浮法玻璃退火窑常规操作
浮法玻璃退火

上的残余应力
应力的分类
❖ 宽度方向上 ---在浮法玻璃厚度方向上沿板宽方向所产生 的残余应力 ---玻璃带边部处于压应力状态(尺寸较长), 中部处于张应力状态 (尺寸较短), 因为边部 比中部更早通过应变点 (482℃)
退火窑各区的设置
或降低发生炸裂区的中部温度(加大风量) ❖ 注意:炸板后一定要检查炸板区下面是否有碎玻璃
在玻璃板下或辊子中间,并将其及时清掉,以防止 这些碎玻璃造成玻璃板下表面划伤。
ห้องสมุดไป่ตู้
应力的产生说明
应力的产生说明
❖ 在温度低于应力点时,处于弹性变形温度范 围内(即脆性状态)的玻璃在经受不均匀的 温度变化时所产生的热应力,随温度梯度的 存在而存在,随温度梯度的消失而消失,这 种应力称为暂时应力。
应力的分类
❖ 厚度方向上 在浮法玻璃厚度方向上沿玻璃前进方向
所产生的残余应力 ---玻璃上表面和下表面首先通过应变点 ---持续的冷却使玻璃上表面和下表面处于压应
退火窑各区的设置
❖ E区 : RET2区和F1区之间的过渡区 。 ❖ F区: —目的是实现对玻璃的最后的直接强制冷却。 —每个区都配备有风管喷嘴,喷嘴布置在玻璃板的上、
下方,由2台电动风机供给冷却风。 —风管喷嘴布置在离玻璃板固定远处。 —这些区域的窑顶横向分成5个可单独调节的区域。 —这些区域窑底没有横向分区,但总流量可手动调节。
或降低边部温度。
退火窑的应急事故处理
❖ 暂时退火状况 ❖ 所有由暂时应力引起的问题均可通过调整C、
D区或强制冷却区来解决。哪个区发生问题 就调整哪个区。若问题是出在D区或是E区, 则对C区进行调节。
浮法玻璃的退火

浮法玻璃的退火(2008-07-05 08:28:59)分类:专业技术标签:应力玻璃板退火区冷却区杂谈1 浮法玻璃退火的原理和目的玻璃液在锡槽成形后经过退火窑退火,由高温可塑性状态转变为室温固态玻璃的过程是逐步控制的降温过程。
在此过程中,由于玻璃是热的不良导体,其不同部位及内外层会产生温度梯度,造成硬化速度不一样,将引起玻璃板产生不均匀的内应力,这种热应力如果超过了玻璃板的极限强度,便会产生炸裂。
同时,内应力分布不均也易引起切割上的困难。
浮法玻璃退火的目和就是消除和均衡这种内应力,防止玻璃板的炸裂和利于玻璃板的切割。
浮法玻璃的应变点温度即退火下限温度是一个关键的温度点,通常情况下在470℃左右。
退火窑在此温度之前称为退火区,玻璃板处在塑性状态;在此温度之后称为冷却区,玻璃板处于弹性状态。
玻璃板在塑性状态和弹性状态下会产生不同的应力(张应力和压应力),调整方向正好相反。
由于浮法玻璃是连续性的生产,玻璃板是连续运动的玻璃带,其退火与传统退火理论有所不同。
如:玻璃板下由于紧贴辊道,散热空间较板上小,相同的情况下,板上的散热量要高于板下,浮法玻璃的退火我们主要考虑玻璃板横向和上下表面的温度控制,退火后理想的状态是;玻璃板有一定的应力曲线分布(边部受压应力、中部受张应力、板上受张应力、板下受压应力),使其具有一定的强度,又不易破碎和有利于切割。
2 退火窑的主要结构和分区现在浮法退火窑是全钢电加热风冷型,主要的结构有两种:比利时的克纳德冷风工艺和法国的斯坦茵热风工艺。
现在国内大多数采用克纳德结构,我们主要讨论此结构的退火窑。
退火窑一般分力7个区,从前至后分别是A区、B区、C区、D区、E区、Ret区和F区,有的区还可分成几个小区。
A区:又称加热均热区,温度范围在600~550℃,在此区玻璃板尽可能均化开,自动控制达到退火前的温度范围,此区设有上、下电加热抽屉及管束式辐射冷却器,冷却方式为风机抽风,辐射换热冷却。
浮法玻璃退火工艺

浮法玻璃退火工艺
永久应力产生原因分析
永久应力大小和产生是分子位移的结果 玻璃是热的不良导体,在冷却过程中,相邻的地方不可能是 同一个降温速度,这就注定在过程中会存在温差,这个温 差,决定了谁先进行到刚性体的先后顺序,最终反映出有的 地方分子停止位移,有的地方还可以位移,这种位移差将, 导致在同一块玻璃上的应力松弛的不同,从而产生永久应力。
1.75:1冷却 速度
退火冷却速度按6mm计算一般选18.52℃/min
各区长度就 可以算出了
浮法玻璃退火工艺
CUND退火窑的结构
电加热
上部辐射管
传动辊道
风机
下部辐射管
热电偶
进风口
出风口
A区的结构
浮法玻璃退火工艺
CUND退火窑的结构
电加热
上部双辐射管
风机
传动辊道
下部双辐射管
热电偶
出风口
进风口
B/C区的结构
6、退火下限:玻璃在此温度保持 3min,应力消除5%的温度范围,450480℃
弹性体 刚性
永久应力与上下限温度范围内的降温速度有太大的关系
浮法玻璃退火工艺
1 退火基本原理
自由流动的熔体
玻璃在冷却过程中,黏度呈指数剧 增。温度由516.05 ℃降至常温, Δt 成型前 =486.05℃,物理特性却呈现出连续、
30℃ 在
应力合-10+7=-3=应力松弛的量
450℃以上产生永久应力,以下不 会
板边长于板中部
无论何应力都不能超过极限,包括两者应力的叠加
浮法玻璃退火工艺
永久应力与什么有关
1.与厚度有关 2.与退火区纵向冷却速度有关 3.与退火区横向冷却速度有关 4.与退火区上下冷却速度有关
退 火 窑 安 全 操 作 规 程

一.升温前检查1.检查电控柜各接触器控制部件接触是否良好,绝缘状况如何。
2.检查燃气加热器件情况如何。
以上两项检查无误后,方可点燃天然气。
二.升温1.退火窑初次升温要缓慢,从常温升到工作温度应不少于24小时,以适应窑体钢结构的膨胀要求。
2.升温过程中,应首先启动网带传送电机,保证网带处于运动状态。
3.在整个升温过程中,循环风机应运行不停。
4.如发生停电、停机等故障,要保持循环风机运转不停,窑头、窑尾的挡板落到最低位置,以保持窑内温度尽可能的缓慢降低。
三.停机处理1.如须停止退火窑工作,要首先停止燃气加热,保持循环风机和网带传送电机运行。
2.降下窑头、窑尾挡板,缓慢降温,以保证窑体均匀收缩至常温。
四.运行1.退火窑在升温阶段,要将自动/手动开关,转入手动位置,根据升温速度调整功率的投入。
2.达到退火温度后或玻璃制品进入退火窑后,应转入自动控制。
3.根据各燃气投入情况,应选择适当的燃气压力,以使温度波动最小。
4.如温度下降过多,可适当增加燃气压力最大,提升升温速度。
5.在整个过程中,要密切监视退火温度的变化情况,如有异常要及时处理,稳控仪表每半年要检验一次,电器,加热元件要严格按大、中、小修程序和时间进行。
五.机械部分1.网带传动要有专人监视,发现网待跑偏要及时调整。
2.窑头、窑尾各注油孔要按规定有规律的定时注油,以保证转动的灵活性。
3.凡传动部件,车间维修人员要定期检查,如有异常须及时处理。
明光市富域玻璃有限公司2019年1月10日明光市富域玻璃有限公司退火窑安全生产操作规程2019年1月10日发布实施。
浮法玻璃生产技术与设备(第二版)5 玻璃的退火与退火窑(1)

实践证明,此区温降≤160℃ 为宜。
但不能用室温空气直接冷却玻璃,以免玻璃 冷却温度过大而引起炸裂。
采取控制循环热风的温度,对玻璃带进行直 接吹风对流冷却,以使玻璃能以比其在后退 火区稍大或相同的冷却速度进行对流冷却, 使玻璃带的表面温度由370~380℃降到 220~240℃
5.1.2.6 室温风强制对流冷却区(F区)
5 玻璃的退火与退火窑
机械零件的退火
将钢件(钢坯)加热到临界温度以上 30°C~50°C保温一段时间,然后再缓慢 地冷却下来(一般用炉冷),其目的是用来 清除铸、锻、焊零件的内应力,降低硬度, 以易于切削加工,细化金属晶粒,改善组织, 增加韧性。
浮法玻璃的退火是指从锡槽出来的玻璃带, 按一定的温度曲线,进行冷却的过程。其目 的是消除玻璃中的残余内应力和光学不均匀 性,以及稳定玻璃内部的结构。
应力产生的原因与该温度区域的冷却速度、 温度梯度、黏度和玻璃厚度有关。
5.1.2 退火的定义和目的
玻璃的退火:主要是将玻璃置于退火窑中经 过足够长的时间通过退火温度范围或以缓慢 的速度冷却下来,不再产生超过允许范围的 永久应力和暂时应力。
退火的目的:消除玻璃中的残余应力和光学 不均匀性。
过程:一是内应力的减弱和消失;二是防止 产生新的应力。
主要消除玻璃中残存应力的地方。 出A区温度在510~520℃左右 。
5.1.2.3 冷却区(亦称后退火区,C区)
玻璃退火区域以下,即在玻璃退火的下限温 度以下的冷却,可以以较快的速度进行,但 冷却速度也不能太快。
玻璃在低于退火下限温度进行冷却所产生的 内应力为暂时应力,暂时应力沿板厚度方向 分布与永久应力相反,其最大的张应力在板 的表面。如冷却速度太快,则会引起暂时应 力过大而使玻璃破裂。
浮法玻璃退火窑

浮法玻璃退火窑退火窑是浮法玻璃生产线的三大热工设备之一。
他的作用就是建立和维持一个满足退火工艺要求的退火温度制度。
玻璃退火区,需创建匀热和结构调整所必需的、均匀的温度场。
退火后区,要控制好冷却速率,防止玻璃炸裂。
除了要保证玻璃品质和成品率,好的退火窑在设计建造时还应该尽量提高退火效率,缩短退火窑长度,在选择材料和设备时要根据退火窑环境的变化进行调整。
另外退火窑在建造时要充分考虑到它的可操作性。
1.退火基本原理玻璃的退火就是为了减小和消除玻璃中的残余内应力,使其在允许值范围内且合理分布。
在降温过程中玻璃由外表向外散热,所以会照成边部和中间,内部和外部的温度梯度。
由于温度的不均就会在玻璃内形成热应力。
当玻璃温度降到最高退火温度时玻璃开始由弹塑体向弹性体转变。
此时的玻璃仍具有黏弹性,根据玻璃的内应力消除理论,在受到不均匀力的作用时,分子间产生位移和形变,以使玻璃达到平衡,消除由温度梯度而产生的内应力。
在这一温度下玻璃中的95%的应力会在2 min 内消失。
随着温度进一步的降低玻璃会向刚性化方向转变,玻璃表面和边部温度低,它们会先达到体积平衡状态不在收缩,而玻璃内部温度比表面高,还会继续收缩,这是就会产生永久应力。
为了消除和减小永久应力,在玻璃退火区(退火上下限温度之间,10050<∆<t )玻璃的冷却必须要缓慢的进行,以保证玻璃退火质量要求。
当温度低于退火温度时,玻璃基本失去塑性,此时的温度梯度产生的暂时热应力都会随着温度的均衡而逐渐消失。
因此在后退火区可以提高冷却速度,但保证在降温过程中不会应为冷却太猛而造成炸板。
2.退火窑的结构分布根据退火的基本原理,玻璃在不同温度下其冷却速率是不同的。
为了根据不同情况和要求进行退火,以便分区加以控制,以达到提高玻璃退火质量的目的,退火窑被分成了均热预退火区(A 区)、重要退火区(B 区)、后退火区(C 区)、热风循环强制对流冷却区(Ret 区)、冷风强制对流冷却区(F 区)。
浮法玻璃的退火

浮法玻璃的退火在确定浮法玻璃退火温度之前,首先要确定浮法玻璃的退火上限温度和退火下限温度。
根据资料介绍浮法玻璃退火上限温度与下限温度差在70~80℃之间。
萍乡浮法玻璃厂浮法玻璃的化学成分:SiO272.1% Al2O3 1.2% CaO 8.4% MgO 4%Na2O 14% Fe2O3≤0.1% 根据Fulcher实验公式:T上限=T0+B/(lg13泊+A)和T下限=T0+B/(lg17.5泊+A)计算,萍玻厂退火上限温度为545.1℃,退火下限温度为427.3℃,温差为72.8℃。
依据不同厚度浮法玻璃设定的永久应力值,确定退火窑B区的降温速度(℃/min)。
B区的降温速度是由拉引速度m/min和每延长米的降温速度(℃/m)决定的。
即B区降温速度℃/min=拉引速度(m/min)×B区每延长米的降温速度(℃/m)。
根据公式δ=K·E2·G,计算其永久应力。
K:常数4.457 E:玻璃厚度(mm)G:B区浮法玻璃的降温(℃/min)。
不同厚度浮法玻璃的永久应力值nm/cm在玻璃熔窑的熔化能力确定之后,即可根据生产的玻璃厚度和原板宽度计算出拉引速度(m/min),由此不难算出B区每延长米的降温速度(℃/m)。
这样就知道了退火窑B区的温降,即B区降温速度(℃/m)×退火窑B区长度(m)。
依此决定退火窑A区出口温度及B区出口温度。
当退火窑A区、B区进出口温度确定之后,根据公式T介=T表-1.25K·C·E×103完全可以计算出测温点处玻璃带及空间介质温度,也就是热电偶显示的温度就确定了。
注:K:玻璃的物性热工参数,由图表查得C:玻璃带在该区段的冷却速度(℃/min)E:玻璃带的厚度(mm)T表:玻璃带在该处的表面温度(℃)T介:玻璃带在该处的炉膛介质温度玻璃带温度(℃)K值玻璃带温度(℃)K值575 0.175 476 0.23550 0.19 430 0.27532 0.2 384 0.31513 0.215 328 0.375495 0.22 272 0.45萍乡浮法玻璃厂熔窑熔化能力(t/d)、生产的玻璃厚度(mm)、拉引速度(m/h)、降温速度(℃/m、℃/min)及永久应力、A、B区玻璃带进出口温度、测点处空间介质温度(℃)如下:由上面计算看,B区出口温度可满足退火要求,对厚玻璃B区出口温度可定为380℃,A区温度以不低于545℃为宜。
浮法玻璃退火窑的原料熔化与处理工艺

浮法玻璃退火窑的原料熔化与处理工艺浮法玻璃是一种用于制造平板玻璃的重要工艺。
在浮法玻璃的制造过程中,退火是一个关键环节,它可以改善玻璃的力学性能和光学品质。
退火窑是实现这一工艺的核心设备,它能够使玻璃在高温下进行均匀加热、保持一定时间后缓慢冷却,以消除内部应力并提高玻璃的强度和表面平整度。
原料熔化是浮法玻璃制造过程中的首要环节。
浮法玻璃的主要原料包括石英砂、碳酸钠、石灰石和氟化钠等。
在玻璃窑炉内,通过一系列的化学反应和物理变化,将这些原料熔化成高温下的玻璃液体。
熔化过程主要分为料层融化和玻璃池形成两个阶段。
首先,原料进行预热,以提高熔化速度和保证均匀性。
这一步骤对于节约能源和提高熔化效率非常重要。
预热阶段还可以帮助除去原料中的含气和水分,减少玻璃液体中的气泡数量,从而提高玻璃的质量。
在料层融化阶段,熔窑内的温度逐渐升高,使得原料逐渐软化和熔化。
同时,逐渐形成玻璃池。
这一阶段的关键是控制熔化过程中的温度分布和物料的混合程度。
熔化温度及其分布情况对于形成均匀的玻璃池、提高玻璃质量非常关键。
熔炉中常用的加热方式有油加热、气加热和电加热。
其中,电加热方式是比较常见的,具有温度控制精确、加热效率高和环境污染少等优点。
利用电加热熔窑可以实现对熔化过程的精确控制,确保玻璃液体的温度达到生产要求。
随着熔化过程的进行,原料逐渐熔化,形成的玻璃液体通过热力对流和物料混合,使得玻璃液体的温度和成分分布趋于均匀。
在温度达到一定值后,会进入到玻璃池形成阶段。
玻璃池形成阶段是熔化过程的最后一个阶段。
在这个阶段,玻璃液体表面形成了一层平整的玻璃池,它的厚度和温度分布对于浮法玻璃的质量有着重要影响。
较为理想的玻璃池应具有较大的面积、均匀的厚度分布和适当的温度梯度。
玻璃池的存在为接下来的浮法工序提供了均匀而稳定的玻璃液体。
在浮法玻璃制造过程中,原料熔化和处理工艺直接影响玻璃的质量和性能。
通过优化控制熔化温度、控制熔炉的加热方式以及保证熔化过程的均匀性和稳定性,可以改善玻璃的力学性能和光学品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮法玻璃退火窑常规操作
3 常规操作
3.1边松
边部压应力大,12mm以下玻璃边部用手能抬起来,玻璃太厚了抬不动。
玻璃易横炸。
调整:开大退火后区边部风量,或升高退火前区边部温度。
3.2边紧
边部张应力大,12mm以下玻璃边部用手很难抬起来,玻璃易纵炸。
调整:关小退火后区边部风量,或降低退火前区边部温度。
3.3退火温度调整方法 :
A 、
B 、
C 三区以调整温度设定值为主 , 如切手动控制 , 则直接调整风阀开度 , 对温度的调节幅度每次应控制在 2 ℃以内 ; RET区、 F 区及冷端边部吹风则调整风阀开度或变频器频率值;退火
调整应从后往前 , 即先调敞开区风阀 , 如无效再往前调 C、B、A 三区的温度;
3.4 发现异物的处理 :
在锡槽吹扫清洗水包及故障应急处理时应坚守在敞开区后 , 观察板面上是否有硅碳棒等异物 , 锡槽工操作时如发现有异物落于板面上应及时通知退火工;
跟踪异物 , 若在退火窑内炸裂 , 应记下位置 , 事后找出异物交生产科处理 ( 如未找到应汇报 ); 若异物至F 区仍未炸 , 则应敲下异物交生产科处理 ; 严禁异物进入碎玻璃系统;
3.5 改品种时的操作
应注意及时调整退火温度,防止玻璃炸裂,如薄改厚,要及时关小RET区F区的风阀。
4 应急处理
4.1停电
停电时的处理 :
关风机风阀,关风机,进行尽可能的保温;如主传动未停应在RET 区水炸玻璃;
4.2断板
锡槽断板后的处理 :
关闭各区风阀 , 护送残余玻璃安全通过退火窑 , 如玻璃变形严重 , 则应将热电偶提起 ;
关退火窑各风机 , 适当开启电加热维持窑内温度 ;
检查并清理退火窑内碎玻璃 , 尤其是卡在退火窑辊子间的碎玻璃。
4.3风机停转
当出现风机停机时会在中控室盘面上报警 , 应在盘面上予以确认 , 然后到现场找到该风机及相应控制柜和操作盘面 , 重新启动; 如退火窑风机ABC不能启动,应将该风机闸板关死,将中间闸板打开,
用一台风机抽板上板下的风,同时通知动仪人员维修.若是F区风机,如一用一备都不能启动,则通知动仪人员维修,加大其他区的风阀开度.
4.4退火缺陷
4.4.1纵炸 :
原因 : 由于玻璃边部呈张应力或中部呈压应力 , 即边部较紧所致 ;
处理 :退火区 ( 指 A 、 B 区 , 下同 ) 降低边部温度或增加中部温度 ;退火后区 ( 指 C 区及其后各区 , 下同 ) 提高边部温度或降低中部温度 ; 关闭退火窑两侧门窗 , 在 F 区两侧设挡风板。
4.4.2横炸 :
原因 : 由于玻璃边部压应力过大 , 即边部较松造成的 ;
处理 :退火区增加边部温度或降低中部幅度 :退火后区降低边部温度或提高中部温度。
4.4.3炸边 :
原因 : 主要是用拉边机法生产的厚玻璃 , 光边比中间薄 , 靠近牙印的内侧部分又比中间厚 , 使得光边较中间冷却的快 , 而靠近牙印的内侧部分又比中间冷却的慢造成的;
处理 : 退火区降低边部温度或增加中部温度 ; 退火后区提高边部温度或降低中部温度(可根据需要在 C 区增开少量边部电加热 );在RET区出口加烧边火 ; 关闭退火窑两侧门窗 ,在 F区两侧设挡风板;使用线性马达 , 加强冷热锡液的混合速度 ; 对过渡辊台两侧保温。
4.4.4 横掰毛刺
原因 : 由于出现毛刺部位张应力过大造成的。
处理 : 在退火区降低对应部位的温度 ; 在退火后区提高对应部位的温度或减少相邻部位温度 ; 调节冷端边部的吹风量。
4.4.5横掰时在边部处不沿切痕断开 :
原因 : 玻璃边部压应力太大造成的 ;
处理 : 同“2. 横炸”处理方法相同。
4.4.6横掰时产生纵裂 :
原因 : 在边部有太大的张应力或边部没有足够的压应力 ;
处理 : 同“纵炸”处理方法。
4.4.7 玻璃板上没有切痕 :
原因 : 切割刀具没有足够的压力或损坏;玻璃冷却速度太快造成表面压应力太大 ;
处理 : 增加切割刀具的压力或更换刀具 ; 减少退火风冷区的冷却速度 , 即整体调高温度设定值。
4.4.8玻璃沿切痕自动断开 :
原因 : 玻璃退火太好 , 中心张应力及表面压应力太小;
4.4.9 掰边多缺角 :
原因 : 玻璃边部压应力太大 ;
处理 : 同“2 横炸” 处理方法 ; 调整冷端边部吹风量。
4.4.10 中刀多角 :
原因 : 玻璃边部压应力大 , 即太松 ;
处理 : 同“横炸”处理方法。
4.4.11 横掰辊顶不断玻璃 :
原因 : 掰断辊顶起亚力太低,行程太短 ; 没有切痕 ; 玻璃表面压应力太高 ;
处理: 增加掰断辊顶起压力或行程;更换切割刀具或增加切割压力;减少退火风冷区的冷却速度,即整体调高温度设定值;
4.4.12玻璃板上表面划伤的处理 :
原因 : 过渡辊台或退火窑挡帘位置过低、变形下垂或前面卡有异物;热电偶过低 ;残余碎玻璃卡住 ( 二线自动检测前面刷子应尤其注意检查 );
处理 : 提高导致划伤的挡帘 ; 清除挡帘前异物或下垂 ; 提高热电偶 ; 清除残余碎玻璃 ;
4.4.13玻璃板下表面划伤的处理 :
原因 : 锡槽三角区锡液面上有异物 ; 出口温度过高;辊子间间碎玻璃划伤 ;辊子停转 ;
处理 : 清除三角区内异物 ; 降低锡槽出口温度 ; 清除辊间碎玻璃 ;请保全处理停转辊子;
4.4.14 某点局部温度异常 :
原因 : 玻璃板摆 , 不稳定 ; 薄膜阀的控制系统故障 ( 电脑方面出现问题 ); 薄膜阀的执行机构故障(薄膜破损,气源堵塞或压力不足蝶阀卡死等 ); 热电偶位置移动 ; 热电偶线路接触不良或损坏;
处理 : 锡槽调整参数 , 稳定玻璃走向 ; 现场手动控制风阀 ; 请仪表人员检查处理。
4.4.15 退火温度整体上升或下降 :
原因 : 锡槽出口温度变化 ; 气源压力不足 ( 冷干机或空压房故障 ) 导致退火温度上升 ;气源压力过大导致退火温度下降 ; 风机停转等 ;
处理 : 锡槽稳定出口温度 ; 稳定净化气压力 ; 重新启动风机.。