19个题讲透离心率的求值和取值范围问题.doc

合集下载

离心率问题归纳大全

离心率问题归纳大全

【解析】 AF2 BF2 0, AF1 BF2 ,连接 AF1, BF1 ,由椭圆的对称性可知, F1AF2B 是矩形,设 AF2 3t ,则
BF2
4t ,知
AF1
4t, 2a 3t 4t, a 7 t ,由勾股定理, 2
2c
3t 2 4t 2 5t, c 5 t , e c 5 ,选 D.
B.
C.
D.
【解析】
因为直线
的倾斜角为 ,所以

,由双曲线的定
义可得
,解得
,故选 A.
3.已知两定点 A2,0 和 B2,0 ,动点 P x, y 在直线 l : y x 3上移动,椭圆 C 以 A, B 为焦点且经过点 P ,则
椭圆 C 的离心率的最大值为( )
A. 2 26
B. 4 26
C. 2 13
解析几何离心率问题
第一类 椭圆离心率求值
1.设 F1 、 F2 是椭圆 x2
y2 b2
1(0 b 1) 的左、右焦点,过 F1 的直线 l 交椭圆于 A 、 B 两点,若
AF1
3 F1B
,且
AF2 x 轴,则椭圆的离心率等于
A. 1 3
B. 1 2
C. 2 2
D. 3 3
【答案】D
2.已知抛物线
两点, AF2F1 45 ,则椭圆 C 的离心率等于( )
A. 1 2
B. 2 1 C. 2 1 D. 2 【答案】B
9.已知 F
是椭圆
E
:
x2 a2
y2 b2
1(a
b 0) 的左焦点,经过原点的直线 l 与 椭圆 E 交于 P , Q 两点,若
PF
2 QF

离心率的求值或取值范围问题

离心率的求值或取值范围问题

离心率的求值或取值范围问题【方法技巧】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式, 第三步 解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.【应用举例】【例题1】若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )A .34 B .23 C .12 D .14【答案】C 【解析】试题分析:根据椭圆定义,原点到两焦距之和为2a=1+2,焦距为2c=2,所以离心率为12. 考点:椭圆的定义. 【难度】较易【例题2】点P (-3,1,过点P 且方向为a =(2,-5)的光线经直线y=-2反射后通过椭圆的左焦点,则此椭圆离心率为( )【答案】A 【解析】试题分析:因为给定点P (-3,1根据光线的方向为a =(2,-5)y=-2与入射光线的斜率互为相反数可知焦点的坐标为(1,0),因此可知 A 考点:本试题考查了椭圆性质的知识点。

点评:解决该试题的关键是利用椭圆的反射原理得到直线斜率的特点,结合平面反射光线与入射光线的斜率互为相反数,得到c 的值,同时得到a,b,c 的关系式,进而得到结论,属于基础题。

专题06 圆锥曲线离心率及范围问题(解析版)

专题06 圆锥曲线离心率及范围问题(解析版)

专题6 圆锥曲线离心率及范围问题离心率在圆锥曲线问题中有着重要应用,它的变化会直接导致曲线类型和形状的变化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.关于圆锥曲线离心率(范围)问题处理的主体思想是:建立关于一个,,a b c的方程(或不等式),然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种办法:○1利用圆锥曲线的定义解决;○2利用题中的几何关系来解决问题。

另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、圆锥曲线的离心率方法1:利用定义法求离心率知识储备:椭圆和双曲线的第一定义。

方法技巧:一般情况题中出现圆锥曲线上的点与焦点联系在一起时,尽量转化为定义去考虑,会更简单!例1.(2015年浙江15题)椭圆22221x ya b+=(0a b>>)的右焦点(),0F c关于直线by xc=的对称点Q在椭圆上,则椭圆的离心率是.法一:(当时网上的主流解法)大家上网看到的基本上就是这种解法,此方法入手很容易,但是后期的运算量会很大,并且此题高次方程的因式分解要求很高(对大部分学生来说高次方程分解本来就是一个盲区)。

【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得到OM QF ⊥且M 为QF 中点,又O 为F 1F 的中点,所以OM 为中位线,且1F Q QF ⊥。

由点到线的距离公式计算得到:,bc MF a=再由tan b FOM c ∠=得到:2c OM a =. 所以2,bcQF a=212c QF a =, 据椭圆定义:12QF QF a +=得到:2222bc c a a a+=,化简得: b c =,即22e =.通过比较我们发现法二(定义法)计算过程更加简洁,不易出错。

我在给学生讲题的时候学生经常会问我,哪个时候用定义法,其实大家只要看到有曲线上的点和焦点有联系时,就可以往定义法多思考一些。

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

离心率求解经典例题

离心率求解经典例题

离心率求解经典例题离心率是描述椭圆形状的一个重要参数,它在物理学、天文学以及航天工程等领域中具有重要的应用。

本文将介绍离心率的定义、计算公式以及求解经典例题。

1. 离心率的定义在椭圆的基本参数中,离心率是用来描述椭圆形状的一个值。

离心率的定义是:离心率等于焦点间距离与长轴的比值。

假设椭圆的焦点间距离为2a,椭圆的长轴长度为2b,则离心率e的计算公式为:e = a / b离心率的值范围在0到1之间,当离心率为0时,表示椭圆为一个圆形;当离心率为1时,表示椭圆为一个抛物线;当离心率大于1时,表示椭圆为一个双曲线。

2. 离心率的计算在求解离心率时,需要已知椭圆的焦点间距离和长轴长度。

给定坐标系下的椭圆方程为:x^2 / a^2 + y^2 / b^2 = 1,其中a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。

可以通过知道椭圆的焦点坐标及椭圆上一点的坐标来求解离心率。

假设椭圆的焦点坐标为(F1, 0)和(F2, 0),椭圆上一点的坐标为(x, y)。

根据距离公式,有:√((x - F1)^2 + y^2) + √((x - F2)^2 + y^2) = 2a将椭圆方程化简后,可得到:x^2 / a^2 + y^2 / b^2 = 1将上述两个方程联立,并且消去变量y,可以得到椭圆上一点坐标x的关系表达式。

将x的值代入任一方程中,即可求得y的值。

利用x和y的值,可以计算出离心率e。

3. 求解经典例题现在通过一个经典的例题来说明离心率的求解过程。

例题:已知一个椭圆的焦点坐标为(F1, 0) = (-2, 0)和(F2, 0) = (2, 0),椭圆上一点的坐标为P(x, y) = (4, 3)。

求此椭圆的离心率。

解答:根据离心率的计算公式,我们可以先求出椭圆长轴的一半长度a和短轴的一半长度b。

根据焦点坐标和椭圆上一点的坐标,可以得到a、b的计算公式如下:a = (PF1 + PF2) / 2 = (√((x - F1)^2 + y^2) + √((x - F2)^2 + y^2)) / 2 = (√((4 +2)^2 + 3^2) + √((4 - 2)^2 + 3^2)) / 2 = (11 + 5) / 2 = 8 / 2 = 4b = √(a^2 - c^2) = √(4^2 - 2^2) = √(16 - 4) = √12 = √(4 * 3) = 2√3根据得到的a和b的值,可以计算离心率e:e = a / b = 4 / (2√3) = 2 / √3 = (2 / √3) * (√3 / √3) = (2√3) / 3 ≈ 1.155所以,此椭圆的离心率约为1.155。

离心率的求法总结[精]

离心率的求法总结[精]

圆锥曲线中的离心率问题离心率两大考点:求值、求范围求值: 1. 利用a与c的关系式(或齐次式)2. 几何法3. 与其它知识点结合、不等关系求解.求范围: 1. 利用圆锥曲线相关性质建立a c、不等关系求解2. 运用数形结合建立a c3. 利用曲线的范围,建立不等关系4. 运用函数思想求解离心率5. 运用判别式建立不等关系求解离心率一、求离心率的值1. 利用a与c的关系式(或齐次式)题1:(成都市2010第二次诊断性检测)已知椭圆的一个焦点为F,若椭圆上存在点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF 的中点,则该椭圆的离心率为.题2:已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60°,则双曲线C 的离心率为62题3:设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )(A )3 (B )2 (C )5 (D )6解:由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C 。

题4:(2009浙江理) 过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C .若12AB BC =,则双曲线的离心率是( ) (A )2 (B )3(C )5(D )102. 几何法题1: 以椭圆的右焦点F ,为圆心作圆,使这圆过椭圆的中心,且交椭圆于点M ,若直线MF l (F l 为左焦点)是圆F2的切线,M 是切点,则椭圆的离心率是11211,2,3,31MF F F MF e题2: Fl ,F 2为椭圆的左、右两个焦点,过F 2的直线交椭圆于P 、Q 两点,PF 1PQ ,且1PF PQ ,求椭圆的离心率.题3:12212(05,,221A.B. C. 2 2 D. 21F F F P F PF 全国)设椭圆的两个焦点分别为、过作椭圆长轴的垂线交椭圆于点若为等腰直角三角形,则椭圆的离心率是( )---∆(采用离心率的定义以及椭圆的定义求解)解:如右图所示,有12222||||2122221c c cea a PF PF c c ===+===-++离心率的定义椭圆的定义故选D3. 与其它知识点结合题1:已知M 为椭圆上一点,F l ,F 2是其两个焦点,且∠MF l F 2= 2,∠MF 2F l =(≠ 0),则椭圆的离心率为( )(A)1—2sin (B)l —sin 2 (C)1-cos2 (D)2cos -1题2:已知P 为双曲线右支上一点,F l 、F 2是其左、右两焦点,且∠PF l F 2= 15°,∠PF 2F l =75°,则双曲线的离心率为 .2练习:.22221(0),34x y a b ab c 1.设双曲线半焦距为c,直线l 过点(a,0),(0,b)两点,已知原点到直线l 的距离为,则双曲线的离心率为( )A232.已知双曲线的渐近线为34yx ,则双曲线的离心率为 55,343.过双曲线的一个焦点F 作垂直于实轴的弦MN ,A 为双曲线的距F 较远的顶点,∠MAN=90°,双曲线的离心率等于 22b a ca221212224.(071(0,0)||5A. 3B. 5C.D. 13x y F F a b A B O OF a bF AB 安徽卷)和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为( D )+-=>>∆22121222125.(07190,||3||,51015A. B. C. D. 5x y F F A F AF a bAF AF 全国Ⅱ)设、分别是双曲线的左、右焦点,若双曲线上存在点,使且则双曲线的离心率为( B )-=∠==二、求离心率的取值范围1. 利用圆锥曲线相关性质建立a c 、不等关系求解.题1:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞分析 求双曲线离心率的取值范围需建立不等关系,题设是双曲线一点与两焦点之间关系应想到用双曲线第一定义.如何找不等关系呢?解析:∵|PF 1|=2|PF 2|,∴|PF 1||PF 2|=|PF 2|=2a ,|PF 2|c a ≥-即2a c a ≥-∴3a c ≥ 所以双曲线离心率的取值范围为13e <≤,故选B.点评:本题建立不等关系是难点,如果记住一些双曲线重要结论(双曲线上任一点到其对应焦点的距离不小于c a -)则可建立不等关系使问题迎刃而解.题2:(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 73∵|PF 1|=4PF 2|,∴|PF 1||PF 2|=3|PF 2|=2a ,|PF 2|c a ≥-即23a c a ≥-∴53a c ≥ 所以双曲线离心率的取值范围为513e <≤,故选B.练习:1. 已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞解析2221222222(2)442448PF a PF a PF a a a a PF PF PF +==++≥=,欲使最小值为8a ,需右支上存在一点P ,使22PF a =,而2PF c a ≥-即2a c a ≥-所以13e <≤.2. 利用曲线的范围,建立不等关系题1. 设椭圆22221(0)x y a b ab 的左右焦点分别为F 1、F 2,如果椭圆上存在点P ,使1290F PF ,求离心率e 的取值范围。

圆锥曲线微专题----求离心率的取值范围

圆锥曲线微专题----求离心率的取值范围

圆锥曲线离心率的取值范围 专题一、知识纵横1. 求离心率的取值范围基本方法:通过对已知几何条件的代数化翻译,得到关于a ,b ,c 的齐次不等式,最后除以a 相应的次数,得到e 的不等式,解之即可.解决问题的关键在于获知取值范围的来源,也即不等关系的产生原因,常见的范围来源总结如下. ①题中给出:即题目中已经明确给出某个变量的范围,则只需找到e 与此变量的关系即可;②焦半径范围:注意椭圆焦半径范围[],a c a c -+,双曲线中焦半径范围为[),c a -+∞或[),c a ++∞; ③存在性问题:即由几何存在性问题对某个变量的约束所产生的范围.二、典型例题【题型1 题中给出范围】例1. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4例2. 已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,左顶点为A .若点P 为椭圆C 上的点,PF x ⊥轴,且sin PAF ∠C 的离心率的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭ B .20,3⎛⎫ ⎪⎝⎭ C .1,13⎛⎫ ⎪⎝⎭ D .2,13⎛⎫ ⎪⎝⎭例3. 已知椭圆2222:1(0)x y C a b a b+=>>,过原点的直线交椭圆于,A B 两点,以AB 为直径的圆过右焦点F ,若,123FAB ππα⎡⎤∠=∈⎢⎥⎣⎦,则此椭圆离心率的取值范围是( )A .1⎤⎥⎣⎦B .⎢⎥⎣⎦C .⎛ ⎝⎦D .⎫⎪⎪⎣⎭【题型2 焦半径范围】例4. 已知P 为椭圆22221(0)x y a b a b+=>>上一点,12F F ,为椭圆焦点,且213PF PF =,则椭圆离心率的范围是( )A .10,3⎛⎤ ⎥⎝⎦B .1,13⎡⎫⎪⎢⎣⎭C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭例5. 已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎢⎥⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦例6. 已知椭圆22221x y a b +=(0a b >>)的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c =上存在一点P 满足()0FP FA AP +⋅=,则椭圆的离心率取值范围为( )A .1,12⎡⎫⎪⎢⎣⎭B .⎫⎪⎪⎣⎭C .⎫⎪⎪⎣⎭D .⎛ ⎝⎦例7. 设椭圆E :22221(0)x y a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得9PA PF +=,则椭圆E 的离心率的取值范围是( )A .1[,1)2B .11,32⎡⎤⎢⎥⎣⎦C .11,54⎡⎤⎢⎥⎣⎦D .12,23⎡⎤⎢⎥⎣⎦【题型3 存在性问题】例8. 若双曲线()222210,0x y a b a b-=>>与直线y =没有公共点,则该双曲线的离心率e 的取值范围是( )A .(]1,2B .()1,2C .(D .(例9. 设椭圆22221x y a b+=()0a b >>的两焦点为1F ,2F ,若椭圆上存在点P ,使12120F PF ∠=︒,则椭圆的离心率e 的最小值为( )A .12 B C D例10. 已知椭圆22122:1(0)x y C a b a b +=>>与圆22223:4b x y C +=,若在椭圆1C 上不存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .B .C .D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19个题讲透离心率的求值和取值范围问题
一、求离心率的值问题
求离心率的值需要构造一个含有或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。

1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了的关系,因此如果能找出三条边的关系也就可以求出离心率的值。

2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。

上图中A,B两点不是焦点,,且条件中没有b和c的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含的等式,因此题目的关键不是构造等式而是求出点M的坐标,代入到双曲线的方程中即可求出离心率。

【解析】题目中未出现焦点三角形,则与定义无关,且A,B均不在双曲线上,因此求点坐标无用,题目双曲线中唯一出现的与有关系的量就只有渐近线了,因此题目中必定用到渐近线方程,题目中还给出了[垂心的概念,因此垂直关系就很明显了。

而题目中的等量关系就是垂直,
二、求离心率范围问题
与求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等关系,且不等关系中含有或数字的形式,至于如何建立不等关系,可总结为四种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(3)焦点三角形面积的取值范围:当点P处于B位置时,焦点三角形面积最大,例:
2.从直线和圆锥曲线的位置关系或点和圆锥曲线的位置关系入手
(1)点和圆锥曲线的位置关系
若能用表示出某点的坐标,则根据点在椭圆内/外,将点代入椭圆内就有相应的不等关系,而这个点一般是特殊位置点,如三心、中垂线上的点等。

例:
(2)直线和圆锥曲线位置关系。

在开放式问题中如果问存在不存在或者求直线方程时求出多个斜率,则必定要对所求的值进行验证,若在离心率的取值范围问题中使用位置关系的判定方法,例如判别式法只能求出某个参数的取值范围,求离心率的取值范围其实是将离心率转化为关于所求出参数的函数的取值范围,例:
3、最难的几何法,通过分析题目中的几何条件得出不等关系,例如三角形两边之和大于第三边,例如出现的钝角锐角或者出现的三角形的形状,中垂线等,这也是求离心率取
值范围中最难的一种,考察队几何图形和已知条件的关联性。

因为题目中只给出了垂直关系,且两点为直线与椭圆的交点,因此考虑直线与椭圆联立,运用韦达定理。

因为题目中的垂直关系,我们可以用向量或者斜率来解出不等式,过程如下:。

相关文档
最新文档