数据的描述-统计学
统计学之数据的描述

数据的特征
任何一组计量数据都有两个重要的特征:
中心值
(典型值)
围绕中心值
(典型值)的变
动幅度
数据的标记
如果我们进行一系列的观察,得到 个数,我们可以使用简单的记号标注数据,这样对数据统计与分析大有帮助。
我们可以将数据按如下方式进行标注:
1 , 2 , 3 , … …
标准差:s = 2 =
1
σ=1
−1
2ቤተ መጻሕፍቲ ባይዱ
2
− ҧ
2
和的特性
ҧ
平均数和标准差适合概括没有异类点、完全对称的直方图。如右图所示。
5
8
9
13
200
中位数为:9,平均数为:47
此时用平均数不能体现总
体毕业生的薪资水平,扭
曲了毕业生的平均薪资
异类点(极
端数值)
变动度的测量
变动度是描述数据偏离中心值有多远的量。
例如:调查学校7个学生的体重,恰好都是145斤,那
如果学生重量轻重不一,如下图所示。
就根本没有变动度,用直方图表示会很窄。如下图所
举例:随机调查某大学毕业生中5个人薪资水平,数据如下:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
5
8
9
13
10
中位数为:9,平均数为:9
如果随机调查某大学毕业生中5个人薪资水平,其中C0096号同学薪资为200K,则:
学号
B0034
A0003
B0020
D1005
C0096
薪资(K)
示。
直方图将会变宽
统计学第4章数据特征的描述

极差计算简单,但容易受到极端值的影响,不能全面 反映数据的离散程度。
四分位差
定义
四分位差是第三四分位数与第 一四分位数之差,用于反映中
间50%数据的离散程度。
计算方法
四分位差 = 第三四分位数 第一四分位数
优缺点
四分位差能够避免极端值的影 响,更稳健地反映数据的离散
程度,但计算相对复杂。
方差与标准差
统计学第4章数据特征 的描述
https://
REPORTING
• 数据特征描述概述 • 集中趋势的度量 • 离散程度的度量 • 偏态与峰态的度量 • 数据特征描述在统计分析中的应用 • 数据特征描述的注意事项
目录
PART 01
数据特征描述概述
REPORTING
WENKU DESIGN
数据特征描述在推断性统计中的应用
参数估计 假设检验 方差分析 相关与回归分析
基于样本数据特征,对总体参数进行估计,如点估计和区间估 计。
通过比较样本数据与理论分布或两组样本数据之间的差异,对 总体分布或总体参数进行假设检验。
研究不同因素对总体变异的影响程度,通过比较不同组间的差 异,分析因素对总体变异的贡献。
定义
方差是每个数据与全体数据平均数之方根,用于衡量数据的波动大小。
计算方法
方差 = Σ(xi - x̄)² / n,标准差 = √方差
优缺点
方差和标准差能够全面反映数据的离散程度,且计算相对简单,但容易受到极端值的影响。同时,方差 和标准差都是基于均值的度量,对于非对称分布的数据可能不够准确。
适用范围
适用于数值型数据,且数据之间可能 存在极端异常值的情况。
特点
中位数不受极端值影响,对于存在极 端异常值的数据集,中位数能够更好 地反映数据的集中趋势。
统计学测量数据分布的测度描述

统计学测量数据分布的测度描述包括以下几种常见的描述方法:
1.平均数:也称为均值,是指一组数据中所有数值的总和除以数
据个数的结果。
平均数可以用来描述一组数据的集中趋势。
2.中位数:也称为中值,是指一组数据中所有数值按大小排序后,
位于中间的那个数值,如果数据个数为偶数,则中位数为中间两个数的平均数。
中位数可以用来描述一组数据的集中趋势。
3.众数:也称为模数,是指一组数据中出现次数最多的数值。
众
数可以用来描述一组数据的集中趋势,特别是对于呈现多峰分布的数据。
4.极差:是指一组数据中最大值与最小值的差值。
极差可以用来
描述一组数据的离散程度。
5.方差:是指一组数据中每个数值与平均数的差的平方和除以数
据个数的结果。
方差可以用来描述一组数据的离散程度。
6.标准差:是指方差的正平方根。
标准差可以用来描述一组数据
的离散程度,同时也可以用来进行数据的比较。
7.百分位数:是指一组数据中某个百分比的数值。
例如,50%的百
分位数就是中位数。
百分位数可以用来描述一组数据的分布情况,比如数据的偏态和尾重程度。
这些测度描述可以帮助我们更好地理解和分析一组数据的特征和分布情况。
研究数据收集、处理和描述的统计学方法

研究数据收集、处理和描述的统计学方法
1、数据收集:首先需要进行数据收集。
数据可以来自实验或观察,
可以是定性的或定量的。
定性数据是通过采访、调查或观察等方式收集的,而定量数据是通过测量工具或问卷等方式收集的。
2、数据处理:一旦收集到数据,就需要对数据进行处理。
数据处
理包括清洗数据、整理数据、验证数据的准确性和完整性等。
清洗数据是指删除或修正错误或缺失的数据,整理数据是指将数据进行转换和规范化,以便进行分析。
3、数据描述:数据描述是对数据进行统计分析的过程,包括对数
据的概括性描述和详细性描述。
概括性描述包括均值、中位数、众数等统计指标,而详细性描述包括直方图、箱线图、时间序列图等图表。
4、统计分析:根据研究目的和数据类型,选择适当的统计分析方
法,例如假设检验、方差分析、回归分析等。
这些方法可以帮助研究者确定数据之间的关系和模式,从而得出结论和建议。
5、报告结果:最后,研究者需要将分析结果以图表和文字的形式
呈现出来,以便其他人理解和使用。
统计学原理数据的描述(1)

目 录 2.1 数据的收集 2.2 数据的整理 2.3 数据的描述 2.4 数据的计算机处理
1.1 统计数据的搜集
数据资料是经济管理和工商企业管理决策的基础。 数据资料是经济管理和工商企业管理决策的基础。 占有一定的资料是研究的基础。 占有一定的资料是研究的基础。 根据统计研究任务要求, 根据统计研究任务要求,采用科学的调查方式和方 法搜集资料,是保证统计质量的基本环节、 法搜集资料,是保证统计质量的基本环节、统计分 析的前提。 析的前提。 只有搞好统计调查, 只有搞好统计调查,才能保证统计工作达到对于客 观事物规律性的认识。并从而预测未来, 观事物规律性的认识。并从而预测未来,统计资料 还是制定政策的依据, 还是制定政策的依据,并据此检查和监督政策的贯 彻执行情况。 彻执行情况。
联邦储备局
预算编制办公室 商务部
二手数据的特点与注意问题
搜集容易, 搜集容易,采集成本低 作用广泛 • 分析所要研究的问题 • 提供研究问题的背景 • 帮助研究者更好地定义问题 • 寻找研究问题的思路和途径 搜集二手资料在研究中应优先考虑 数据是谁搜集的? 数据是谁搜集的?
可信度评估
为什么目的而搜集的? 为什么目的而搜集的? 数据是怎样搜集的? 数据是怎样搜集的? 什么时候搜集的? 什么时候搜集的?
4.调查的分类 调查的分类
调查可以从不同角度进行分类: 调查可以从不同角度进行分类: 按调查内容和性质划分, 一、按调查内容和性质划分,分为有关部门组织的专项调 市场调查和科学研究调查等。 查、市场调查和科学研究调查等。 从调查对象的范围来划分, 二、从调查对象的范围来划分,可以分为全面调查和非全 面调查。 面调查。 三、从调查是否重复来划分,可分为一次性调查和经常性 从调查是否重复来划分, 调查。 调查。 按组织方式, 四、按组织方式,可分为统计报表和专门调查 统计报表是按照统一规定的表式要求,自上而下地统一 统计报表是按照统一规定的表式要求 自上而下地统一 布置、自下而上地统一提供统计资料的组织方式。 布置、自下而上地统一提供统计资料的组织方式。 专门调查是为研究某些专门问题,由进行调查的单位专 专门调查是为研究某些专门问题 由进行调查的单位专 门组织的调查,这种调查属一次性调查 如人口普查、 这种调查属一次性调查, 门组织的调查 这种调查属一次性调查,如人口普查、劳 动力调查、科技普查等。 动力调查、科技普查等。
《统计学》数值数据的描述

第四章数值数据的描述重点:有关数值数据的性质和特征:如集中趋势、变异(离散)程度、分布形状1、集中趋势度量(MeaSureSofCentralTendency)1)均值或平均数(Mean)、算术平均数(arithmeticmean)又称为期望样本均值T=(X l+X2+∙∙→‰)/n=(∑X i)/n这是最常用的度量统计量它通过以观察值中较小数据补足较大的数据来得到平衡点易受数据的极端值的影响(如体育比赛中最高分和最低分往往被去掉)2)中位数:有序数列中处在中间位置的数值(Median)确定中位数的方法:首先,按序排列数据其次,运用定位公式:(n+l)∕2确定中间的观察值如果样本容量为奇数,中位数为中间的观察值数值如果样本容量为偶数,中位数为中间两个观察值的平均中位数与平均数相比对偏态不敏感。
不易受数据极端值的影响3)众数:数据集合中出现频数最高的数值(Mode)众数可从有序数组中观得到可能会出现没有众数或一个以上众数的情况4)值域中点=(X Ai大值+X44小值)/2(Midrange)所有观察值中最大值和最小值的平均值,应用于金融分析和气象预报对数据的极端值非常敏感5)中轴数=(Q1+Q3)/2 (Midhinge)第一四分位数和第三四分位数的平均值,中轴数不受极端值的影响四分位数的度量Q1.第一四分位数是(n+l)∕4位置上的数据(first quartile,QI)25%的数据比第一四分位数小。
Q?.第二四分位数就是中位数(secondquartile,Q2)处在2(n+l)∕4=(n+D∕2的位置上,50%的观察值比中位数小。
Qs.第三四分位数是处在3(n+l)∕4位置上的数据(thirdquartile,Q3)75%的观察值比第三四分位数小。
2、变异程度的度量MeasureofVariation1)全距X奴小值(Range)又称级差,由数据的极端值所决定。
对数组排序,很容易的找出最大值和最小值,从而计算出全距。
统计学之统计数据的描述

则必然取2,而不能取其他
离散系数
离散系数
(coefficient of variation)
1. 标准差与其相应的均值之比 2.对数据相对离散程度的测度 3.消除了数据水平高低和计量单位的影
响
4v.用 较于对不同组别数v据s 离散程xs度的比
【 例 】某管理局抽查了所属的8家企业 ,其产品销售数据如表。试比较产品销售 额与销售利润的离散程度
累积的收入百分比
绝对公平线
A B
累积的人口百分比
基尼系数
1. 20世纪初意大利经济学家基尼(G. Gini)根据
洛伦茨曲线给出了衡收入分配平均程度的指
标 基尼系数=
A
A B
2. A表示实际收入曲线与绝对平均线之间的面积 3. B表示实际收入曲线与绝对不平均线之间的面
积
A B
• 如果A=0,则基尼系数=0,表示收入绝对 平均
一般用x表示变量;用f表示频数(次数) 。
2.1.3 次数分配图
分组数据—直方图和折线图
Excel
用直方形的宽度和高度来表示次数分 布的图形。
绘制直方图时,横轴表示各组组限, 纵轴表示次数(一般标在左方)和比 率(或频率,一般标在右方)。
分组数据的图示
我一眼就看 出来了,销 售量在170~ 180之间的天 数最多!
1. 一组数据中可以自由取值的数据的个数
2. 当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其
中必有一个数据则不能自由取值
3.
例如,样
x3=9,则
本有
x
3个数值,即
= 5。当 x
x=1=52,确x定2=4后,,x
1
统计学 第2章 统计数据的描述

第2章统计数据的描述练习:2.1为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
2.2某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):152 124 129 116 100 103 92 95 127 104105 119 114 115 87 103 118 142 135 125117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
2.3某百货公司连续40天的商品销售额如下(单位:万元):41 25 29 47 38 34 30 38 43 4046 36 45 37 37 36 45 43 33 4435 28 46 34 30 37 44 26 38 4442 36 37 37 49 39 42 32 36 35根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值型数据
数值型数据(metric data)——是定距尺 度和定比尺度对现象计量结果。 例如学生的考试成绩70分、工人的月 收入2000元均为数值型数据。 数值型数据通常称为定量数据。
2018/8/1
《统计学》第2章数据的描述
2-13
问题讨论
《统计学》第2章数据的描述
2018/8/1
2-7
间隔尺度
(Interval scale)
1. 2. 3. 4. 5. 6. 也称间隔尺度 对事物的准确测度 比定序尺度精确 数据表现为“数值” 没有绝对零点 具有 + 或 - 的数学特性
《统计学》第2章数据的描述 2-8
2018/8/1
比率尺度
(Ratio scale)
1. 2. 3. 4. 5. 6. 也称比率尺度 对事物的准确测度 与定距尺度处于同一层次 数据表现为“数值” 有绝对零点 具有 或 的数学特性
《统计学》第2章数据的描述 2-9
2018/8/1
四种计量尺度的比较
四种计量尺度的比较
计量尺度 定类尺度 定序尺度 定距尺度 定比尺度 数学特性
分类( = ,≠ ) 排序( < ,> ) 间距( + ,- ) 比值( × ,÷ )
1. 2. 3. 4. 5. 6. 7. 也称名义尺度或分类尺度 计量层次最低 对事物进行平行的分类 各类别可以指定数字代码表示 使用时必须符合类别穷尽和互斥的要求 数据表现为“类别” 具有=或的数学特性
《统计学》第2章数据的描述 2-6
2018/8/1
顺序尺度
(Ordinal scale)
1. 2. 3. 4. 5. 6. 也称定序尺度 对事物分类的同时给出各类别的顺序 比定类尺度精确 未测量出类别之间的准确差值 数据表现为“类别”,但有序 具有>或<的数学特性
2018/8/1
《统计学》第2章数据的描述
2-11
顺序数据
顺序数据(rank data)——是定序尺度对现 象计量的结果。 例如:人口按受教育程度分为“小学”、 “初中”、“高中”、“大学及以上” 组,则这里的“小学”、“初中”、 “高中”、“大学及以上”即为顺序数 据。 分类数据和顺序数据合称为定性数据。
2018/8/1 《统计学》第2章数据的描述
Internet
http//WWW.
中 国 人 口 统 计 年 鉴
中 国 市 场 统 计 年 鉴
2-17
提供统计数据的部分政府网站
中国政府及相关机构
国家统计局
网址
数据内容
统计年鉴、统计 月报等
国务院发展研究中心 宏观经济、财经、 信息网 货币金融等
《统计学》第2章数据的描述
2-15Leabharlann 2.2.1 数据的间接来源
间接来源的数据我们称之为第二手数据。 可从各种公开出版物(如统计年鉴 等) 、报纸、杂志、图书、网络、新 闻媒体等获取。
2018/8/1
《统计学》第2章数据的描述
2-16
间接取得的数据
1. 统计部门和政府部门公布的有关资料, 如各类统计年鉴 2. 各类经济信息中心、信息咨询机构、专 业调查机构等提供的数据 3. 各类专业期刊、报纸、书籍所提供的资 料 4. 各种会议,如博览会、展销会、交易会 及专业性、学术性研讨会上交流的有关 资料 5. 从互联网或图书馆查阅到的相关资料
2018/8/1 《统计学》第2章数据的描述 2-3
2.1 数据的计量与分类
数据的计量尺度 数据的类型
2018/8/1
《统计学》第2章数据的描述
2-4
四种计量尺度
数据的计量尺度
定类尺度
定序尺度
定距尺度
定比尺度
2018/8/1
《统计学》第2章数据的描述
2-5
列名尺度
(Nominal scale)
统计学 第二章
2018/8/1
《统计学》第2章数据的描述
2-1
第2章 数据的描述
2.1 数据的计量与分类 2.2 数据的收集 2.3 数据的整理 2.4 集中趋势的度量 2.5 离散程度的度量 2.6 分布偏态与峰度 2.7 统计表
2018/8/1 《统计学》第2章数据的描述 2-2
中国经济信息网 经济信息及各类 网站
华通数据中心
中国决策信息网 三农数据网
2018/8/1
. cn
《统计学》第2章数据的描述
国家统计局授权 的数据中心
决策知识及案例 三农信息、论坛 及相关网站
【引例2.0】统计数据
2009年7月9日随机抽查了某大学50名任课教师的年龄,原 始数据(周岁)如下: 33 39 45 27 24 35 30 44 52 47 45 42 40 46 68 48 47 46 39 60 46 47 51 29 59 47 29 50 43 29 35 30 29 34 33 45 64 46 44 67 30 27 29 44 53 31 55 41 43 47 这一大堆数据可能使你眼花缭乱,也许你并不能够一下 就记住所有数据。 假如我们感兴趣的是教师年龄的分布,那么,你认为对上 述数据应该怎样分组才能显示教师年龄的分布特征?教师 年龄的集中趋势如何?离散程度怎样?分布的偏态及峰度 又应该如何测定呢?
前面例子中涉及的“性别”、“经济类 型”、“受教育水平”、“考试成绩”、 “月收入”能看作数据吗? 如果它们不能看作数据,那么应该怎样 正确理解这些概念?
2018/8/1
《统计学》第2章数据的描述
2-14
2.2
数据的收集
2.2.1 数据的间接来源 2.2.2 数据的直接来源
2018/8/1
√
√ √
√ √ √
√ √ √ √
“√”表示该尺度所具有的特性
2018/8/1 《统计学》第2章数据的描述 2-10
数据的类型
四种尺度计量结果,形成三种数据: 分类数据、顺序数据和数值型数据。 分类数据(categorical data)——是定类 尺度对现象计量的结果。 例如人口按性别分类,则“男”、 “女”即为分类数据。