离心率及其范围题型归纳

合集下载

离心率问题的7种题型和15种方法

离心率问题的7种题型和15种方法

离心率问题的7种题型和15种方法离心率(eccentricity)是描述椭圆轨道形状的一个重要参数,它的大小决定了行星或卫星轨道的偏心程度。

在天文学、航天学等相关领域,经常需要解决各种与离心率相关的问题,下面我们将介绍离心率问题的7种常见题型和15种解题方法。

一、离心率的定义及性质离心率是描述椭圆轨道形状的一个参数,它等于椭圆长半轴和短半轴之差的一半与长半轴的比值。

离心率的取值范围为0到1之间,当离心率为0时,椭圆变成了一个圆,当离心率为1时,椭圆变成了一条直线。

离心率越大,椭圆的形状越扁平,轨道越偏心。

二、离心率问题的7种题型1. 求给定离心率的椭圆的半长轴和半短轴长度;2. 已知椭圆的长半轴和离心率,求短半轴长度;3. 已知椭圆的长半轴和短半轴长度,求离心率;4. 求给定行星或卫星的轨道离心率;5. 已知行星或卫星轨道的离心率和半长轴长度,求轨道的半短轴长度;6. 已知行星或卫星的轨道离心率和半短轴长度,求轨道的半长轴长度;7. 求给定行星或卫星的轨道周期。

三、离心率问题的15种解题方法1. 利用椭圆轨道的定义和性质,直接计算出椭圆的长短半轴;2. 利用椭圆的面积和周长公式计算出椭圆的长短半轴;3. 利用行星或卫星的轨道速度和距离公式计算出轨道离心率;4. 利用行星或卫星的轨道周期和距离公式计算出轨道离心率;5. 利用行星或卫星的轨道半径和速度公式计算出轨道离心率;6. 利用行星或卫星在轨道上的最高点和最低点的距离差和总距离计算出轨道离心率;7. 利用行星或卫星的轨道焦点距离和长轴长度计算出轨道离心率;8. 利用行星或卫星的轨道高度、速度和引力公式计算出轨道离心率;9. 利用行星或卫星的轨道高度、周期和引力公式计算出轨道离心率;10. 利用行星或卫星的轨道高度、半径和引力公式计算出轨道离心率;11. 利用行星或卫星的轨道平均速度和最高、最低速度之比计算出轨道离心率;12. 利用行星或卫星在轨道上的最高点和最低点速度之比计算出轨道离心率;13. 利用行星或卫星在轨道上的最高点和最低点的动能之比计算出轨道离心率;14. 利用行星或卫星在轨道上的最高点和最低点的势能之比计算出轨道离心率;15. 利用行星或卫星的轨道半径、质量和速度计算出轨道离心率。

双曲线离心率常见题型

双曲线离心率常见题型

一、求双曲线的离心率及其范围。

例1:已知21,F F 分别是双曲线122
22=-b
y a x 的左右焦点,过1F 垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是直角三角形,求双曲线的离心率。

答案:21+
=e 变式:
1、若2ABF ∆是等边三角形,求双曲线的离心率。

答案:3=e
2、若2ABF ∆是锐角三角形,求双曲线的离心率。

答案:)21,1(+
∈e 3、若2ABF ∆是钝角三角形,求双曲线的离心率。

答案:),21(+∞+∈e
例2:已知21,F F 分别是双曲线12222=-b
y a x 的左右焦点,过2F 且倾斜角的为 60的直线与双曲线的右支有且仅有一个交点,求双曲线的离心率的取值范围。

答案:),2[+∞∈e
例3:过双曲线122
22=-b
y a x 的右焦点2F 作垂直于渐近线的的直线与双曲线的两支都相交,求双曲线的离心率的取值范围。

答案:),2(+∞∈e
二、直线1-=kx y 与双曲线42
2=-y x 没有公共点,求k 的取值范围 2
5,25>-<k k 或 变式1、直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围
)2
5,1()1,1()1,25(⋃-⋃-- 变式2、直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围1,2
5±±=k k 或 变式3、直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围 )1,25(--。

(完整版)求椭圆离心率范围的常见题型及解析

(完整版)求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型解析解题关键:挖掘题中的隐含条件,构造关于离心率e 的不等式.一、利用曲线的范围,建立不等关系例1已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围.例2已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为()21,1-.二、利用曲线的平面几何性质,建立不等关系 例3已知12、F F 是椭圆的两个焦点,满足的点P 总在椭圆内部,则椭圆离心率的取值范围是( )A.(0,1) B.1(0,]2C.2(0,)2 D.2[,1)2xy OF 1F 2三、利用点与椭圆的位置关系,建立不等关系例4已知ABC ∆的顶点B 为椭圆12222=+by a x )0(>>b a 短轴的一个端点,另两个顶点也在椭圆上,若ABC ∆的重心恰好为椭圆的一个焦点F )0,(c ,求椭圆离心率的范围.四、利用函数的值域,建立不等关系例5椭圆12222=+by a x )0(>>b a 与直线01=-+y x 相交于A 、B 两点,且0=⋅OB OA (O为原点),若椭圆长轴长的取值范围为[]6,5,求椭圆离心率的范围.五、利用均值不等式,建立不等关系.例6 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.求椭圆离心率的范围;解 设椭圆方程为x 2a 2+y 2b 2=1 (a>b>0),|PF 1|=m ,|PF 2|=n ,则m +n =2a.在△PF 1F 2中,由余弦定理可知, 4c 2=m 2+n 2-2mncos 60°=(m +n)2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎪⎫m +n 22=4a 2-3a 2=a 2 xy OA BF MC(当且仅当m =n 时取等号).∴c 2a 2≥14,即e ≥12.又0<e<1,∴e 的取值范围是⎣⎡⎭⎫12,1.例7 已知1F 、2F 是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上一点P 使︒=∠9021PF F ,求椭圆离心率e 的取值范围.解析1:令n PF m pF ==21,,则a n m 2=+ 由21PF PF ⊥2224c n m=+∴ ()22222224a nm n m c=+≥+=∴ 即21222≥=ac e又12210<≤∴<<e e 六、利用焦点三角形面积最大位置,建立不等关系解析2:不妨设短轴一端点为B 则2245tan 21b b S PFF =︒=∆≤bc b c S BF F =⨯⨯=∆22121b ⇒≤c 2b ⇒≤2c 22c a -⇒≤2c 222ac e =⇒≥21故22≤e <1 七、利用实数性质,建立不等关系解析3:设()y x P ,,由21PF PF ⊥得1-=-⋅+cx y c x y ,即222x c y -=,代入12222=+by a x 得()22222c b c a x -= ,2220b c x ≥∴≥即222c a c-≥,22≥=∴a c e 又1<e 122<≤∴e 八、利用曲线之间位置关系,建立不等关系解析4:21PF PF ⊥ 为直径的圆上点在以21F F P ∴ 又P 在椭圆上,222c y x P =+∴为圆 与 12222=+by a x 的公共点.由图可知222a c b a c b <≤⇒<≤ ∴2222a c c a <≤-122<≤∴e 说明:椭圆上一点距中心距离最小值为短半轴长.九、利用21PF F ∠最大位置,建立不等关系解析4:椭圆12222=+by a x )0(>>b a 当P 与短轴端点重合时∠21PF F 最大无妨设满足条件的点P 不存在 ,则∠21PF F <0902245sin sin 001=<∠=<∴OPF a c 又10<<e 所以若存在一点P 则 122<≤e .。

妙解离心率问题(解析版)

妙解离心率问题(解析版)

妙解离心率问题【目录】考点一:顶角为直角的焦点三角形求解离心率的取值范围问题考点二:焦点三角形顶角范围与离心率考点三:共焦点的椭圆与双曲线问题考点四:椭圆与双曲线的4a 通径体考点五:椭圆与双曲线的4a 直角体考点六:椭圆与双曲线的等腰三角形问题考点七:双曲线的4a 底边等腰三角形考点八:焦点到渐近线距离为b考点九:焦点到渐近线垂线构造的直角三角形考点十:以两焦点为直径的圆与渐近线相交问题考点十一:渐近线平行线与面积问题考点十二:数形结合转化长度角度求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题,多以选择、填空题的形式考查,难度中等.考点要求考题统计考情分析离心率2023年新高考I 卷第5、16题,10分2023年甲卷第9题,5分2022年甲卷第10题,5分2022年浙江卷第16题,4分2021年甲卷第5题,5分2021年天津卷第8题,5分离心率问题一直是高考每年必考,对圆锥曲线概念和几何性质的考查为主,一般不会出太难,二轮复习我们需要掌握一些基本的性质和常规的处理方法,挖掘椭圆双曲线的几何性质下手.求离心率范围的方法一、建立不等式法:1.利用曲线的范围建立不等关系.2.利用线段长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1 ∈a -c ,a +c ;F 1,F 2为双曲线x2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,PF 1 ≥c -a .3.利用角度长度的大小建立不等关系.F 1,F 2为椭圆x 2a 2+y 2b2=1的左、右焦点,P 为椭圆上的动点,若∠F 1PF 2=θ,则椭圆离心率e 的取值范围为sin θ2≤e <1.4.利用题目不等关系建立不等关系.5.利用判别式建立不等关系.6.利用与双曲线渐近线的斜率比较建立不等关系.7.利用基本不等式,建立不等关系.1(2023•新高考Ⅰ)设椭圆C 1:x 2a2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A.233B.2C.3D.6【答案】A【解析】由椭圆C 2:x 24+y 2=1可得a 2=2,b 2=1,∴c 2=4-1=3,∴椭圆C 2的离心率为e 2=32,∵e 2=3e 1,∴e 1=12,∴c 1a 1=12,∴a 21=4c 21=4(a 21-b 21)=4(a 21-1),∴a =233或a =-233(舍去).故选:A .2(2023•甲卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.455【答案】D【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,可得c =5a ,所以b =2a ,所以双曲线的渐近线方程为:y =±2x ,一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,圆的圆心(2,3),半径为1,圆的圆心到直线y =2x 的距离为:|4-3|1+4=15,所以|AB |=21-15=455.故选:D .3(2022•甲卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP ,AQ 的斜率之积为14,则C 的离心率为()A.32B.22C.12D.13【答案】A【解析】已知A (-a ,0),设P (x 0,y 0),则Q (-x 0,y 0),k AP =y 0x 0+a ,k AQ =y 0a -x 0,故k AP ⋅k AQ =y 0x 0+a ⋅y 0a -x 0=y 20a 2-x 20=14①,∵x 20a 2+y 20b 2=1,即y 20=b 2(a 2-x 20)a 2②,②代入①整理得:b 2a2=14,e =c a =1-b 2a 2=32.故选:A .4(2021•甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为()A.7B.13C.72D.132【答案】C【解析】设|PF 1|=m ,|PF 2|=n ,则根据题意及余弦定理可得:m =3n12=m 2+n 2-4c22mn,解得m =67cn =27c ,∴所求离心率为2c 2a =2c m -n =2c 47c=72.故选:C .5(2021•天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=2px (p >0)的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C ,D 两点,若|CD |=2|AB |,则双曲线的离心率为()A.2B.3C.2D.3【答案】A【解析】解由题意可得抛物线的准线方程为x =-p2,由题意可得:p 2=c ,渐近线的方程为:y =±ba x ,可得A -c ,b 2a ,B -c ,-b2a ,C -c ,bc a ,D -c ,-bca,所以|AB |=2b 2a ,|CD |=2bca,由|CD |=2|AB |,解得:c =2b ,即a =b ,所以双曲线的离心率e =ca=2.故选:A .6(2022•甲卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1 ⋅BA 2=-1,则C 的方程为()A.x 218+y 216=1B.x 29+y 28=1C.x 23+y 22=1D.x 22+y 2=1【答案】B【解析】由椭圆的离心率可设椭圆方程为x 29m 2+y 28m 2=1(m >0),则A 1(-3m ,0),A 2(3m ,0),B (0,22m ),由平面向量数量积的运算法则可得:BA 1 ⋅BA 2=(-3m ,-22m )⋅(3m ,-22m )=-9m 2+8m 2=-1,∴m 2=1,则椭圆方程为x 29+y 28=1.故选:B .7(2022•全国)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与直线y =2x +1垂直,则C 的离心率为()A.5 B.5C.54D.52【答案】D【解析】由双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的方程可得渐近线方程为y =±b a x ,由题意可得b a =12,所以双曲线的离心率e =c a =1+b 2a 2=1+14=52,故选:D .8(多选题)(2022•乙卷)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为()A.52B.32C.132D.172【答案】AC【解析】当直线与双曲线交于两支时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP |=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=OF 12-OP 2=c 2-a 2=b ,过点F 2作F 2Q ⊥MN 于点Q ,所以OP ⎳F 2Q ,又O 为F 1F 2的中点,所以|F 1Q |=2|PF 1|=2b ,|QF 2|=2|OP |=2a ,因为cos ∠F 1NF 2=35,∠F 1NF 2<π2,所以sin ∠F 1NF 2=45,所以|NF 2|=QF 2sin ∠F 1NF 2=5a 2,则|NQ |=|NF 2|⋅cos ∠F 1NF 2=3a2,所以|NF 1|=|NQ |+|F 1Q |=3a2+2b ,由双曲线的定义可知|NF 1|-|NF 2|=2a ,所以3a 2+2b -5a 2=2a ,可得2b =3a ,即b a =32,所以C 的离心率e =c a =1+b 2a 2=1+94=132.情况二:当直线与双曲线交于一支时,如图,记切点为A ,连接OA ,则|OA |=a ,|F 1A |=b ,过F 2作F 2B ⊥MN 于B ,则|F 2B |=2a ,因为cos ∠F 1NF 2=35,所以|NF 2|=5a 2,|NB |=3a2,|NF 2|-|NF 1|=5a 2-3a2-2b =a +2b =2a ,即a =2b ,所以e =c a =1+b 2a2=1+14=52,A 正确.故选:AC .9(2023•新高考Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ⊥F 1B ,F 2A =-23F 2B,则C 的离心率为.【答案】355【解析】(法一)如图,设F 1(-c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则F 2A =(x -c ,y ),F 2B=(-c ,n ),又F 2A =-23F 2B ,则x -c =23c y =-23n,可得A 53c ,-23n ,又F 1A ⊥F 1B ,且F 1A =83c ,-23n ,F 1B =(c ,n ),则F 1A ⋅F 1B =83c 2-23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2-49n 2b 2=1,整理可得25c 29a 2-4n 29b2=1,代n 2=4c 2,可得25c 2a 2-16c 2b 2=9,即25e 2-16e 2e 2-1=9,解得e 2=95或15(舍去),故e =355.(法二)由F 2A =-23F 2B ,得|F 2A||F 2B |=23,设|F 2A |=2t ,|F 2B |=3t ,由对称性可得|F 1B |=3t ,则|AF 1 |=2t +2a ,|AB|=5t ,设∠F 1AF 2=θ,则sin θ=3t 5t =35,所以cos θ=45=2t +2a5t,解得t =a ,所以|AF 1 |=2t +2a =4a ,|AF 2|=2a ,在△AF 1F 2中,由余弦定理可得cos θ=16a 2+4a 2-4c 216a2=45,即5c 2=9a 2,则e =355.故答案为:355.10(2022•浙江)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是.【答案】364.【解析】(法一)如图,过点A 作AA ′⊥x 轴于点A ′,过点B 作BB ′⊥x 轴于点B ′,由于B (x 2,y 2)且x 2>0,则点B 在渐近线y =b a x 上,不妨设B m ,bam ,m >0,设直线AB 的倾斜角为θ,则tan θ=b 4a ,则|BB ||FB |=b 4a ,即b am |FB|=b 4a ,则|FB ′|=4m ,∴|OF |=c =4m -m =3m ,又|AA ||BB |=|AF ||BF |=13,则|AA |=13|BB |=bm 3a =bc 9a ,又|FA ||FB|=|AF ||BF |=13,则|FA |=13|FB |=4m 3,则|x 1|=3m -4m 3=5m 3=5c 9,∴点A 的坐标为-5c 9,bc9a ,∴25c 281a 2-b 2c 281a 2b 2=1,即c 2a2=8124=278,∴e =c a =364.(法二)由y =b 4a (x +c )y =b a x,解得B c 3,bc 3a,又|FB |=3|FA |,所以点A 的纵坐标为y 1=bc9a,代入方程y =b 4a (x +c )中,解得x 1=-5c 9,所以A -5c 9,bc 9a ,代入双曲线方程中,可得c 2a 2=278,所以e =c a =364.故答案为:364.考点一:顶角为直角的焦点三角形求解离心率的取值范围问题顶角为直角的焦点三角形求解离心率的取值范围问题,如图所示:椭圆:e =1sin α+cos α=12sin α+π4,根据α范围求解值域.双曲线:e =1cos α−sin α=12cos α+π4,根据α范围求解值域.1(2024·重庆沙坪坝·高三重庆八中校考阶段练习)已知椭圆x 2a 2+y 2b2=1a >b >0 上一点A ,它关于原点的对称点为B ,点F 为椭圆右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π3,则该椭圆的离心率e 的取值范围是()A.22,3-1B.22,63C.3-1,63D.63,62【答案】B【解析】如图所示,设椭圆得左焦点为F ,连接AF ,BF ,则四边形AFBF 为矩形,则AB =FF =2c ,AF =BF ,所以BF +BF =BF +AF =2a ,在Rt △ABF 中,由∠ABF =α,得AF =AB sin α=2c sin α,BF =AB cos α=2c cos α,所以2c sin α+2c cos α=2a ,所以c a =1sin α+cos α=12sin α+π4,因为α∈π12,π3,所以α+π4∈π3,7π12,所以2sin α+π4∈62,2 ,所以e =c a ∈22,63.故选:B .1(2024·高三单元测试)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该椭圆的离心率e 的取值范围为()A.3-1,63 B.3-1,32C.64,63D.0,63【答案】A【解析】如图所示,设椭圆的左焦点为F ′,连接AF ′,BF ′.则四边形AFBF ′为矩形.因此|AB =|FF ′|=2c .|AF |+|BF |=2a .所以|AF |=2c sin α,|BF |=2c cos α.∴2c sin α+2c cos α=2a .∴e =1sin α+cos α=12sin α+π4,∵α∈π12,π6,∴α+π4∈π3,5π12,∴sin α+π4 ∈32,2+64,其中sin 5π12=sin π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22=2+64,∴2sin α+π4 ∈62,1+32.∴e ∈3-1,63.故选:A .2(2024·宁夏银川·高三银川二中校考阶段练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π4,则该椭圆的离心率e 的取值范围为()A.22,63 B.3-12,32C.3-1,63D.22,32【答案】A【解析】设椭圆的左焦点为F ′,连接AF ,BF ,可知四边形AFBF 为矩形,从而可知AB =FF =2c ,且AF +BF =2a ,由∠ABF =α,可得AF =2c sin α,BF =2c cos α,结合2c sin α+2c cos α=2a ,可得ca=1sin α+cos α,根据α∈π12,π4 ,求出范围即可.如图所示,设椭圆的左焦点为F ′,连接AF ,BF,则四边形AFBF 为矩形,所以AB =FF =2c ,AF +BF =AF +AF=2a ,由∠ABF =α,可得AF =AB ⋅sin α=2c sin α,BF =AB ⋅cos α=2c cos α,∴2c sin α+2c cos α=2a ,即c a =1sin α+cos α=12sin α+π4,∵α∈π12,π4,∴α+π4 ∈π3,π2 ,∴sin α+π4 ∈32,1 ,∴2sin α+π4 ∈62,2 ,∴e =c a ∈22,63.故选:A .3(2024·河南驻马店·高三统考期末)已知双曲线C :x 2a 2-y 2b2(a >b >0)右支上非顶点的一点A 关于原点O 的对称点为B ,F 为其右焦点,若AF ⋅BF =0,设∠BAF =θ且θ∈π4,5π12,则双曲线C 离心率的取值范围是()A.(2,2] B.[2,+∞) C.(2,+∞) D.(2,+∞)【答案】C【解析】如图所示,设双曲线的左焦点为F ,连接AF ,BF ,因为AF ⋅BF=0,所以四边形AFBF 为矩形,所以AB =FF =2c ,因为AF =2c cos θ,BF =2c sin θ,AF -AF =2a ,所以2c sin θ-2c cos θ=2a ,所以e =1sin θ-cos θ=12sin θ-π4,∵θ∈π4,5π12 ,∴θ-π4∈0,π6 ,2sin θ-π4 ∈0,22 ,∴e ∈2,+∞ ,故选:C考点二:焦点三角形顶角范围与离心率F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的焦点,点P 在椭圆上,∠F 1PF 2=θ,则cos θ≥1−2e 2(当且仅当动点为短轴端点时取等号).1(2024·辽宁葫芦岛·高三统考期末)已知点F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 是椭圆上的一个动点,若使得满足ΔPF 1F 2是直角三角形的动点P 恰好有6个,则该椭圆的离心率为()A.12B.32C.22D.33【答案】C【解析】由题意知,椭圆的最大张角为900,所以b =c ,所以a =2c ,所以e =c a =22=22,故选:C .1(2024·江西抚州·高三统考期末)设F 1,F 2是椭圆的两个焦点,若椭圆上存在点p ,使∠F 1PF 2=120°,则椭圆离心率的取值范围是()A.0,32B.0,32C.32,1D.32,1【答案】D【解析】F 1(-c ,0),F 2(c ,0),c >0,设P x 1,y 1 ,则|PF 1|=a +ex 1,|PF 2|=a -ex 1.在△PF 1F 2中,由余弦定理得cos120°=-12=a +ex 1 2+a -ex 1 2-4c 22a +ex 1 a -ex 1,解得x 21=4c 2-3a 2e 2.∵x 21∈0,a 2,∴0≤4c 2-3a 2e 2<a 2,即4c 2-3a 2≥0.且e 2<1∴e =c a ≥32.故椭圆离心率的取范围是e ∈32,1 2(2024·宁夏·高三校联考阶段练习)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,若椭圆C 上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围为()A.12,22B.22,1 C.0,22D.12,22【答案】B【解析】若椭圆C 上存在点P ,使得PF 1⊥PF 2,即以F 1F 2为直径的圆与椭圆C :x 2a 2+y 2b2=1(a >b >0)有交点,设F 1(-c ,0),F 2(c ,0),x 2+y 2=c 2x 2a 2+y 2b 2=1,解得x 2=(2c 2-a 2)⋅a 2c 2≥0,即2c 2-a 2≥0,e ≥22,又0<e <1,故e ∈22,1.故选:B .3(2024·高三课时练习)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1、F 2,若椭圆上存在点P 使得∠F 1PF 2是钝角,则椭圆离心率的取值范围是()A.0,22B.22,1C.0,12D.12,1【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角∠F 1PF 2渐渐增大,当且仅当P 点位于短轴端点P 0处时,张角∠F 1PF 2达到最大值.∵椭圆上存在点P 使得∠F 1PF 2是钝角,∴△F 1P 0F 2中,∠F 1P 0F 2>90°,∴Rt △OP 0F 2中,∠OP 0F 2>45°,∴b <c ,∴a 2-c 2<c 2,∴a 2<2c 2,∴e >22,∵0<e <1,∴22<e <1.椭圆离心率的取值范围是22,1,故选B .考点三:共焦点的椭圆与双曲线问题sin 2α2e 椭2+cos 2α2e 双2=1,与基本不等式联姻求解离心率的取值范围1(2024·全国·高三专题练习)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则当1e 1e 2取最大值时,e 1,e 2的值分别是()A.22,62B.12,52C.33,6 D.24,3【答案】A【解析】不妨设椭圆与双曲线的标准方程分别为:x 2a 2+y 2b 2=1a >b >0 ,c =a 2-b 2,x 2a 21-y 2b 21=1,c =a 21+b 21.设PF 1 =m ,PF 2 =n .m >n .则m +n =2a ,m -n =2a 1,∴m =a +a 1,n =a -a 1.因为∠F 1PF 2=π3,所以cos π3=m 2+n 2-2c 22mn =12,即a +a 1 2+a -a 1 2-4c 2=a +a 1 a -a 1 .∴a 2+3a 21-4c 2=0,∴1e 21+3e 22=4,∴4≥21e 21×3e 22,则1e 1e 2≤23,当且仅当e 1=22,e 2=62时取等号.故选:A .1(2024·湖南·高三校联考期末)已知椭圆和双曲线有共同的焦点F 1,F 2,P ,Q 分别是它们在第一象限和第三象限的交点,且QF 2⊥F 2P ,记椭圆和双曲线的离心率分别为e 1,e 2,则4e 21+e 22最小值等于.【答案】92【解析】设椭圆长半轴为a 1,双曲线实半轴为a 2,F 1-c ,0 ,F 2c ,0 ,P 为两曲线在第一象限的交点,Q 为两曲线在第三象限的交点,如图,由椭圆和双曲线定义与对称性知PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,四边形PF 1QF 2为平行四边形,QF 2 =PF 1 =a 1+a 2,PF 2 =a 1-a 2,而QF 2⊥F 2P ,则PF 1⊥F 2P ,因此F 1F 2 2=PF 1 2+PF 2 2,即4c 2=a 1+a 2 2+a 1-a 2 2=2a 21+2a 22,于是有2c 2=a 21+a 22,则2=a 21c 2+a 22c 2,1e 21+1e 22=2,所以4e 21+e 22=12(4e 21+e 22)1e 21+1e 22=125+e 22e 21+4e 21e 22≥125+2e 22e 21⋅4e 21e 22=92,当且仅当e 21=34,e 22=32时取等号.故答案为:922(2024·湖北咸宁·校考模拟预测)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若PF 1 =24,椭圆与双曲线的离心率分别为e 1,e 2,则3e 1e 2的取值范围是()A.19,+∞B.1,+∞C.13,+∞D.12,+∞【答案】B 【解析】设椭圆与双曲线的半焦距为c ,椭圆长半轴为a 1,双曲线实半轴为a 2,PF 1 =r 1,PF 2 =r 2,∵△PF 1F 2是以PF 1为底边的等腰三角形,点P 在第一象限内,∴PF 2 =F 1F 2 ,PF 1 >PF 2 ,PF 2 +F 1F 2 >PF 1 ,即r 1=24,r 2=2c ,且r 1>r 2,2r 2>r 1,2c <24,4c >24,解得:6<c <12.在双曲线中,PF 1 -PF 2 =2a 2,∴e 2=c a 2=2c 2a 2=2c r 1-r 2=2c 24-2c =c12-c ;在椭圆中,PF 1 +PF 2 =2a 1,∴e 1=c a 1=2c 2a 1=2c r 1+r 2=2c 24+2c =c12+c;∴e 1e 2=c 12+c ⋅c 12-c =1144c2-1;∵6<c <12,∴36<c 2<144,则1<144c 2<4,∴0<144c 2-1<3,可得:1144c2-1>13,∴3e 1e 2的取值范围为1,+∞ .故选:B .考点四:椭圆与双曲线的4a 通径体椭圆与双曲线的4a 通径体如图,若AF 2⊥F 1F 2,易知AF 2 =b 2a ,若AF 1 =λF 1B (λ>1),则一定有AF 1 =λ+12⋅b 2a,根据AF 1 +AF 2 =2a 可得λ+32⋅b 2a =2a ,即λ+34⋅(1-e 2)=1⇒e =λ-1λ+31(2024·河南新乡·高三统考期末)设双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别是F 1、F 2,过F 1的直线交双曲线C 的左支于M 、N 两点,若MF 2 =F 1F 2 ,且2MF 1 =NF 1 ,则双曲线C 的离心率是()A.43B.53C.52D.32【答案】B【解析】如下图所示:MF 2 =F 1F 2 =2c ,由双曲线的定义可得MF 1 =MF 2 -2a =2c -2a ,所以,NF 1 =2MF 1 =4c -4a ,则NF 2 =NF 1 +2a =4c -2a ,由余弦定理可得cos ∠MF 1F 2=MF 12+F 1F 2 2-MF 2 22MF 1 ⋅F 1F 2=c -a2c ,cos ∠NF 1F 2=NF 12+F 1F 2 2-NF 2 22NF 1 ⋅F 1F 2=c -3a4c ,因为cos ∠NF 1F 2=cos π-∠MF 1F 2 =-cos ∠MF 1F 2,故c -3a 4c =-c -a 2c ,整理可得3c =5a ,故该双曲线的离心率为e =c a =53.故选:B .1(2024·甘肃庆阳·高三校联考阶段练习)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,过点F 1的直线交椭圆C 于M ,N 两点.若MN +NF 2 =2MF 2 ,且MF 2⊥NF 2,则椭圆C 的离心率为()A.33B.55C.22D.66【答案】B【解析】因为MN +NF 2 =2MF 2 ,所以可设NF 2 =m -d ,MF 2 =m ,MN =m +d m >0,d >0 ,因为MF 2⊥NF 2,所以m -d 2+m 2=m +d 2,解得m =4d ,因为NF 2 +MF 2 +MN =4a =3m ,所以NF 2 =a ,MF 2 =43a ,MN =53a ,所以cos ∠F 2MN =MF 2 MN=45,在△MF 1F 2中,F 1F 2 =2c ,MF 1 =2-MF 2 =23a ,由cos ∠F 2MF 1=23a 2+43a 2-(2c )22×23a ×43a =45,可得a 2=5c 2,即椭圆C 的离心率为55.故选:B .2(2024·湖南衡阳·校联考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作直线l 与椭圆相交于M 、N 两点,∠MF 2N =90°,且4F 2N =3F 2M ,则椭圆的离心率为()A.13B.12C.33D.55【答案】D【解析】如图所示,设F 1F 2 =2c ,∵4F 2N =3F 2M ,设F 2N =3t ,则F 2M =4t ,在Rt △F 2MN 中,MN =NF 22+MF 2 2=5t ,由椭圆定义可知F 1N =2a -3t ,F 1M =2a -4t ,F 1N +F 1M =MN =4a -7t =5t ,解得a =3t ,所以F 1N =2a -3t =3t =F 2N ,F 1M =2a -4t =2t ,在△F 1NF 2中,可得cos ∠NF 1F 2=c3t,在△F 1MF 2中,由余弦定理可得cos ∠MF 1F 2=c 2-3t 22ct,∵∠NF 1F 2+∠MF 1F 2=π,∴cos ∠NF 1F 2+cos ∠MF 1F 2=0,即c 3t +c 2-3t 22ct=0,解得c =35t 5,所以椭圆离心率e =c a =55.故选:D .考点五:椭圆与双曲线的4a 直角体如左图,若AF 2⊥AB ,AB 过原点,且AF 1=λF 1B ,∠AF 1F 2=α,则e cos α=λ−1 λ+1可得离心率.如右图,若BF 2⊥AC ,AB 过原点,且AF 2=λF 2C(0<λ<1),通过补全矩形,可得AF 1⊥AC ,AF 2 =λ+12⋅b 2a ,借助公式e cos α=λ−1 λ+1可得离心率.1(2024·山东济南·校联考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于A ,B 两点,且AF 1 ⋅AF 2 =0,AF 2 =2F 2B,则椭圆E 的离心率为()A.23B.34C.53D.74【答案】C【解析】因为AF 2 =2F 2B ,不妨令AF 2 =2F 2B =2m m >0 ,过F 2的直线交椭圆于A ,B 两点,由椭圆的定义可得,AF 1 +AF 2 =2a ,BF 1 +BF 2 =2a ,则BF 1 =2a -m ,AF 1 =2a -2m ,又AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,则△AF 1F 2和△AF 1B 都是直角三角形,则AF 1 2+AB 2=BF 1 2,即2a -2m 2+9m 2=2a -m 2,解得m =a3,所以AF 1 =43a ,AF 2 =23a ,又F 1F 2 =2c ,AF 1 2+AF 2 2=F 1F 2 2,所以169a 2+49a 2=4c 2,因此c 2a2=59,所以椭圆E 的离心率为c a =53.故选:C .1(2024·安徽池州·高三统考期末)设F 1、F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1-c ,0 的直线交椭圆E 于A ,B 两点,若AF 1=3 F 1B ,且AB ⊥AF 2,则椭圆E 的离心率是()A.12B.52C.32D.22【答案】D【解析】设FB 1=k (k 0 ⇒ AF 1=3k ,AB =4k ⇒ AF 2=2a -3k , BF 2|=2a -k ,再由BF 2|2= AF 2|2+|AB |2⇒AF 2 =3k ⇒ΔAF 1F 2是等腰直角三角形⇒c =22a ⇒e =22,故选D ,2(2024·湖北黄冈·高三统考期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于A ,B 两点,AF 2 =λF 2B ,且AF 1 ⋅AF 2 =0,椭圆C 的离心率为22,则实数λ=()A.23B.2C.13D.3【答案】D【解析】因为AF 2 =λF 2B ,设AF 2 =λF 2B =t (t >0),由椭圆的定义可得:AF 1 +AF 2 =2a ,则AF 1 =2a -t ,因为AF 1 ⋅AF 2=0,所以AF 1⊥AF 2,所以AF 1 2+AF 2 2=F 1F 2 2,即(2a -t )2+t 2=4c 2,又因为椭圆C 的离心率为22,所以a =2c ,则有(2a -t )2+t 2=4c 2=2a 2,所以t =a ,则λF 2B =a ,则F 2B =aλ,由BF 1 +BF 2 =2a ,所以BF 1 =2a -aλ,因为AF 1 ⋅AF 2 =0,所以AF 1⊥AF 2,所以AF 1 2+AB 2=BF 1 2,即a 2+a 21+1λ 2=2a -a λ2,解得:λ=3,故选:D .考点六:椭圆与双曲线的等腰三角形问题同角余弦定理使用两次1已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若│AF 2 =2F 2B ,AB │=BF 1 ,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1【答案】B【解析】法一:如图,由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1B 中,由余弦定理推论得cos ∠F 1AB =4n 2+9n 2-9n 22⋅2n ⋅3n =13.在△AF 1F 2中,由余弦定理得4n 2+4n 2-2⋅2n ⋅2n ⋅13=4,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .法二:由已知可设F 2B =n ,则AF 2 =2n ,BF 1 =AB =3n ,由椭圆的定义有2a =BF 1 +BF 2 =4n ,∴AF 1 =2a -AF 2 =2n .在△AF 1F 2和△BF 1F 2中,由余弦定理得4n 2+4-2⋅2n ⋅2⋅cos ∠AF 2F 1=4n 2,n 2+4-2⋅n ⋅2⋅cos ∠BF 2F 1=9n 2 ,又∠AF 2F 1,∠BF 2F 1互补,∴cos ∠AF 2F 1+cos ∠BF 2F 1=0,两式消去cos ∠AF 2F 1,cos ∠BF 2F 1,得3n 2+6=11n 2,解得n =32.∴2a =4n =23,∴a =3,∴b 2=a 2-c 2=3-1=2,∴所求椭圆方程为x 23+y 22=1,故选B .1(2024·江西九江·高三九江一中校考期末)已知双曲线x 2a 2-y 2b2=1a >0,b >0 左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=2F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.7B.2C.213D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=2F 2Q ,所以QF 2 =a ,从而QF 1 =3a ,PF 1 =4a ,PQ =3a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a 2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 3a =23,所以5a 2-c 24a 2=23,7a 2=3c 2,所以e =c a =213,故选:C .2(2024·辽宁沈阳·高三沈阳二中校考阶段练习)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)左右焦点为F 1,F 2,过F 2的直线与双曲线的右支交于P ,Q 两点,且PF 2=3F 2Q,若△PQF 1为以Q 为顶角的等腰三角形,则双曲线的离心率为()A.3 B.2C.2D.3【答案】C【解析】由题意QF 1 -QF 2 =PQ -QF 2 =PF 2 =2a ,又PF 2=3F 2Q ,所以QF 2 =23a ,从而QF 1 =83a ,PF 1 =4a ,PQ =83a ,△PF 1F 2中,cos ∠F 1PF 2=(4a )2+(2a )2-(2c )22×4a ×2a =5a 2-c 24a2,△PF 1Q 中.cos ∠F 1PF 2=12PF 1PQ =2a 83a =34,所以5a 2-c 24a 2=34,2a 2=c 2,所以e =c a =2,故选:C .考点七:双曲线的4a 底边等腰三角形当F 2A =F 2B 或者AB =4a 时,令∠AF 1F 2=α,则一定存在①F 1M =F 2B ,②e =1cos2α1(2024·河南·高三校联考阶段练习)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -3y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.153B.53C.13D.52【答案】D【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H.因为MN ⋅F 2M +F 2N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以NF 1 -NF 2 +MF 2 -MF 1 =NF 1 -MF 1 =MN =4a ,则MH =NH =2a ,从而HF 1 =m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为13,所以tan ∠HF 1F 2=HF 2 HF 1=2c 2-2a 22a 2+2c2=13,整理得c 2-a 2a 2+c 2=19,即5a 2=4c 2⇒e =52,故选:D .1(2024·贵州·校联考模拟预测)设F 2为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,直线l :x -2y +c =0(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若MN ⋅F 2M +F 2N=0,则双曲线C 的离心率是()A.53B.43C.153D.233【答案】C【解析】设双曲线C 的左焦点为F 1,如图,取线段MN 的中点H ,连接HF 2,则F 2M +F 2N =2F 2H .因为MN ⋅F 2M +F 2 N =0,所以MN ⋅F 2H =0,即MN ⊥F 2H ,则MF 2 =NF 2 .设MF 2 =NF 2 =m .因为MF 2 -MF 1 =NF 1 -NF 2 =2a ,所以|NF 1|-|NF 2|+|MF 2|-|MF 1|=NF 1∣-MF 1 = MN |=4a ,则|MH |=|NH |=2a ,从而|HF 1|=m ,故HF 2 =4c 2-m 2=m 2-4a 2,解得m 2=2a 2+2c 2.因为直线l 的斜率为12,所以tan ∠HF 1F 2=HF 2 HF 1 =2c 2-2a 22a 2+2c 2=12,整理得c 2-a 2a 2+c 2=14,即3c 2=5a 2,则c 2a 2=53,故e =c 2a 2=153.故选:C2(2024·全国·高三长垣市第一中学校联考开学考试)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作斜率为33的直线l 与双曲线C 的左、右两支分别交于M ,N 两点,且F 2M +F 2N ⋅MN =0,则双曲线C 的离心率为()A.2B.3C.5D.2【答案】A【解析】如图,设D 为MN 的中点,连接F 2D .易知F 2M +F 2N =2F 2D ,所以F 2M +F 2N ⋅MN =2F 2D ⋅MN =0,所以F 2D ⊥MN .因为D 为MN 的中点,所以F 2M =F 2N .设F 2M =F 2N =t ,因为MF 2 -MF 1 =2a ,所以MF 1 =t -2a .因为NF 1 -NF 2 =2a ,所以NF 1 =t +2a .所以MN =NF 1 -MF 1 =4a .因为D 是MN 的中点,F 1D =F 1M +MD ,所以MD =ND =2a ,F 1D =t .在Rt △F 1F 2D 中,F 2D =4c 2-t 2;在Rt △MF 2D 中,F 2D =t 2-4a 2.所以4c 2-t 2=t 2-4a 2,解得t 2=2a 2+2c 2.所以F 2D =2c 2-2a 2,F 1D =t =2a 2+2c 2.因为直线l 的斜率为33,所以tan ∠DF 1F 2=F 2D F 1D =2c 2-2a 22a 2+2c2=33,所以c 2-a 2a 2+c 2=13,c 2=2a 2,c =2a ,所以离心率为ca= 2.故选:A3(2024·全国·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,过F 1的直线与双曲线C 的左支交于A ,B 两点,连接AF 2,BF 2,在△ABF 2中,sin ∠ABF 22=14,AB =BF 2 ,则双曲线C 的离心率为()A.3 B.2C.3D.2【答案】D【解析】设BF 1 =m ,则由双曲线定义可得BF 2 =2a +m ,AF 1 =2a ,AF 2 =4a ,由sin ∠ABF 22=14可得m =6a ,再在△BF 1F 2中根据余弦定理即可列出式子求出离心率.设BF 1 =m ,则由双曲线定义可得BF 2=2a +m ,AF 1 =AB -BF 1 =BF 2 -m =2a ,则AF 2 =4a ,则sin∠ABF 22=2a 2a +m =14,解得m =6a ,从而BF 2 =8a .在△BF 1F 2中,F 1F 2 2=BF 1 2+BF 2 2-2BF 1 ⋅BF 2 cos ∠F 1BF 2,即4c 2=36a 2+64a 2-2×6a ×8a ×1-2sin 2∠ABF 22 ,解得e =ca =2.故选:D .考点八:焦点到渐近线距离为b双曲线的特征三角形,如图所示,设渐近线l1:y=bax,l2:y=-bax,过右焦点作FM⊥l1,FN⊥l2,由于渐近线方程为y=±bax,故MF2OM=NF2ON=ba,且斜边OF2=c,故MF2OF2=NF2OF2=bc,故OM=ON=a,MF2=NF2=b.1(2024·河南新乡·高三校联考阶段练习)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线l,垂足为H,直线l与双曲线C的左支交于E点,且H恰为线段EF2的中点,则双曲线C的离心率为()A.2B.3C.2D.5【答案】D【解析】连结EF1,因为点O,H分别为F1F2和EF2的中点,所以OH⎳EF1,且EF1⊥EF2设点F2c,0到一条渐近线y=bax的距离d=bca2+b2=b,所以EF2=2b,又EF2-EF1=2a,所以EF1=2b-2a,Rt△EF1F2中,满足2b-2a2+4b2=4c2,整理为:b=2a,双曲线的离心率e=ca=a2+b2a2=5.故选:D1(2024·吉林白山·高三校联考阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,以OF1为直径的圆与双曲线的一条渐近线交于点M(异于坐标原点O),若线段MF1交双曲线于点P,且MF2⎳OP则该双曲线的离心率为()A.2B.3C.52D.6【答案】A【解析】不妨设渐近线的方程为y=-bax,因为MF2⎳OP,O为F1F2的中点,所以P为MF1的中点,将直线OM,MF1的方程联立y=-baxy=ab(x+c),可得M-a2c,abc,又F 1-c ,0 ,所以P -c +-a 2c 2,ab 2c 即P -a 2+c 22c ,ab 2c,又P 点在双曲线上,所以a 2+c 224a 2c 2-a 24c2=1,解得ca =2,所以该双曲线的离心率为2,故选:A .2(2024·山西运城·高三统考期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以OF 1为直径的圆与双曲线的一条渐近线交于点M ,若线段MF 1交双曲线于点P ,且PF 2 =5PF 1 ,则双曲线的离心率为()A.264B.344C.2D.3【答案】C【解析】根据题意,不妨取点M 在第二象限,题中条件,得到k MF 1=ab,记∠MF 1F 2=∠PF 1F 2=θ,求出cos θ=b c ,根据双曲线定义,得到PF 2 =5a 2,PF 1 =a 2,在△PF 1F 2中,由余弦定理,即可得出结果.因为以OF 1为直径的圆与双曲线的一条渐近线交于点M ,不妨取点M 在第二象限,所以MF 1⊥OM ,则k MF 1⋅k OM =-1,因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,则k OM =-b a ,所以k MF 1=a b ;记∠MF 1F 2=∠PF 1F 2=θ,则tan θ=a b ,由tan θ=a b sin 2θ+cos 2θ=1解得cos θ=b c ,因为PF 2 =5PF 1 ,由双曲线的定义可得PF 2 -PF 1 =2a ,所以PF 2 =5a 2,PF 1 =a2,由余弦定理可得:cos θ=bc =PF 1 2+F 1F 2 2-PF 2 22PF 1 ×F 1F 2=a 24+4c 2-25a242×a 2×2c,则2c 2-3a 2=ab ,所以2a 2+b 2 -3a 2=ab ,整理得2b 2-ab -a 2=0,解得b =a ,所以双曲线的离心率为e =c 2a 2=b 2+a 2a 2= 2.故选:C .3(2024·辽宁·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过F 作双曲线C 的一条渐近线的垂线,垂足为A .若△OFA (O 为坐标原点)的面积等于14c 2(c 为双曲线C 的半焦距),则双曲线C 的离心率为()A.2B.3 C.2 D.5【答案】A【解析】设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0),双曲线C 的一条渐近线方程设为bx +ay =0,可得AF =bc a 2+b 2=b ,OA =c 2-b 2=a ,△OAF 的面积为14c 2,即有12ab =14c 2,化为4a 2(c 2-a 2)=c 4,e 4-4e 2+4=0,解得e = 2.故选:A .4(2024·广西南宁·统考)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,过点F 1的直线与两条渐近线的交点分别为M 、N 两点(点F 1位于点M 与点N 之间),且MF 1 =2F 1N,又过点F 1作F 1P ⊥OM 于P (点O 为坐标原点),且|ON |=|OP |,则双曲线E 的离心率e =()A.5B.3C.233D.62【答案】C【解析】不妨设M 在第二象限,N 在第三象限,如下图所示:因为ON =OP ,∠F 1OP =∠F 1ON ,所以△F 1OP ≅△F 1ON ,所以∠F 1PO =∠F 1NO =90°,F 1P =F 1N ,又l OM :y =-bax ,F 1-c ,0 ,所以F 1P =F 1N =-bca1+b 2a 2=b ,所以ON =OP =c 2-b 2=a ,所以MF 1 =2F 1N =2b ,因为tan ∠F 1OP =b a ,tan ∠MON =tan2∠F 1OP =3b a ,所以2ba 1-b 2a 2=3b a ,所以b 2a 2=c 2-a 2a2=e 2-1=13,所以e =233.故选:C .考点九:焦点到渐近线垂线构造的直角三角形利用几何法转化1(2024·江西九江·高三九江一中校考阶段练习)F 是双曲线x 2a 2-y 2b2=1a >0,b >0 的左焦点,过点F 作双曲线的一条渐近线的垂线,垂足为A ,交另一条渐近线于点B .若3FA =FB,则此双曲线的离心率为()A.2 B.53C.233D.3【答案】D【解析】由题意得:F -c ,0 ,双曲线渐近线方程为:y =±b ax若A 为直线FA 与y =-b a x 交点,B 为直线FA 与y =bax 交点则k FA =a b ∴直线FA 方程为:y =a bx +c ,与y =-b a x 联立可得:x A =-a 2c 直线FA 方程与y =b a x 联立可得:x B =a 2cb 2-a2由3FA =FB 得:3-a 2c +c =a 2c b 2-a 2+c ,即-3a 2+2c 2=a 2c 2c 2-2a 2∴-3+2e 2=e 2e 2-2,即e 4-4e 2+3=0,解得:e 2=3或1(舍)∴e =3由双曲线对称性可知,当A 为直线FA 与y =b a x 交点,B 为直线FA 与y =-bax 交点时,结论一致故选:D 1(2024·广西玉林·校考模拟预测)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 引一条渐近线的垂线,与另一条渐近线相交于第二象限,则双曲线C 的离心率的取值范围是()A.(2,+∞) B.(3,+∞)C.(2,+∞)D.(3,+∞)【答案】A【解析】由题意双曲线C :x 2a 2-y 2b2=1的渐近线y =±b a x ,右焦点F (c ,0),不妨设过右焦点F (c ,0)与双曲线的一条渐近线垂直的直线方程为y =-ab(x -c )与y =-b a x 联立得-b a x =-a b (x -c ),所以x =a 2c a 2-b 2,y =-abc a 2-b 2,所以交点坐标为a 2c a 2-b 2,-abca 2-b2,因为交点在第二象限,所以-abca 2-b 2>0a 2c a 2-b 2<0,因为a >0,b >0,c >0,所以a 2c >0,abc >0,所以a 2-b 2<0,即a<b ,因为c =a 2+b 2>a 2+a 2=2a ,所以e =ca>2aa=2,即e ∈2,+∞ 故选:A2(2024·江西新余·统考)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 ,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若AF =25AB,则C 的离心率为()A.305B.2C.233D.52【答案】A【解析】如下图所示:双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,所以,AF =bc b 2+a 2=b ,则OA =OF 2-AF 2=c 2-b 2=a ,因为AF =25AB ,则AB =52b ,设∠AOF =α,则∠BOF =α,所以,∠AOB =2α,tan α=AF OA =b a ,tan2α=AB OA=5b2a ,由二倍角的正切公式可得tan2α=2tan α1-tan 2α,即2ba1-b a 2=5b 2a ,可得b 2a 2=15,因此,e =c a =1+b 2a2=1+15=305.故选:A .考点十:以两焦点为直径的圆与渐近线相交问题以F 1F 2为直径作圆,交一条渐近线y =bax 于点B ,BF 1交另一条渐近线于点A ,则令∠BOF 2=α,则∠BF 1F 2=α2,e =1+tan 2α1(2024·全国·校联考)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作x 轴的垂线,与双曲线C 及其一条渐近线在第一象限分别交于A ,B 两点,且OF =2OA -OB(O 为坐标原点),则该双曲线的离心率是()A.2. B.3 C.322D.233【答案】D【解析】设双曲线的半焦距为c ,由x =cx 2a 2-y 2b2=1得到A c ,b 2a ,由y =b a x x =c 得到B c ,bca ,而F (c ,0),OF =2OA -OB ⇔OA =OF +OB2,即点A 是线段FB 的中点,所以bc a =2b 2a ,c =2b ,所以e =c a =2b c 2-b 2=233.故选:D1(2024·山西晋城·统考)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,以线段F 1F 2为直径的圆与直线bx -ay =0在第一象限交于点A ,若tan ∠AF 2O =2,则双曲线C 的离心率为()A.53B.32C.3D.2【答案】A【解析】由题意可得|AO |=|OF 2|=c ,即有△AOF 2为等腰三角形,设∠OAF 2=∠AF 2O =α,则∠AOF 2=π-2α,所以tan ∠AOF 2=tan π-2α =-tan2α=2tan αtan 2α-1=2×222-1=43即为b a =43,所以e =c a =1+b 2a2=1+169=53,故选:A 2(2024·河北衡水·高三河北衡水中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,若以F 1F 2为直径的圆和曲线C 在第一象限交于点P ,且△POF 2恰好为正三角形,则双。

圆锥曲线中的离心率的问题(含解析)

圆锥曲线中的离心率的问题(含解析)

圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。

常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。

例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

高中数学高考数学离心率题型总结

高中数学高考数学离心率题型总结

F 2P F 1xy OF 2PF 1xy OF 2PF 1xyOQF 2PF 1xyO高中数学 高考数学离心率题型总结 求解含直角三角形的椭圆离心率二.典例剖析:例.若椭圆)0(,12222>>=+b a b y a x 短轴端点为P 满足21PF PF ^,求椭圆离心率。

圆离心率。

分析:利用椭圆半焦距、短半轴长的相等关系即2OF OP =,得到 2221222222=Þ=Þ=+=e e c c b a 的结论。

的结论。

变 式1.在椭圆)0(,12222>>=+b a b y a x 上有一点P (除短轴端点外),若21PF PF ^,求椭圆离心率取值范围。

,求椭圆离心率取值范围。

分析:点P 在椭圆上Þ b OP >;点P 在以O 为圆心,OP 为半径的圆上Þc OF OF OP ===21,所以得到c>b ,进而得到÷÷øöççèæÎÞ>Þ<+=1,2221222222e e c c b a 的结论。

变 式2. 满足21PF PF ^的所有点P 都在椭圆)0(,12222>>=+b a b y a x 内,求椭圆离心率取值范围。

内,求椭圆离心率取值范围。

分析:满足21PF PF ^的所有点P 都在椭圆内Þ以O 为圆心,OP 为半径的圆都在椭圆内Þb c <,进而得到÷÷øöççèæÎÞ<Þ>+=22,021222222e e c c b a 的结论。

的结论。

变 式3.过椭圆)0(,12222>>=+b a b y a x 右焦点2F 的直线交椭圆于QP 、两点且满足PQPF ^1,若135sin 1=ÐQP F ,求该椭圆离心率。

双曲线离心率常考题型总结-高二数学(人教A版2019选择性必修第一册)

双曲线离心率常考题型总结-高二数学(人教A版2019选择性必修第一册)

第18讲 双曲线离心率常考题型总结【知识点梳理】椭圆的离心率()10<<=e ac e ,222222221a b a b a a c e +=+== 【题型目录】题型一:利用双曲线的定义、几何性质求离心率的值 题型二:双曲线的离心率范围范围问题题型三:椭圆和双曲线共焦点离心率之间的关系(利用定义或者焦点三角形面积公式) 题型四:利用中点弦公式(点差法)求离心率 【典型例题】题型一:利用双曲线的定义、几何性质求离心率的值【例1】(2022·安徽省临泉第一中学高二期末)已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1,0F c -,()2,0F c ,M 是双曲线C 上一点,若120MF MF ⋅=,2212OM OF c ⋅=,则双曲线C 的离心率为( ) A 3B 31 C 2D 21【答案】B【分析】根据双曲线的定义及几何性质结合向量的数量积直接可得离心率. 【详解】()()22121221111242OM OF MO F F MF MF MF MF c ⎛⎫⋅=-⋅=-+⋅-= ⎪⎝⎭,则222122MF MF c -=,又因为120MF MF ⋅=,12MF MF ⊥,即222124MF MF c +=, 所以13MF c =,2MF c =, 所以1223a MF MF c c =-=-, 则31e =+, 故选:B.【例2】(云南省三校2023届高三上学期高考备)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点为1F ,2F ,过1F 且垂直于x 轴的直线交C 于M ,N 两点,若22MF NF ⊥,则C 的离心率为( ) A 21 B .2C 3D 2【答案】A【分析】由题可得112F M F F =,从而可建立方程,即可得出双曲线的离心率.【详解】由题可得:MN x c =-,代入双曲线2222:1(0,0)x y C a b a b-=>>,解得2b y a=±,又22MF NF ⊥,∴112F M F F =,即22b c a =,222c a ac ∴-=, 2210e e ∴--=,12e ∴=±,1e >, 21e ∴=+. 故选:A【例3】(2022·陕西省安康中学高三阶段练习(文))设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F O为坐标原点,若双曲线上存在点M 满足1222MF MO MF ==,则双曲线的离心率为( ) A .6 B .3C 6D 3【答案】C【分析】判断M 点位置,过点M 作x 轴的垂线,垂足为A ,可得22cAF =,132c AF =,设2MF m =,利用勾股定理表示出2||MA ,可得2232m c =,结合双曲线定义可得2m a =,即可求得a,c 的关系,进而求得离心率.【详解】因为1222MF MO MF ==,则2MO MF =, M 在双曲线右支上, 过点M 作x 轴的垂线,垂足为A ,则A 为2OF 的中点,所以22cAF =,132c AF =, 设2MF m =,则12MF m =,故在1Rt MAF △中,2229||44MA m c =-.在Rt 2MAF 中,222||4c MA m =-,则22229444c m c m -=-,即2232m c =.因为122MF MF a -=,则2m a =,所以223(2)2a c ⨯=,即226c a =, 所以6ce a==, 故选:C.【例4】(2023·全国·高三专题练习)已知1F ,2F 分别为双曲线2222:1x y C a b -=(0,0a b >>)的左、右焦点,A ,B 是C 右支上的两点,且直线AB 经过点2F .若222AF BF =,以12F F 为直径的圆经过点B ,则C 的离心率为( ) A 17 B 2C 5D 15+ 【答案】A【分析】由以12F F 为直径的圆经过点B 得1290F BF ∠=︒,结合双曲线的定义及勾股定理可得解.【详解】由题意得1290F BF ∠=︒,设2BF m =,则12BF m a =+,22AF m =,122AF m a =+,||3AB m =,在1Rt ABF 中,由勾股定理得()()()2222322m a m m a ++=+,解得23m a =, 则223BF a =,183BF a =, 在12Rt F BF 中,由勾股定理得()22228233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,化简得22179c a =,所以C 的离心率173c e a ==, 故选:A.【例5】(2022·全国·长垣市第一中学高三开学考试(理))设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过点1F 3l 与双曲线C 的左、右两支分别交于,M N 两点,且()220F M F N MN +⋅=,则双曲线C 的离心率为( ) A 2B 3C 5D .2【答案】A【分析】结合向量运算、双曲线的定义建立等量关系式,利用直线l 的斜率列方程,化简求得双曲线的离心率.【详解】如图,设D 为MN 的中点,连接2F D .易知2222F M F N F D +=,所以()22220F M F N MN F D MN +⋅=⋅=,所以2F D MN ⊥. 因为D 为MN 的中点,所以22F M F N =.设22F M F N t ==,因为212MF MF a -=,所以12MF t a =-. 因为122NF NF a -=,所以12NF t a =+. 所以114MN NF MF a =-=.因为D 是MN 的中点,11F D F M MD =+,所以12,MD ND a F D t ===. 在Rt 12F F D 中,2224F D c t =-; 在Rt 2MF D 中,2224F D t a =-.所以222244c t t a -=-,解得22222t a c =+. 所以22222122,22F D c a F D t a c =-==+. 因为直线l 的斜率为33, 所以22212221223tan 322F D c a DF F F D a c∠-===+,所以2222221,23c a c a a c -==+, 2c a =,所以离心率为2ca=. 故选:A【点睛】求双曲线离心率的方法有:(1)直接法:利用已知条件将,a c 求出,从而求得离心率e ;(2)方程法:利用已知条件列出关于,a c 或,a b 的方程,化简求得离心率.【例6】(2022·江苏南通·高二期末)已知双曲线2221y x b-=的左、右焦点分别为1F 、2F ,P 、Q 是双曲线上关于原点对称的两点,1OP OF =,四边形12PFQF 的面积为2,则该双曲线的离心率为( ) A 2 B 3 C .2 D 5【答案】A【分析】分析可知四边形12PFQF 为矩形,利用勾股定理结合双曲线的定义可得出2122PF PF b ⋅=,利用三角形的面积公式可求得b 的值,即可求得该双曲线的离心率的值.【详解】由已知12OP OF OF ==,所以,11OPF OFP ∠=∠,22OPF OF P ∠=∠, 所以,1122122OPF OF P OPF OF P F PF π∠+∠+∠+∠=∠=,可得122F PF π∠=,由勾股定理可得222212124PF PF F F c +==, 由双曲线的定义可得122PF PF a -=, 所以,()222212121224PF PF PF PF PF PFb ⋅=+--=,由双曲线的对称性可知,四边形12PFQF 为矩形,所以,12212112F PF S PF PF b =⋅==△, 所以,222c a b =+=,故该双曲线的离心率为2ce a==.故选:A.【例7】(2022·陕西安康·高二期末(理))已知双曲线C :22221x y a b-=(0a >,0b >)的左,右焦点分别为1F ,2F ,A 为C 的左顶点,以12F F 为直径的圆与C 的一条渐近线交于P ,Q 两点,且2π3PAQ ∠=,则双曲线C 的离心率为( ) A 5B 2C 3D 21【答案】D【分析】由圆的对称性,并联立渐近线方程求P 、Q 坐标,结合已知易得2π6PAF ∠=,根据2tan 2b PAF a∠=得到齐次方程求参数关系,即可得离心率.【详解】设以12F F 为直径的圆的方程为222x y c +=,且P 、Q 关于原点对称,由222b y xa x y c ⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩或x a y b =-⎧⎨=-⎩,∴(),P a b ,(),Q a b --. ∴(),0A a -,2π3PAQ ∠=, ∴2π6PAF ∠=, ∴23tan 32bPAF a∠==, ∴2234b a =,即()22234c a a -=,∴2273c a =, ∴213c e a ==. 故选:D【例8】(2022·辽宁·高三期中)已知双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若112,.F A AB F B F B ==0,则C 的离心率为( ) A 3B 51 C .3 D .2【答案】D【分析】本题首先可结合题意绘出图像,结合已知条件得出1OA F B ⊥、1OF OBc 以及直线1F B 的方程为()ay x c b=+,然后联立直线1FB 的方程与渐近线方程,求出B 点坐标,再然后根据22OB c =得出223b a =,最后根据222c a b -=以及离心率计算公式即可得出结果. 【详解】如图,结合题意绘出图像:因为1F A AB =,120F B F B ⋅=,O 是12F F 中点, 所以A 是1F B 中点,12F B F B ⊥,1OA F B ⊥,1OF OBc ,因为直线OA 是双曲线22221x y a b-=的渐近线,所以OA b k a=-,1F B a k b =,直线1F B 的方程为()ay x c b =+,联立()ay x c bb y xa⎧=+⎪⎪⎨⎪=⎪⎩,解得22222,a c abc B b a b a ⎛⎫ ⎪--⎝⎭, 则4222222222222()()a c abc OB c b a b a =+=--,整理得223b a =,因为222c a b -=,所以224a c =,2ce a==, 故选:D.【例9】(2022·浙江·温岭中学高二期末多选)设双曲线2222:1x y C a b-=的左右焦点分别为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作圆D 的切线与C 交于M 、N 两点,且124cos 5F NF ∠=,则C 的离心率可以为( )A 5B .53C 34D 13 【答案】BD【分析】当直线与双曲线交于两支时,设过1F 的切线与圆222:D x y a +=相切于点P ,从而可求得1PF ,过点2F 作2F Q MN ⊥于点Q ,由中位线的性质求得12,FQ QF ,在2Rt QNF 中,可求得2,NF NQ ,利用双曲线的定义可得,a b 的关系,再由离心率公式求解即可,当直线与双曲线交于同一支时,同理可求得离心率 【详解】当直线与双曲线交于两支时,设过1F 的切线与圆222:D x y a +=相切于点P ,则1,OP a OP PF =⊥,因为1OF c =,所以222211PF OF OP c a b =-=-=,过点2F 作2F Q MN ⊥于点Q , 所以OP ∴2F Q , 因为O 为12F F 的中点,所以1122FQ PF b ==,222QF OP a ==, 因为124cos 5F NF ∠=,12F NF ∠为锐角, 所以1212231cos sin 5F NF F NF ∠∠=-=,所以22122103sin 35QF a a NF F NF ===∠, 所以2121048cos 353a aNQ NF F NF =∠=⨯=, 所以11823aNF NQ FQ b =+=+, 因为122NF NF a -=, 所以8102233a a b a +-=,化简得34b a =, 所以43b a =, 所以离心率为22451133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,当直线与双曲线交于一支时,记切点为A ,连接OA ,则1,OA a F A b ==, 过2F 作2F B MN ⊥于B ,则22F B a =, 所以2211222BF F F BF b =-=,因为124cos 5F NF ∠=,所以12F NF ∠为锐角, 所以1212231cos sin 5F NF F NF ∠∠=-=,所以22122103sin 35BF a aNF F NF ===∠,2121048cos 353a a NB NF F NF =∠=⨯=, 所以11823aNF NB F B b =-=-, 所以211082233a a NF NF b a ⎛⎫-=--= ⎪⎝⎭,化简得32b a =, 所以23b a =, 所以离心率为222131133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,综上,双曲线的离心率为53或133,故选:BD【例10】(2022·江西南昌·三模(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P是双曲线右支上一点,且212PF F F ⊥,I 和G 分别是12PF F △的内心和重心,若IG 与x 轴平行,则双曲线的离心率为( ) A 3B .2C .3D .4【答案】B【分析】由重心坐标求得I 的坐标,再利用圆的切线长定理和双曲线的定义得到G 的坐标,再根据IG 与x 轴平行,由I G y y =求解. 【详解】解:如图所示:由题意得:()()2121,0,,0,,b Fc F c P c a ⎛⎫- ⎪⎝⎭,则2,33c b G a ⎛⎫ ⎪⎝⎭,由圆的切线长定理和双曲线的定义得122AF AF a -=, 所以(),0A a ,则(),I a a , 因为IG 与x 轴平行, 所以I G y y =,即23b a a=,则223b a =,即224c a =, 解得2e =, 故选:B 【题型专练】1.(2022·福建·泉州市城东中学高二期中)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,若以点A 为圆心,以b 为半径的圆与C 的一条渐近线交于M ,N 两点,且2OM ON =,则C 的离心率为( )A .43B 3C 23D 6【答案】C【分析】通过图形,利用圆、双曲线的几何性质,根据题设得到,,a b c 的等量关系,算出双曲线的离心率. 【详解】过点A 作AP MN ⊥于点P ,则点P 为线段MN 的中点,因为点A 为(,0)a ,渐近线方程为by a=±,所以点A 到渐近线b y x a =的距离为20||1⋅-==⎛⎫+ ⎪⎝⎭ba ab aAP c b a ,在Rt OAP △中,22222||||||⎛⎫=-=-= ⎪⎝⎭ab a OP OA AP a c c ,在Rt NPA 中,22222||||||⎛⎫=-=-= ⎪⎝⎭ab b NP AN AP b c c ,因为2OM ON =,所以||||||2||||3||=+=+=OP ON NP NP NP NP , 所以223=⨯a b c c,即223a b ,所以离心率223e 13⎛⎫==+= ⎪⎝⎭c b a a .故A ,B ,D 错误.故选:C .2.(2022·河北保定·高一阶段练习)已知12F F 、是双曲线C 的两个焦点,P 为C 上一点,且1212120,3F PF PF PF ∠=︒=,则双曲线C 的离心率为( )A 7B 13C 7D 13【答案】B【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为12120F PF ∠=︒,由余弦定理可得2224923cos120a c a a a =+-⨯⋅⋅︒, 整理可得22413c a =, 所以222134a c e ==,即132e =. 故选:B3.(2023·全国·高三专题练习)已知双曲线()22:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,一条渐近线为l ,过点2F 且与l 平行的直线交双曲线C 于点M ,若122MF MF =,则双曲线C 的离心率为( ) A 2 B 3C 5D 6【答案】C【分析】由双曲线定义可得21,MF MF ,根据平行关系可知12cos aF F M c∠=,由余弦定理可构造齐次方程求得离心率. 【详解】设:bl y x a=,则点M 位于第四象限, 由双曲线定义知:1222222MF MF MF MF MF a -=-==,14MF a ∴=; 设过点2F 且与l 平行的直线的倾斜角为α,则tan b a α=,22cos a a ca b α∴==+, 12cos aF F M c∴∠=; 在12F F M △中,由余弦定理得:222122112122cos 2F F MF MF F F M F F MF +-∠=⋅,即22244168a c a a c ac +-=,整理可得:225c a =,225c e a ∴==. 故选:C.4.(2023·全国·高三专题练习)已知1F ,2F 分别是双曲线2222:1(0,0)x yC a b ab-=>>的左、右焦点,以12F F 为直径的圆与双曲线C 有一个交点P ,设12PF F △的面积为S ,若()21212PF PF S +=,则双曲线C 的离心率为( )A .2B 6C 2D .2【答案】C【分析】根据给定条件,利用直角三角形勾股定理及面积公式列式,再结合双曲线定义即可计算作答. 【详解】依题意,12PF PF ⊥,令1(,0)F c -,2(,0)F c ,则有22221212||||||4PF PF F F c +==,由212||(12||)PF PF S +=得:21211222||2||||6||||||PF PF PF PF PF PF =++,即有212||||PF PF c =,而222221221214(||)||2||2||||||a PF PF PF PF PF c PF =-=+-=,所以2ce a==. 故选:C【点睛】思路点睛:双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.5.(2023·全国·高三专题练习)如图,双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,,F F M 为双曲线右支上一点,直线1MF 与圆222x y a +=相切于点Q ,2MQ MF =,则双曲线的离心率为( )A 5B 6C 5D 6【答案】A【分析】由已知结合双曲线定义可得12FQ a =,在1Rt FQO 中利用勾股定理即可求出. 【详解】由题可得11FQ MF MQ =-,因为2MQ MF =,所以1122FQ MF MF a =-=, 则在1Rt FQO 中,222(2)a a c +=,即5c a =,即5ce a==. 故选:A.6.(2022·河南焦作·高二期末(理))已知双曲线2222x y C a b-: = 1 (00)a b >>,的右焦点F ,过点F 作一条渐近线的垂线l ,垂足为M ,若l 与另一条渐近线交于点N ,且满足5MF MN =,则该双曲线C 的离心率为( ) A 210B 10C 26D 6【答案】A【分析】作图,利用图中的直角三角形和双曲线的几何关系求出a 与b 的关系即可.【详解】设坐标原点为O ,M 点在第一象限,则22c a b =+,则OF c =, 渐近线1l 的方程为0bx ay -= ,(),0F c , 运用点到直线的距离公式22bc MF b a b ==+ ,22OM OF MF a ∴=-= ,因为5MF MN =,∴44NF MF b ==,∴4OMFONFS S=,1sin 2OMFSOM OF MOF =∠ ,1sin 2ONFS ON OF NOF =∠ , 因为x 轴平分∴MON , 所以44ON OM a ==,又因为OM MN ⊥,所以222OM MN ON +=,即2222516a b a +=, 得22153255b a ==, 设C 的离心率为e ,则22222815c b e a a ==+=,所以821055e ==; 故选:A.7.(2022·河南·高三开学考试(文))设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线l 与双曲线的左、右两支分别交于,M N 两点,且()22220,0F M F N F M F N MN ⋅=+⋅=,则双曲线C 的离心率为___________. 【答案】3【分析】根据已知条件作出图形,设D 为MN 的中点,连接2F D ,再根据向量的线性运算以及两向量垂直数量积为0得出2MF N 为等腰直角三角形,再利用双曲线的定义列出方程组,求出2MF 、2NF 和1MF 的长,进而利用几何关系列出关于离心率的齐次式求得双曲线的离心率. 【详解】如图,设D 为MN 的中点,连接2F D ,易知2222F M F N F D +=,∴()22220F M F N MN F D MN +⋅=⋅=, ∴2F D MN ⊥,又D 为MN 的中点,∴22F M F N =,220F M F N ⋅=,∴22F M F N ⊥,∴2MF N 为等腰直角三角形,设22MF NF m ==,由双曲线的定义知11222m MF am MF m a ⎧-=⎪⎨+-=⎪⎩,解得22m a =,∴()1221MF a =-,又122MD MN a ==, ∴1122F D MF MD a =+=.在12Rt F F D 中,122F F c =,22DF MD a ==, ∴2224(22)(2)c a a =+,化简得223c a=,即23e =,又()1,e ∈+∞,∴3e =. 故答案为:3.8.(2023·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作直线l 垂直于双曲线的一条渐近线,直线l 与双曲线的两条渐近线分别交于A ,B 两点,若225AF F B =,则双曲线C 的离心率e 为______. 【答案】153【分析】联立直线方程可得点A ,B 的坐标,结合225AF F B =,可得22b a,进而可得离心率.【详解】由题意,双曲线C 的渐近线为by x a=±,若过2F 的直线l 与直线b y x a =-垂直,垂足为A ,直线l 与直线by x a=交于B ,()2,0F c , 因为225AF F B =,所以2F 在A ,B 之间,如图所示,直线l 的方程为()ay x c b=-,由()a y x c b b y xa ⎧=-⎪⎪⎨⎪=-⎪⎩,得22222,a c abc A ab a b ⎛⎫- ⎪++⎝⎭,由()ay x c bb y x a⎧=-⎪⎪⎨⎪=⎪⎩,得22222,a c abc B a b a b ⎛⎫ ⎪--⎝⎭,由225AF F B =,可得22225abc abc a b a b -=+-,所以222251a b a b =+-,所以2223b a =,所以双曲线C 的离心率222151133b e a =+=+=.同理,过2F 的直线l 与直线b y x a =垂直时,双曲线C 的离心率153e =.综上所述,双曲线C 的离心率e 为153,故答案为:153. 9.(2023·全国·高三专题练习)如图所示,已知双曲线()22:10,0x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=︒,且2BF AF =,则双曲线C 的离心率是________.【答案】3【分析】连接AF ',BF ',结合双曲线定义及余弦定理解三角形,可得离心率.【详解】设双曲线的左焦点为F ',连接AF ',BF ',由条件可得22BF AF AF AF AF AF a '-=-=-=,则2AF a =,4BF a =,60F AF '∠=︒,所以2222cos FF AF AF AF AF F AF ''''=+-⋅⋅∠, 即222214164162c a a a =+-⨯,即22412c a =,3c a = 所以双曲线的离心率为:3==ce a, 故答案为3.10.(2022·江苏·南京师大附中模拟预测)已知点A ,B 是双曲线()22:10,0x y C a b a b-=>>的左、右顶点,过点B 作倾斜角为3π的直线l 交C 于点P ,点M 是线段AP 的中点.若OM OA =,则该双曲线的离心率为( ) A 2 B 3C .2D 31【答案】A【分析】先由中位线结合OM OA =求得2PB a =,进而求出P 点坐标,代入双曲线C 的方程,求得22b a =,即可求出离心率.【详解】易得O 是线段AB 的中点,又点M 是线段AP 的中点,则OM PB ,又OM OA =,则2AB PB a ==,作PQ x ⊥轴于点Q ,又3PBQ π∠=,则,3BQ a PQ a ==,则(2,3)P a a ,代入C 可得2222431a a a b -=,解得22b a =,故离心率为2212c b a a=+=.故选:A.题型二:双曲线的离心率范围范围问题【例1】设双曲线的中心为点,若有且只有一对相较于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是 A . B . C . D . 【答案】A【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba33b a <∴21()33b a <≤,241()43ba<+≤,2231()2b a <+,又双曲线的离心率为21()c b e a a ==+232e <≤. 【例2】(2023·全国·高三专题练习)已知双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,12F PF ∠的平分线与x 轴交于Q ,若214OQ OF =,则双曲线的离心率范围为( ) A .()1,2 B .()1,4C .)2,2D .()2,4【答案】B【分析】根据角平分线的性质得出15PF a =,23PF a =,利用三角形的三边关系以及双曲线的性质即可求解.【详解】设双曲线的半焦距为()0c c >, 离心率为e , 由214OQ OF =,则154QF c =,234QF c =,因为PQ 是12F PF ∠的平分线, 所以12:5:3PF PF =,C O O 06011A B 22A B 1122A B A B =1A 1B 2A 2B C 23(,2]323[,2)33()3+∞3[)3+∞又因为122PF PF a -=, 所以125,3PF a PF a ==,所以53222a a c a c +>⎧⎨<⎩,解得14c a <<,即14e <<,所以双曲线的离心率取值范围为(1,4). 故选:B【例3】(2022四川成都七中高三开学考试(理))已知双曲线22221(0,0)x y a b a b-=>>,1A ,2A 是实轴顶点,F是右焦点,(0,)B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得12(1,2)i P A A i =△构成以12A A 为斜边的直角三角形,则双曲线离心率e 的取值范围是( ).A .612,+⎭B .512,+⎭C .51⎛+ ⎝⎭D .51⎫++∞⎪⎪⎝⎭【答案】B【分析】将题意转化为以1A ,2A 为直径的圆与线段BF 有两个不同的交点,再数形结合列不等式化简求解即可.【详解】以1A ,2A 为直径的圆与线段BF 有两个不同的交点, 所以b a >,2222b c a a =->, 解得2c e a=>;且圆心(0,0)到直线BF :0bx cy bc +-=的距离22bc d a b c =<+,化简得2b ac <,所以22c a ac -<,210e e --<, 又1e >,解得1512e +<<, 所以双曲线离心率的取值范围是1522e +<<. 故选:B【例4】(2022河南高三开学考试(文))已知1F ,2F 分别为双曲线()222210,0x ya b a b-=>>的左、右焦点,P为双曲线左支上的任意一点,若221PF PF 的最小值为8a ,则双曲线离心率e 的取值范围是( )A .()1,+∞B .(]2,3C .(]1,3D .(]1,2【答案】C【分析】由双曲线定义221PF PF ()2112PF a PF +=,变形后由基本不等式得最小值,从而得12PF a =,再利用双曲线中的范围有1PF c a -,由此结合可得离心率的范围.【详解】1F ,2F 是左、右焦点,P 为双曲线左支上的任意一点,所以212PF PF a -=,代入221PF PF 得()2222121111112444248PFa PF a a PF a PF a a PF PF PF PF +==++⨯+=,当且仅当12PF a =时取等号,即12PF a =,又点P 是双曲线左支上任意一点,所以1PF c a -,即23a c a e -⇒,13e <.故选:C .【例5】(2022·湖南·高二期末)已知双曲线()2222:10x y C b a a b-=>>的左、右焦点分别为12,F F ,双曲线上存在点P (点P 不与左、右顶点重合),使得21123PF F PF F ∠∠=,则双曲线C 的离心率的可能取值为 ( ) A 6B 3C 10D .2【答案】BC【分析】由0b a >>可得2e >,记∴PF 1F 2=α ,利用正弦定理结合双曲线及离心率的定义,利用分比定理以及三角恒等变换公式化简离心率.然后利用余弦函数的性质得到离心率的取值范围,进而做出判定.【详解】∴0b a >>,则离心率2212b e a=+>,则排除A ;记()12045PF F αα∠=︒<<︒,1PF m =,2PF n =, 则213,2PF F m n a α∠=-=,由正弦定理结合分比定理可知:22sin 3sin sin 4sin 3sin sin 3sin m n c m n aααααααα-====--, 则()()()sin 42sin 2cos 22cos 2,2sin 3sin sin 2sin 2e αααααααααα===∈-+--, 所以B ,C 是正确的,D 不正确. 故选:BC. 【题型专练】1.2022·江西上饶·高二期末(文))已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为122,,c F F 为其左右两个焦点,直线l 经过点(0,)b 且与渐近线平行,若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线C 离心率的取值范围为( ) A .2) B .(2,3) C .3) D .(2,)+∞【答案】A【分析】根据题意分析满足122PF PF b -=的点P 的轨迹,再根据此轨迹与直线l 有交点,结合渐近线的性质求解即可;【详解】因为满足122PF PF b -=的所有点在以12,F F 为焦点,长轴长为2b ,短轴长为2222c b a -=的双曲线,即22221x y b a -=上.故若l 上存在第一象限的点P 满足122PF PF b -=,则双曲线22221x y b a-=与直线l 有交点即可.又直线:b l y x b a =±+,数形结合可得,当b a <或22221x y b a -=的经过一象限的渐近线的斜率a b b a > 即可,两种情况均有2222a b c a >=-,故222c a<,故离心率(1,2)e ∈故选:A2.(2022·全国·高二专题练习)设双曲线C :22221(00)x y a b a b-=>>,的右焦点为F ,双曲线C 的一条渐近线为l ,以F 为圆心的圆与l 交于点M ,N 两点,MF NF ⊥,O 为坐标原点,()37OM ON λλ=≤≤,则双曲线C 的离心率的取值范围是______. 【答案】5524⎡⎤⎢⎥⎣⎦,【分析】取直线l 的方程为by x a=,过点F 作FE l ⊥于E ,则有EF b =,MNF ∴△为等腰直角三角形,所以||OE a =,||OM a b ,||ON a b ,由OM ON λ=,可得11b a λλ-=+,即可得211()1e λλ-=++,即可得出离心率的取值范围.【详解】解:由题可知,点()0F c ,,如图所示,不妨取直线l 的方程为by x a=,过点F 作FE l ⊥于E ,则F 到直线l 的距离22||1bca EFb b a==+,MF NF ⊥,且||||MF NF =, MNF ∴△为等腰直角三角形,||2||2MN EF b ∴==,||||ME NE b ==,2222||OE OF EF c b a ∴=-=-=,||||||OM OE ME a b =+=+,|||||ON OE NE a b -|-==,OM ON λ=,()a b a b λ∴+=-,即11b a λλ-=+, ∴离心率2211()1()1c b e a a λλ-==+=++, 令()12111f λλλλ-==-++,[]37λ∈,,则()()()37f f f λ⎡⎤∈⎣⎦,,即()13[24f λ∈,], 5524e ⎡⎤∴∈⎢⎥⎣⎦,.故答案为:5524⎡⎤⎢⎥⎣⎦,.3.(2022·全国·模拟预测(文))已知点F 为双曲线()222210,0x y a b a b-=>>的右焦点,过F 作双曲线的一条渐近线的垂线,垂足为A .若∴OAF (点O 为坐标原点)的面积为4,双曲线的离心率3,5e ⎡∈⎣,则2a 的取值范围为( )A .2,22⎡⎤⎣⎦B .4,2⎡⎣C .2⎡⎤⎢⎥⎣⎦ D .2⎡⎤⎢⎥⎣⎦【答案】B【分析】根据∴OAF 的面积得到8ab =,然后利用离心率的取值范围得到关于2a 的不等式,求解即可. 【详解】取双曲线的一条渐近线为by x a=,即0bx ay -=. 则F 到渐近线的距离即22bc FA b a b ==+,2222OA OF FA c b a =-=-=,142OAF S ab ∆∴==,即8ab =. 又3,5e ⎡⎤∈⎣⎦,[]2222222213,5c a b b e a a a +∴===+∈,易得22224a b a ≤≤,即22282()4a a a≤≤,解得24,42a ⎡⎤∈⎣⎦. 故选:B.4.(2022·山西·模拟预测(理))双曲线2222:1(0,0)x y C a b a b -=>>的右顶点为(),3,0A Q a 在x 轴上,若C 上存在一点P (异于点A )使得AP PQ ⊥,则C 的离心率的取值范围是( ) A .)2,+∞B .()2,+∞C .(2D .(2【答案】D【分析】设(),P x y ,则由已知可得P 点的轨迹方程为222(2)x a y a -+=(),3x a x a ≠≠,与双曲线方程联立可求出P 点横坐标32223a ab x a b -=+,由题意知点P 在双曲线的右支上,32223a ab a a b->+,化简可得22a b >,从而可求出离心率的取值范围 【详解】设(),P x y ,(,0)A a ∴AP PQ ⊥,P ∴点的轨迹方程为222(2)x a y a -+=(),3x a x a ≠≠.联立()222222221x a y a x y a b ⎧-+=⎪⎨-=⎪⎩得()2223422430a b x a x a a b +-+-=,解得x a =(舍去),32223a abx a b-=+, 由题意知点P 在双曲线的右支上,即x a >, 故32223a ab a a b->+,化简得22a b >, 因为221b e a =+,所以12e <<,故选:D.5.(2022·广西·昭平中学高二阶段练习(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作x 轴的垂线与双曲线交于M ,N 两点,且110NF MF ⋅<,则双曲线C 的离心率的取值范围是__________. 【答案】()21,++∞【分析】表达出M ,N 两点坐标,进而利用向量数量积列出不等式,求出离心率的取值范围. 【详解】当x c =时,22221c y a b-=,解得:2b y a =±,不妨设22,,,b b M c N c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则22421122,2,40b b b NF MF c c c a a a ⎛⎫⎛⎫⋅=-⋅--=-< ⎪ ⎪⎝⎭⎝⎭,即2222ac b c a <=-,不等式两边同除以2a 得:2e 2e 10-->, 解得:e 21>+ 故答案为:()21,++∞6.(2022·全国·高二课时练习)设椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y a b a b -=>>的离心率分别为1e ,2e 25,则1e 的取值范围为______,2e 的取值范围为______. 【答案】 5,15⎛⎫⎪ ⎪⎝⎭351,5⎛⎫⎪ ⎪⎝⎭【分析】由双曲线的渐近线的斜率小于255,即可得出0<2245b a <,由此即可求出1e 、2e 的取值范围. 【详解】设椭圆和双曲线的焦距分別为12c ,22c ,由题意,得双曲线的渐近线方程为by x a=±,所以2505b a <<,则0<2245b a <, 所以211251,15c b e a a ⎛⎫==-∈ ⎪ ⎪⎝⎭,22223511,5c b e a a ⎛⎫==+∈ ⎪ ⎪⎝⎭. 故答案为:5,15⎛⎫ ⎪ ⎪⎝⎭;351,5⎛⎫ ⎪ ⎪⎝⎭题型三:椭圆和双曲线共焦点离心率之间的关系(利用定义或者焦点三角形面积公式)【例1】(2022·天津市西青区杨柳青第一中学高二期末)已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则椭圆和双曲线离心率倒数之和的最大值为( )A .43B 43C .4D 46【答案】B【分析】根据双曲线和椭圆的性质和关系,结合余弦定理即可得到结论. 【详解】设椭圆的长半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c , 由椭圆和双曲线的定义可知,设1PF m =,2PF n =,122F F c =, 椭圆和双曲线的离心率分别为1c e a=,21c e a =,因P 是它们的一个公共点,且123F PF π∠=,则由余弦定理可得:22242cos3c m n mn π=+-……∴在椭圆中,由定义知2m n a +=,∴式化简为:22443c a mn =-……∴在双曲线中,由定义知12m n a -=,∴式化简为:22144c a mn =+……∴由∴∴两式消去mn 得:222116412c a a =+,等式两边同除2c 得2212234a a c c =+, 即2212134e e =+, 由柯西不等式得2221212*********e e e e ⎛⎫⎛⎫⎛⎫++≥+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1211433e e ∴+≤.故选:B【例2】(2022·全国·高二课时练习)(多选)已知椭圆1C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且120MF MF ⋅=,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π3F PF ∠=,则( ) A .212e e = B .123e e =C .221252e e += D .22211e e -= 【答案】BD【分析】先由条件120MF MF ⋅=得出12MF F △为等腰直角三角形,即可得出椭圆长半轴长a ,短半轴b ,长半焦距c 的关系,从而得出椭圆的离心率1e ;然后在焦点三角形12PF F △中,利用余弦定理得出双曲线实半轴长为2a ,半焦距为c 的关系,从而得出双曲线的离心率2e ,依次对选项验证即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线中离心率及其范围
题型一 求离心率
1.椭圆22
221x y a b
+=(0a b >>)的两个焦点分别为F 、2F ,以1F 、2F 为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率e 为 ( )
A B 1- C .4(2) D 2过双曲线22
221(0,0)x y a b a b
-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若
12AB BC =
,则双曲线的离心率是 ( )
A B C D 3过椭圆22221x y a b
+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若
1260F PF ∠=,则椭圆的离心率为( ) A B C .12 D .13
4双曲线22221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )
A .
B
C
D 5若双曲线122
22=-b
y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) (A )3 (B )5 (C )
3 (D )5 6在ABC △中,AB BC =,7cos 18B =-
.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .
7设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
(A (B (C (D 8已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________.
9设12F F ,分别是双曲线2222x y a b -的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且
123AF AF =,则双曲线的离心率为( ) A B C D 10. 椭圆22
221(0,0)x y a b a b
+=>>的左焦点为F ,若过点F 且倾斜角为45o 的直线与椭圆交于A 、B 两点且F 分向量BA 的比为2/3,椭圆的离心率e 为: 。

11设椭圆C :22
221(0)x y a b a b
+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,
2AF FB =.椭圆C 的离心率 ;
题型二 求离心率范围
1. A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使
∠OP A =2
π,则椭圆离心率的范围是_________. 2 在椭圆22221(0)x y a b a b
+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212MF MF b ⋅=,椭圆的离心率的取值范围是;
3若双曲线22221x y a b -=(a >0,b >0)上横坐标为32
a 的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是
A.(1,2)
B.(2,+∞)
C.(1,5)
D. (5,+∞)
4椭圆22221(0)x y a b a b
+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12
MN F F ≤2,则该椭圆离心率的取值范围是( )
A.1(0]2,
B.(0 C.1[1)2,
D.1) 5设12F F ,分别是椭圆22
221x y a b
+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )
A
.(0 B
.(0 C
.1)
D.1)
6双曲线22
221x y a b -=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )
A.(1,3)
B.(]1,3
C.(3,+∞)
D.[)3,+∞ 7已知1F 、2F 是椭圆的两个焦点,满足12
0MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( )
A .(0,1)
B .1(0,]2
C
. D
. 8已知双曲线2222
1,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )
A 43
B 53
C 2
D 73
9 已知1F ,2F 分别为22221x y a b -= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若2
1
2PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( ) A (1,2] B (1,3] C [2,3] D [3,)+∞
10 已知椭圆22
221(0)x y a b a b
+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,椭圆的离心率e 的取值范围是; 。

11. 椭圆G :22221(0)x y a b a b +=>>的两焦点为12(,0),(,0)F c F c -,椭圆上存在点M 使120F M F M ⋅=. 求椭圆离心率e 的取值范围 ;
12已知双曲线22
221(0,0)x y a b a b
-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是
(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞
13设双曲线C :1:)0(1222
=+>=-y x l a y a
x 与直线相交于两个不同的点A 、B.求双曲线C 的离心率e 的取值范围:
14.设12F F ,分别是椭圆22
221x y a b
+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )
A .0⎛
⎝ B .0⎛
⎝ C .1⎫⎪⎪⎭ D .1⎫⎪⎪⎭
15已知椭圆22221(0)x y a b a b
+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221
sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 . 16椭圆22221()x y a b a b +=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是
(A )⎛ ⎝ (B )10,2⎛⎤ ⎥⎝⎦ (C ) )1,1 (D )1,12⎡⎫⎪⎢⎣⎭ 17. 已知梯形ABCD 中,|AB|=2|CD|,点E 满足→→=EC AE
λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4
332≤≤λ时,双曲线离心率e 的取值范围是: 。

18.已知双曲线)0,0(122
22>>=-b a b
y a x 的左、右焦点分别为21,F F ,若在双曲线的右支上存在一点P ,使得2
13PF PF =,则双曲线的离心率e 的取值范围为 .。

相关文档
最新文档