动的影响,对于提高运动表现、预防运动损伤以及改善身体健康至关重要。
本文将介绍一项基础的骨骼肌收缩实验,并对实验结果进行分析和讨论。
实验材料与方法:实验采用小白鼠作为实验对象,通过电刺激来引发骨骼肌收缩。
具体步骤如下:1. 高频电刺激:将电极贴附于小白鼠腓肠肌上,通过电刺激引发肌肉收缩。
在实验的不同阶段,电刺激的频率可以调节,以模拟不同的运动强度。
2. 骨骼肌收缩力测量:使用测力计记录肌肉收缩产生的力量。
将测力计连接到小白鼠足部骨骼肌上,以测量肌肉的收缩能力。
3. 实验参数记录:记录电刺激频率、肌肉收缩力量以及收缩的持续时间。
这些参数将有助于分析不同电刺激条件下的骨骼肌收缩特点。
结果与讨论:通过实验测量,我们获得了不同电刺激条件下小白鼠腓肠肌的收缩力量和收缩持续时间数据。
在低频电刺激条件下,肌肉收缩力量较小,持续时间较短;而高频电刺激条件下,肌肉收缩力量增大,持续时间延长。
这些结果表明,肌肉收缩的力量和持续时间是与电刺激的频率相关的。
这可以解释为什么在高强度运动或长时间持续的活动中,我们需要更多的肌肉收缩能力来支持运动。
此外,这也说明了为什么力量训练可以增强肌肉收缩能力,因为通过反复高频电刺激,我们可以增加肌肉的收缩力量和持续时间。
实验结果还表明,不同肌肉组织对电刺激的响应有所不同。
例如,腓肠肌对电刺激的敏感度较高,可能是因为它是一个重要的运动肌肉,需要更强的收缩能力。
这也解释了为什么不同肌肉组织在运动中承担不同的功能和负担。
此外,我们还观察到骨骼肌收缩能力在不同个体之间可能存在差异。
一些小白鼠可能在同样电刺激条件下表现出更大的收缩力量和持续时间,这可能与个体的基因差异、肌肉纤维类型以及运动训练水平有关。
这一发现提示我们在进行运动训练和力量训练时,应根据个体差异来制定个性化的训练方案。
肌肉收缩性质实验报告

一、实验目的1. 探究不同刺激强度和频率对肌肉收缩性质的影响。
2. 理解阈刺激、阈上刺激、最大阈刺激的概念及其在肌肉收缩中的作用。
3. 观察并分析单收缩、不完全强直收缩和完全强直收缩现象。
二、实验原理肌肉收缩是肌肉组织在神经系统的调控下,通过肌纤维的缩短和伸长产生机械运动的过程。
肌肉收缩的性质受刺激强度和频率的影响。
在一定范围内,随着刺激强度的增加,肌肉收缩强度也随之增大;而当刺激频率达到一定值时,肌肉收缩将呈现出不完全强直收缩和完全强直收缩现象。
三、实验材料1. 实验动物:蟾蜍2. 实验器材:粗剪刀、玻璃分针、探针、木锤、镊子、培养皿、任氏液、娃板、保护电极、肌槽、张力转换器、锌铜弓、微机生物信号处理系统3. 实验试剂:生理盐水、0.5%氯化钾溶液四、实验步骤1. 制作标本:毁脑脊髓、下肢标本制备、腓肠肌标本制备、连接仪器。
2. 打开计算机软件中的模拟实验。
3. 打开电源,对蟾蜍腓肠肌进行单刺激,频率为1Hz,电压由低到高逐渐增加,观察并记录肌肉收缩性质。
4. 重复步骤3,但将刺激频率提高到2Hz、3Hz、4Hz、5Hz,观察并记录肌肉收缩性质。
5. 在刺激频率固定为1Hz的情况下,逐渐增加刺激强度,观察并记录肌肉收缩性质。
6. 将刺激强度固定为阈上刺激,重复步骤3,观察并记录肌肉收缩性质。
五、实验结果1. 刺激频率对肌肉收缩性质的影响:随着刺激频率的增加,肌肉收缩性质由单收缩逐渐过渡到不完全强直收缩,最后转变为完全强直收缩。
2. 刺激强度对肌肉收缩性质的影响:在阈刺激以下,肌肉不发生收缩;随着刺激强度的增加,肌肉收缩强度逐渐增大;在最大阈刺激时,肌肉收缩强度达到最大。
3. 阈刺激、阈上刺激、最大阈刺激对肌肉收缩性质的影响:阈刺激以下,肌肉不发生收缩;阈刺激以上,肌肉发生收缩;最大阈刺激时,肌肉收缩强度达到最大。
六、实验结论1. 不同刺激强度和频率对肌肉收缩性质有显著影响。
2. 阈刺激、阈上刺激、最大阈刺激对肌肉收缩性质有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一肌肉的收缩特征
[目的和原理]目的:观察肌肉收缩的形式及刺激频率与肌肉收缩反应之间的关系。
原理:当给神经肌肉标本一个阈上刺激时,肌肉即发生一次收缩反应。
用记录仪描记收缩过程,可得到一次单收缩曲线。
每个单收缩曲线依次分为三个时期,即潜伏期、收缩期与舒张期。
如相继给两个以上阈刺激,刺激之间的间隔超过一个单收缩的持续时间,则肌肉将出现一连串各自分离的单收缩;若刺激间隔时间比单收缩的持续时间短,则前一个收缩还未结束就开始后一个收缩,这样两次收缩就会重叠起来,这种现象称复合收缩。
如果后一个收缩是在前一个收缩的舒张期内发生,各自收缩复合的结果,会出现一持续的锯齿状的收缩曲线,这种收缩称为不完全强直收缩。
若刺激之间的间隔时间比单收缩的收缩期短,后一收缩就在前一收缩期内发生,结果会出现一持续的收缩曲线,完全看不到舒张期的形迹,这样的持续收缩状态称为完全强直收缩。
[实验动物]蟾蜍
[实验器材与药品]肌槽、万能支台、蛙板、蛙类手术器械、肌肉张力换能器、RM6240多道生理信号采集处理系统、任氏液。
[实验步骤]
(一)制作坐骨神经腓肠肌标本
1、破坏脑和脊髓:取蟾蜍一只,左手握住蟾蜍,用食指压住头部前端使头前俯,右手持探针从枕骨大孔垂直刺入(图4-1A),然后向前刺入颅腔,左右搅动捣毁脑组织;将探针抽出再由枕骨大孔向后刺入脊椎管捣毁脊髓,此时如蟾蜍的四肢松软,表示脑脊髓已完全破坏,否则应按上法再进行捣毁。
2、剪除躯干上部及内脏:在骶髂关节水平以上0.5~1 cm处剪断脊柱(图4-1B),左手握蟾蜍后肢,用拇指压住骶骨,蟾蜍头与内脏自然上垂,右手持大剪刀沿两侧除内脏及头胸部(图4-1C),仅留下后肢、髋骨、脊柱及由它发出的坐骨神经。
3、剥皮:左手提脊柱断端,右手捏住其上的皮肤边缘(图4-1D),向下剥掉全部后肢皮肤将标本放在盛有任氏液的培养皿中。
图4-1 蛙类手术操作示意图
4、将手及用过的剪刀、镊子等全部手术器械洗净,再进行下述步骤。
5、分离两腿:用镊子从背位夹住脊柱,将标本提起,剪去向上突出的尾干骨,然后沿正中线用剪刀将脊柱分为两半,并从耻骨联合中央剪开两侧大腿,这样两腿即完全分离。
将两条腿浸于盛有任氏液的培养皿中。
6.制作坐骨神经腓肠肌标本
取一腿放于蛙板上。
(1)游离坐骨神经:用玻璃钩沿脊柱侧游离坐骨神经,将标本背侧向上放置,把梨状肌及其附近的结缔组织剪断,再循坐骨神经沟找出坐骨神经之大腿部分(图4-2),用玻璃钩小心剥离,然后从脊柱根部将坐骨神经轻轻提起,剪断坐骨神经的所有分支,将坐骨神经一直游离至腘窝为止。
(2)完成坐骨神经小腿标本:将游离干净的坐骨神经搭于腓肠肌上,在膝关节周围剪掉大腿肌肉并用剪刀将股骨刮干净,然后在股骨中部剪去上段股骨,制成坐骨神经小腿标本。
(3)完成坐骨神经腓肠肌标本:将上述坐骨神经小腿标本在跟腱处穿线结扎后剪断跟腱。
游离腓肠肌至膝关节处,然后齐膝关节将小腿其余部分全部剪断。
这样就制得具有附着在股骨上的腓肠肌并带有支配腓肠肌的坐骨神经的标本(图4-3)。
用任氏液粘湿的铜锌弓迅速接触坐骨神经,如腓肠肌发生明显的收缩,则表示标本的兴奋性良好,即可将标本放在盛有任氏液的培养皿中,以备实验之用。
(二)记录装置的准备
1、根据标本收缩力的大小,选择适当的肌肉张力换能器,将换能器插入相应通道的输入插座。
2、开机与启动RM6240多道生理信号采集处理系统
3、将已制备好的标本用丝线系于张力换能器的受力片上,调节换能器的水平位置,拉紧丝线给标本以一定量的前负荷,可由基线上升高度得出。
4、将刺激器插头插入刺激输出端口,另一端与肌槽上电极相连。
5、根据标本收缩活动的形式、速度、频率、力的大小适当调整增益与扫描速度,使信号波形完整清晰地显示在屏幕中。
6、标本功能状态正常稳定后即可开始实验,进入“记录状态”。
图4-2 分离坐骨神经(下肢背面)图4-3 坐骨神经腓肠肌标本制备
1.坐骨神经
2.腓肠肌 1.坐骨神经2.腓肠肌
3.股骨
4.脊柱
3.股二头肌
4.半膜肌
[观察项目]
1、找出阈刺激
先给标本单个弱刺激,然后逐渐增大刺激强度,直到刚能描记出收缩曲线为止,此时的强度为阈强度。
记录该刺激强度。
低于阈强度的刺激为阈下刺激。
刺激输出方式:正电压。
刺激模式:单刺激。
刺激参数:波宽为6 ms,延时为3 ms,刺激强度从0.01 V开始递增。
扫描速度:10 s/div
2、找出最适刺激强度
在阈刺激的基础上,继续增加刺激强度,肌肉收缩曲线的幅度也逐渐增大,但当达到一定的刺激强度时,肌肉收缩曲线的幅度便不再随着刺激强度的增大而增高。
刚刚能引起最大收缩反应的刺激强度为最适刺激强度。
记录该刺激强度。
3、描记单收缩曲线
选用最适刺激强度,刺激模式设为单刺激,扫描速度设为1.0 s/div,描记单收缩曲线。
4、描记复合收缩曲线
选用最适刺激强度,刺激模式设为连续单刺激,刺激频率从0.5 Hz开始,依次为0.5 Hz、1 Hz、2 Hz、4 Hz、8 Hz、16 Hz、32 Hz······,扫描速度设为1.0 s/div。
增加刺激频率,可描记出呈锯齿状的不完全强直收缩曲线。
继续增加刺激频率,可描记出平滑的完全强直收缩曲线。
附:RM6240多道生理信号采集处理系统使用方法
打开RM6240外置设备电源、打开计算机主机及显示器电源→双击屏幕上“RM6240并口2.0 h”图标。
一、开始示波操作
1、实验→肌肉神经→刺激频率对骨骼肌收缩的影响→常规实验
2、调节刺激器(1)模式(2)波宽6 ms,延时3 ms (3)开始刺激
3、开始示波→工具→快速归零→点击右侧“快速归零”图标
4、调节右侧控制参数区:张力、扫描速度、灵敏度
5、工具→坐标滚动→将基线调至中央
二、开始记录
开始记录→暂停记录→在标记框内标记字符标记
三、停止示波
1、实验结束→停止示波
2、点击“文件”→另存为→本地磁盘E→文件名
四、结果处理
图形处理与打印,按照第一章介绍的基本操作进行。
[思考题]
1、如何判断制备的神经肌肉标本的兴奋性?
2、剥皮后的神经肌肉标本能用自来水冲洗吗?为什么?
3、引起肌肉收缩的阈刺激,最适刺激含义是什么?
4、肌肉的收缩形式有几种?各有何特点?。