文科《概率与统计》高考常考题型专题训练

合集下载

高考数学文科概率与统计问题的热点题型练习含答案 精校打印版

高考数学文科概率与统计问题的热点题型练习含答案 精校打印版

专题探究课六高考中概率与统计问题的热点题型1.(2017·佛山质检)某网络广告A公司计划从甲、乙两个网站选择一个网站拓展广告业务,为此A公司随机抽取了甲、乙两个网站某月中10天的日访问量n(单位:万次),整理后得到如下茎叶图,已知A公司要从网站日访问量的平均值和稳定性两方面进行考察选择.(1)请说明A公司应选择哪个网站;(2)现将抽取的样本分布近似看作总体分布,A公司根据所选网站的日访问量n进行付费,其付费标准如下:选定网站的日访问量n(单位:万次)A公司的付费标准(单位:元/日)n<2550025≤n≤35700n>35 1 000解(1)由茎叶图可知x甲=(15+24+28+25+30+36+30+32+35+45)÷10=30,s2甲=110×[(15-30)2+(24-30)2+(28-30)2+(25-30)2+(30-30)2+(36-30)2+(30-30)2+(32-30)2+(35-30)2+(45-30)2]=58,x乙=(18+25+22+24+32+38+30+36+35+40)÷10=30,s2乙=110×[(18-30)2+(25-30)2+(22-30)2+(24-30)2+(32-30)2+(38-30)2+(30-30)2+(36-30)2+(35-30)2+(40-30)2]=49.8,∵x甲=x乙,s2甲>s2乙,∴A公司应选择乙网站.(2)由(1)得A公司应选择乙网站,由题意可得乙网站日访问量n <25的概率为0.3,日访问量25≤n ≤35的概率为0.4,日访问量n >35的概率为0.3, ∴A 公司每月应付给乙网站的费用S =30×(500×0.3+700×0.4+1 000×0.3)=21 900(元).2.柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x 与雾霾天数y 进行统计分析,得出下表数据.x 4 5 7 8 y2356(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =bx +a ;(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.(相关公式:b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x )解 (1)散点图如图所示.(2)∑i =14x i y i =4×2+5×3+7×5+8×6=106,x =4+5+7+84=6,y =2+3+5+64=4, ∑i =14x 2i =42+52+72+82=154,则b=∑i=14x i y i-4x y∑i=14x2i-4x2=106-4×6×4154-4×62=1,a=y-b x=4-6=-2,故线性回归方程为y=x-2.(3)由回归直线方程可以预测,燃放烟花爆竹的天数为9的雾霾天数为7. 3.全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.解(1)融合指数在[7,8]内的“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的“省级卫视新闻台”记为B1,B2,从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B1,B2},共1个.所以所求的概率P=1-110=910.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05.4.(2015·全国Ⅱ卷)某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表满意度评分[50,60)[60,70)[70,80)[80,90)[90,100] 分组频数281410 6较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意解(1)B地区用户满意度评分的频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由频率分布直方图,A地区用户不满意的频率f A=(0.010+0.020+0.030)×10=0.6,B地区用户不满意的频率f B=(0.005+0.02)×10=0.25,因此估计概率P(C A)=0.6,P(C B)=0.25.所以A地区用户的满意度等级为不满意的概率大.5.(2017·郑州模拟)某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其余人员不喜欢运动.(1)根据以上数据完成2×2列联表;喜欢运动不喜欢运动总计男女总计(2)是否有95%(3)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责处理应急事件,求抽出的2名志愿者都懂得医疗救护的概率.解(1)依题意,2×2的列联表如下:喜欢运动不喜欢运动总计(2)χ2=30×(10×8-6×6)216×14×14×16≈1.157 5<3.841,因此,没有95%的把握认为是否喜欢运动与性别有关. (3)喜欢运动的女志愿者有6人,设分别为A ,B ,C ,D ,E ,F ,其中A ,B ,C ,D 懂得医疗救护, 则从这6人中任取2人的情况有(A ,B ,),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种,其中两人都懂得医疗救护的情况有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6种,设“抽出的2名志愿者都懂得医疗救护”为事件A , 则P (A )=615=25.6.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个);由a ·b =-1, 得-2x +y =-1,∴a ·b =-1包含的基本事件为(1,1),(2,3),(3,5),共3种情形.故P (a ·b =-1)=336=112. (2)若x,y在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x,y)|1≤x≤6,1≤y≤6};满足a·b<0的基本事件的结果为A={(x,y)|1≤x≤6,1≤y≤6且-2x+y<0};画出图形如图,正方形的面积为S正方形=25,阴影部分的面积为S阴影=25-12×2×4=21,故满足a·b<0的概率为21 25.。

文科高考(统计、概率)小题专项

文科高考(统计、概率)小题专项

高考小题专项训练一——统计、概率1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法2.(1)某学校为了了解2018年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ简单随机抽样法.Ⅱ系统抽样法.Ⅲ分层抽样法.问题与方法配对正确的是()A. (1)Ⅲ,(2)ⅠB. (1)Ⅰ,(2)ⅡC. (1)Ⅱ,(2)ⅢD. (1)Ⅲ,(2)Ⅱ3.某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样,分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277;②5,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300.关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样4.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()A. 23B. 09C. 02D. 175.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为()A. 700B. 669C. 695D. 6766.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A. 30人,30人,30人B. 30人,45人,15人C. 20人,30人,10人D. 30人,50人,10人7.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差8.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是()A. 68B. 70C. 69D. 719.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB,则 ()A.A>B,sA>sBB.A<B,sA>sBC.A>B,sA<sBD.A<B,sA<sB10.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为() A. 8B. 15C. 16D. 3211.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()A.,s2+1002B.+100,s2+1002C.,s2D.+100,s212.甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是甲,乙,则下列叙述正确的是()A.甲>乙;乙比甲成绩稳定B.甲>乙;甲比乙成绩稳定C.甲<乙;乙比甲成绩稳定D.甲<乙;甲比乙成绩稳定13.据第六次全国人口普查的数据,得到我国人口的年龄频率分布直方图如图所示.那么在一个总人口数为300万的城市中,年龄在[20,60)之间的人口数大约有()A. 158万B. 166万C. 174万D. 132万14.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A. 200,20B. 100,20C. 200,10D. 100,1015.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程=x+,其中=0.76,=-,据此估计,该社区一户收入为15万元家庭年支出为()A. 11.4万元B. 11.8万元C. 12.0万元D. 12.2万元16.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程=x+必过(,);④在一个2×2列联表中,由计算得K2=13.079,则有99.9%的把握确认这两个变量间有关系.其中错误的个数是()本题可以参考独立检验临界值表A. 0B. 1C. 2D. 317.对具有线性相关关系的变量x,y,测得一组数据如下表:根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+,据此模型来预测当x=20时,y 的估计值为()A. 210B. 210.5C. 211.5D. 212.518.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423②y与x负相关且=-3.476x+5.648③y与x正相关且=5.437x+8.493④y与x正相关且=-4.326x-4.578其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④19.如图,在矩形区域ABCD上的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A. 1-B.-1C. 2-D.20.设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A.B.C.D.21.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A. 0.4B. 0.6C. 0.8D. 122.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是____________________________________.23.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.24.下列关于统计的说法:①将一组数据中的每个数据都加上或减去同一个常数,方差恒不变;②线性回归方程=x+必经过点(,);③设线性回归方程为y=-5x+3,若变量x增加1个单位,则y平均增加5个单位;④已知线性回归方程为=2x+1,而实验得到的一组数据为(2,4.9),(3,7.1),(4,9.1),则残差平方和为0.03.其中正确的为________.(填序号)25.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x 与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。

因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。

一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。

(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。

(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。

2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。

(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。

二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。

2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。

3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。

4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。

总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。

高考数学《概率与统计》专项练习(选择填空题含答案)

高考数学《概率与统计》专项练习(选择填空题含答案)

《概率与统计》专项练习(选择填空题)【考点一】古典概型1.(2016全国I 卷,文3,5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )31 (B )21 (C )32 (D )65解法一:(重复的树状图)设红、黄、白、紫分别为a 、b 、c 、d 第1个花盆的树状图如下所有可能的结果有12种红色和紫色的花不在同一花坛,则要把ad 和bc 都要排除 红色和紫色的花不在同一花坛的结果有8种∴红色和紫色的花不在同一花坛的概率P =128=32解法二:(不重复的树状图)设红、黄、白、紫分别为a 、b 、c 、d种在第1个花盆的树状图如下所有可能的结果有6种红色和紫色的花不在同一花坛,则要把ad 和bc 都要排除红色和紫色的花不在同一花坛的结果有4种∴红色和紫色的花不在同一花坛的概率P =64=32解法三:(列举法)设红、黄、白、紫分别为a 、b 、c 、d则种在第1个花盆所有可能的结果有:(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6种红色和紫色的花不在同一花坛的结果有:(a ,b ),(a ,c ),(b ,d ),(c ,d ),共4种(说明:(a ,d )和(b ,c )都要排除)∴红色和紫色的花不在同一花坛的概率P =64=32【小结】列出所有可能的结果,找到符合条件的结果,注意要排除不符合条件的结果.2.(2017广州一模,文7,5分)四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )(A )14 (B )716 (C )12 (D )916解法一:树状图设四个人别为①、②、③、④,正面为A ,反面为B树状图如下所有可能的结果有16种没有相邻的两个人站起来的结果有7种(注意排除ABBA 种情况)b c d a c d a b d a b c √ √ √ √ √ √ √ √a b c d b c d c d d √ √ √ √a b c① A B② A B A B ③ A B A B A B A B④A B A B A B A B A B A B A B A B √ √ √ √ √ √ √7∴红色和紫色的花不在同一花坛的概率P=16解法二:列举法(列举法容易出现错误,建议采用解法一的树状图)设四个人别为①、②、③、④,正面为A,反面为B所有可能的结果有:(①,②,③,④)(A,A,A,A),(A,A,A,B),(A,A,B,A),(A,A,B,B)(A,B,A,A),(A,B,A,B),(A,B,B,A),(A,B,B,B)(B,A,A,A),(B,A,A,B),(B,A,B,A),(B,A,B,B)(B,B,A,A),(B,B,A,B),(B,B,B,A),(B,B,B,B)共16种没有相邻的两个人站起来的结果有:(A,B,A,B),(A,B,B,B),(B,A,B,A),(B,A,B,B)(B,B,A,B),(B,B,B,A),(B,B,B,B),共7种(说明:(A,B,B,A)要排除)7∴红色和紫色的花不在同一花坛的概率P=163.(2015全国Ⅰ卷,文4,5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.【解析】从1,2,3,4,5中任取3个不同的数有10种取法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5)(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)其中能构成一组勾股数的有1种:(3,4,5)∴所求事件的概率P=,故选C.4.(2014全国Ⅰ卷,文13,5分).将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为______.【解析】设2本不同的数学书为a1、a2,1本语文书为b在书架上的排法有:a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种其中2本数学书相邻的有a1a2b,a2a1b,ba1a2,ba2a1,共4种∴2本数学书相邻的概率P==.5.(2014全国Ⅱ卷,文13,5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为______.【解析】甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝,共9种其中颜色相同的有3种∴所求概率为=.6.(2013全国Ⅰ卷,文3,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.【解析】从1,2,3,4中任取2个不同的数共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种不同的结果取出的2个数之差的绝对值为2的有(1,3),(2,4),共2种结果∴概率为,故选B.7.(2013全国Ⅱ卷,文13,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【解析】任取两个不同的数的情况有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种其中和为5的有2种∴所求概率为=0.28.(2011全国Ⅰ卷,文6,5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .B .C .D .【答案】A【解析】甲、乙两人都有3种选择,共有3×3=9种情况甲、乙两人参加同一兴趣小组共有3种情况∴甲、乙两人参加同一兴趣小组的概率P = =,故选A .9.(2016江苏,文7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】先后抛掷2次(1,1)(1,2),(1,3),(1,4),(1,5),(1,6)(2,1)(2,2),(2,3),(2,4),(2,5),(2,6)(3,1)(3,2),(3,3),(3,4),(3,5),(3,6)(4,1)(4,2),(4,3),(4,4),(4,5),(4,6)(5,1)(5,2),(5,3),(5,4),(5,5),(5,6)(6,1)(6,2),(6,3),(6,4),(6,5),(6,6)基本事件总数有36种点数之和小于10的基本事件共有30种 ∴所求概率为305.366=10.(2016四川,文13,5分)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是______.【解析】从2,3,8,9中任取两个不同的数字(2,3),(2,8),(2,9)(3,2),(3,8),(3,8)(8,2),(8,3),(8,9)(9,2),(9,3),(9,8)共12种log a b 为整数只有log 28,log 39两个基本事件 ∴所求概率21126P==.11.(2016天津,文2,5分)甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61 (D )31 【解析】甲不输的概率=21=31=65,故选A .12.(2016全国Ⅲ卷,文5,5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )(A )815 (B )18 (C )115 (D )130【解析】开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能∴小敏输入一次密码能够成功开机的概率是115,故选C.【考点二】几何概型13(2016全国Ⅱ卷,文8,5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()(A)710(B)58(C)38(D)310【解析】∵红灯持续时间为40秒∴这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B.【考点三】统计14.(2016山东,文3,5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()(A)56(B)60(C)120(D)140【答案】D【解析】由频率分布直方图知,自习时间不少于22.5小时的人数是200(0.160.080.04) 2.5140⨯++⨯=,选D.15.(2016上海,文4,5分)4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______米).【答案】1.76【解析】将这5位同学的身高按照从低到高排列为:1.69,1.72,1.76,1.78,1.80,这五个数的中位数是1.76.。

统计与概率高考题(文科)

统计与概率高考题(文科)

统计与概率高考题1(文科)一、选择题1.(2018全国卷Ⅰ,T3)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2.(2018全国卷Ⅱ,T5)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.33.(2018全国卷Ⅲ,T5)某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.74.(2017新课标Ⅰ,T2)为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .1x ,2x ,…,n x 的平均数B .1x ,2x ,…,n x 的标准差C .1x ,2x ,…,n x 的最大值D .1x ,2x ,…,n x 的中位数5.(2017新课标Ⅰ,T4)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π 6.(2017新课标Ⅱ,T11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A .110B .15C .310D .257.(2017新课标Ⅲ,T3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20XX 年1月至20XX 年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳8.(2016全国I卷,T3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A.13B.12C.23D.569.(2016全国II卷,T8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为A.B.C.D.10.(20XX年全国III卷,T4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个11.(2016全国III卷,T5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A.815B.18C.115D.130710583831012.(20XX年北京,T6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为A.15B.25C.825D.92513.(20XX年北京,T8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛14.(2015新课标1,T4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A.310B.15C.110D.12015.(2015新课标2,T3)根据下面给出的20XX年至20XX年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A.逐年比较,20XX年减少二氧化硫排放量的效果最显著B.20XX年我国治理二氧化硫排放显现成效C.20XX年以来我国二氧化硫年排放量呈减少趋势D.20XX年以来我国二氧化硫年排放量与年份正相关16.(2015北京,T4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为A.90 B.100 C.180 D.300二、填空题17.(2018全国卷Ⅲ,T14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.18.(20XX年全国II卷,T16)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.19.(20XX年北京,T14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店②第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.20.(2015北京,T14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.。

高中数学:概率统计专题

高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。

高三数学《概率统计(文科)》练习

高三数学《概率统计(文科)》练习

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率()()1,0∈AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表. A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表 满意度评分分组[50,60) [60,70) [70,80) [80,90) [90,100]频 数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:()()()()()d b c a d c b a bc d a n K ++++-=22满意度评分 低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意()02k K P ≥ 0.10 0.05 0.01 0.005 0k 2.706 3.841 6.635 7.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ .18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分区间 [25,30) [30,35) [35,40) [40,45) [45,50]人数 25 a b(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.31B.21C.32D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.107 B.85 C.83 D.103 22.在区间[-2,3]上随机选取一个数x ,则1≤x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为( )A .1ˆ-=x yB .1ˆ+=x yC .x y 2188ˆ+= D .176ˆ=y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程a x b yˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年 份 2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程a t b yˆˆˆ+=; (Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程a t b yˆˆˆ+=中,t b y atn tyt n y t b ni ini ii ˆˆ,ˆ1221-=--=∑∑==.28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:(1)计算y x ,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算()()()()()d b c a d c b a bc ad n K ++++-=22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:a x b y ˆˆˆ+=,其中()()()x b y ax x y y x x b ni ini iiˆˆ,ˆ121-=---=∑∑==; 90,93==y x ,()()()30,4051251=--=-∑∑==y y x x x x ii ii i .30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5保费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁) 频数 频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350[35,40) 30 b[40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。

高考数学《概率、统计》专项训练及答案解析

高考数学《概率、统计》专项训练及答案解析

高考数学《概率、统计》专项训练一、单选题1.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.72.在普通高中新课程改革中,某地实施“3+1+2”选课方案.该方案中“2”指的是从政治、地理、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地里至少有一门被选中的概率是( ) A .16B .12C .23D .563.下列说法正确的是( ) A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈 C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90% 4.下面四个命题中,错误的是( )A .从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样B .对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大C .两个随机变量相关性越强,则相关系数的绝对值越接近于0D .在回归直线方程ˆy=0.4x +12中,当解释变量x 每增加一个单位时,预报变量平均增加0.4个单位5.已知变量x 、y 之间的线性回归方程为0.710.3y x =-+,且变量x 、y 之间的一-组相关数据如下表所示,则下列说法错误..的是( )A .可以预测,当20x 时, 3.7y =-B .4m =C .变量x 、y 之间呈负相关关系D .该回归直线必过点()9,46.2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况.为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:根据图中(35岁以上含35岁)的信息,下列结论中不一定正确的是( ) A .样本中男性比女性更关注地铁一号线全线开通 B .样本中多数女性是35岁以上C .35岁以下的男性人数比35岁以上的女性人数多D .样本中35岁以上的人对地铁一号线的开通关注度更高7.从装有颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()D X =( ) A .85B .65C .45D .258.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为111,,234,且三家企业的购买结果相互之间没有影响,则三家企业中恰有1家购买该机床设备的概率是 A .2324B .524C .1124D .124二、多选题9.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人 附表:()20P K k ≥0.050 0.010 k3.8416.635附:()()()()()22n ad bc K a b c d a c b d -=++++A .25B .45C .60D .75三、填空题11.某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 (用数字作答).12.浙江省现行的高考招生制度规定除语、数、英之外,考生须从政治、历史、地理、物理、化学、生物、技术这7门高中学考科目中选择3门作为高考选考科目,成绩计入高考总分.已知报考某高校A 、B 两个专业各需要一门科目满足要求即可,A 专业:物理、化学、技术;B 专业:历史、地理、技术.考生小李今年打算报考该高校这两个专业的选考方式有______ 种.(用数字作答) 13.气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22; ②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8. 则肯定进入夏季的地区有_____.14.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科《概率与统计》高考常考题型专题训练1.流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触或与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春季流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春期该园患流感小朋友按照年龄与人数统计,得到如下数据:(1)求y 关于x 的线性回归方程;(2)计算变量x 、y 的相关系数r (计算结果精确到0.01),并回答是否可以认为该幼儿园去年春期患流感人数与年龄负相关很强?(若[]0.75,1r ∈,则x 、y 相关性很强;若[)0.3,0.75r ∈,则x 、y 相关性一般;若[]0,0.25r ∈,则x 、y 相关性较弱.)57.47≈.参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,相关系数()()niix x y y r --=∑.1.【解析】(1)由题意得,2345645x ++++==,2222171410175y ++++==,()()()()()()()()()51522222212515001327ˆ 3.221012iii ii x x y y b x x ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆ17 3.2429.8a y bx=-=+⨯=, 故y 关于x 的线性回归方程为 3.229.8y x =-+;(2)()()()()1221132160.9710108330niii n niii i x x y y r x x y y ===----===≈-⨯-⋅-∑∑∑,0r ∴<,说明x 、y 负相关,又[]0.75,1r ∈,说明x 、y 相关性很强.因此,可以认为该幼儿园去年春期患流感人数与年龄负相关很强.2.为推进中小学体育评价体系改革,某调研员从一中学4000名学生中按照男女学生比例采用分层抽样的方法,从中随机抽取了400名学生进行某项体育测试(满分100分),记录他们的成绩,将记录的数据分成7组:(]30,40,(]40,50,(]50,60,(]60,70,(]70,80,(]80,90,(]90,100,并整理得到如图频率分布直方图.(1)根据该频率分布直方图,估计样本数据的中位数及4000名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)(精确到0.01);(2)已知样本中有三分之二的男生分数高于60分,且分数高于60分的男女人数相等,试估计该校男生和女生人数的比例;(3)若测试成绩2x x s <-(其中x 是成绩的平均值,s 是标准差),则认为该生测试成绩不达标,试估计该中学测试成绩不达标人数. 参考公式:()221ni i i s x x p ==-∑(i p 是第i 组的频率)2 1.4≈11710.8≈.2.【解析】(1)前4组的频率和为0.050.10.10.20.45+++=,故中位数为0.055707071.670.033+=+≈ 4000名学生的平均成绩为:0.05350.1450.1550.2650.3750.2850.059569⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)由频率分布直方图得样本中高于60分的人数占总人数的0.75, 又因为分数高于60分的男女人数相等,故高于60分的男生、女生人数均为4000.750.5150⨯⨯=人, 又因为样本中有三分之二的男生分数高于60分, 所以样本中共有男生的21502253÷=人,女生175人, 又因为样本是按照男女学生比例采用分层抽样的方法得到, 故该校男生和女生人数的比例为225:1759:7=; (3)()()()2222135690.0545690.1ni i i s x x p ==-=-⨯+-⨯∑()255690.1+-⨯()()2265690.275690.3+-⨯+-⨯()()2285690.295690.05234+-⨯+-⨯=所以234211715.12s ==⨯≈,26915.12238.76x s -=-⨯=故测试成绩2x x s <-占比为0.050.8760.0438⨯=, 该中学测试成绩不达标人数约为0.0438*******⨯≈.3.为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成[)0,2,[)2,4,[)4,6,[)6,8,[)8,10,[]10,12六组,得到如下频率分布直方图.(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);(2)若从答对题数在[)2,6内的学生中随机抽取2人,求恰有1人答对题数在[)2,4内的概率. 3.【解析】(1)因为答对题数的平均数约为()10.02530.02550.037570.12590.1875110.1⨯+⨯+⨯+⨯+⨯+⨯27.9⨯=.所以这40人的成绩的平均分约为7.91079⨯=.(2)答对题数在[)2,4内的学生有0.0252402⨯⨯=人,记为A ,B ;答对题数在[)4,6内的学生有0.03752403⨯⨯=人,记为c ,d ,e .从答对题数在[)2,6内的学生中随机抽取2人的情况有(),A B ,(),A c ,(),A d ,(),A e ,(),B c ,(),B d ,(),B e ,(),c d ,(),c e ,(),d e ,共10种,恰有1人答对题数在[)2,4内的情况有(),A c ,(),A d ,(),A e ,(),B c ,(),B d ,(),B e ,共6种, 故所求概率63105P ==. 4.某商店销售某海鲜,统计了春节前后50天海鲜的需求量x ,(1020x ≤≤,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为y 元.(1)求商店日利润y 关于需求量x 的函数表达式; (2)假设同组中的每个数据用该组区间的中点值代替. ①求这50天商店销售该海鲜日利润的平均数;②估计日利润在区间[]580760,内的概率. 4.【解析】(1)商店的日利润y 关于需求量x 的函数表达式为:()()50143014,1420501014,1014x x y x x x ⎧⨯+⨯-≤≤⎪=⎨-⨯-≤<⎪⎩化简得:30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩(2)①由频率分布直方图得:海鲜需求量在区间[)10,12的频率是20.080.16⨯=;海鲜需求量在区间[)12,14的频率是20.120.24⨯=; 海鲜需求量在区间[)14,16的频率是20.150.30⨯=; 海鲜需求量在区间[)16,18的频率是20.100.20⨯=; 海鲜需求量在区间[]18,20的频率是20.050.10⨯=; 这5050天商店销售该海鲜日利润y 的平均数为:()()()(116014100.16136014100.24153020140.301730⨯-⨯⨯+⨯-⨯⨯+⨯+⨯⨯+⨯+)()20140.20193020140.1083.2153.621915885698.8⨯⨯+⨯+⨯⨯=++++=(元)②由于14x =时,30142806014140700⨯+=⨯-=显然30280,142060140,1014x x y x x +≤≤⎧=⎨-≤<⎩在区间[]10,20上单调递增, 58060140y x ==-,得12x =; 76030280y x ==+,得16x =;日利润y 在区间[]580,760内的概率即求海鲜需求量x 在区间[]12,16的频率:0.240.300.54+=5. 2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办数学趣味知识竞赛活动,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[]40,100,分数在[)80,90,[)90,100分别获二等奖和一等奖.按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图.(1)填写下面的22⨯列联表,能否有超过95%的把握认为“获奖与学生的文理科有关”? 文科生 理科生 合计 获奖 5 不获奖(2)将上述调查所得的频率视为概率,现从参赛学生中,通过分层抽样的方法从这些获奖人中随机抽取4人,再从这4人中任意选取2人,求2人均获二等奖的概率. 临界值表:参考格式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.5.【解析】(1)补全22⨯列联表如下表.()2220051153545254.167 3.84150150401606K ⨯⨯-⨯==≈>⨯⨯⨯.所以有超过95%的把握认为“获奖与学生的文理科有关”. (2)由已知可得,分数在[)80,90获二等奖的参赛学生中抽取3人, 分数在[]90,100获一等奖的参赛学生中抽取1人. 记二等奖的3人分别为a ,b ,c ,一等奖的1人为A , 事件E 为“从这4人中抽取2人且这2人均是二等奖”.从这4人中随机抽取2人的基本事件为(),a b ,(),a b ,(),a A ,(),b c ,(),b A ,(),c A ,,共6种,其中2人均是二等奖的情况有(),a b ,(),a b ,(),b c 共3种, 由古典概型的概率计算公式得()3162P E ==.故2人均获二等奖的概率为12. 7.为增强学生法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50人,统计他们的竞赛成绩,并得到如表所示的频数分布表.(Ⅰ)求频数分布表中的m 的值,并估计这50名学生竞赛成绩的中位数(精确到0.1);(Ⅱ)将成绩在[]70,100内定义为“合格”,成绩在[)0,70内定义为“不合格”.请将列联表补充完整.试问:是否有95%的把握认为“法律知识的掌握合格情况”与“是否是高一新生”有关?说明你的理由;(Ⅲ)在(Ⅱ)的前提下,在该50人中,按“合格与否”进行分层抽样,随机抽取5人,再从这5人中随机抽取2人,求恰好2人都合格的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.7.【解析】(Ⅰ)50(5151512)3m =-+++=.设成绩的中位数为x ,则515151(70)505002x ++-⨯=,解得17373.33x =+≈. (Ⅱ)补全2×2列联表如下所示:22()()()()()n ad bc K a b c d a c b d -=++++250(1261418)26243020⨯⨯-⨯=⨯⨯⨯ 4.327 3.841≈>, 所以有95%的把握认为“法律知识的掌握合格情况”与“是否是高一新生”有关. (Ⅲ)分层抽样的比例为515010=,故抽取的5人中成绩合格的有130310⨯=(人),分别记为a ,b ,c ;成绩不合格的有120210⨯=(人),分别记为m ,n . 从5人中随机抽取2人的基本事件有ab ,ac ,bc ,am ,an ,bm ,bn ,cm ,cn ,mn ,共10种,2人都合格的基本事件有ab ,ac ,bc ,共3种, 所以恰好2人都合格的概率30.310P ==. 9.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,记其质量指标值为M ,当85M ≥时,产品为一级品;当7585M ≤<时,产品为二级品;当7075M ≤<时,产品为三级品.现用两种新配方(分别称为A 配方和B 配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表(1)从A 配方生产的产品中按等级分层抽样抽取5件产品,再从这5件产品中任取3件,求恰好取到1件二级品的频率;(2)若这种新产品的利润率y 与质量指标M 满足如下条件:22,85,5,7585,,7075,t M y t M t M ≥⎧⎪=≤<⎨⎪≤<⎩,其中10,7t ⎛⎫∈ ⎪⎝⎭,请分别计算两种配方生产的产品的平均利润率,如果从长期来看,你认为投资哪种配方的产品平均利润率较大?9.【解析】(1)由题知,按分层抽样抽取的5件产品中有2件为二级品,记为a ,b ,有3件为一级品,记为x ,y ,z ,从5件产品中任取3件共有10种取法,枚举如下:(,,)a b x ,(,,)a b y ,(,,)a b z ,(,,)a x y ,(,,)a x z ,(,,)a y z ,(,,)b x y ,(,,)b x z ,(,,)b y z ,(,,)x y z其中恰好取到1件二级品共有6种取法,所以恰好取到1件二级品的概率为63105=. (2)由题知A 配方生产的产品平均利润率22(1030)5(4020)()20.6100t tE A t t +⨯++==+,B 配方生产的产品平均利润率2225(1015)5(3040)() 1.30.7100t t tE B t t ++⨯++⨯==+,所以2()()0.70.10.1(71)E A E B t t t t -=-=-, 因为107t <<,所以()()E A E B <,所以投资B 配方的产品平均利润率较大. 10.某工厂生产了一批零件,从中随机抽取100个作为样本,测出它们的长度(单位:厘米),按数据分成[]10,15,(]15,20,(]20,25,(]25,30,(]30,355组,得到如图所示的频率分布直方图.(1)估计该工厂生产的这批零件长度的平均值(同一组中的每个数据用该组区间的中点值代替); (2)若用分层抽样的方式从第1组和第5组中抽取5个零件,再从这5个零件中随机抽取2个,求抽取的零件中恰有1个是第1组的概率. 10.【解析】(1)由频率分布直方图可得各组频率依次为0.08,0.18,0.4,0.22,0.12, 则这批零件长度的平均值为12.50.0817.50.1822.50.427.50.2232.50.1223.1x =⨯+⨯+⨯+⨯+⨯=.(2)由题意可知第1组和第5组的零件数分别是0.081008⨯=和0.1210012⨯=, 则应从第1组中抽取582812⨯=+个零件,记为A ,B ;应从第5组中抽取3个零件,记为c ,d ,e .从这5个零件中随机抽取2个的情况有AB ,Ac ,Ad ,Ae ,Bc ,Bd ,Be ,cd ,ce ,de ,共10种,其中符合条件的情况有Ac ,Ad ,Ae ,Bc ,Bd ,Be ,共6种. 故所求概率63105P ==. 11.搪瓷是在金属坯体表面涂搪瓷釉而得到的制品.曾经是人们不可或缺的生活必备品,厨房用具中的锅碗瓢盆;喝茶用到的杯子,洗脸用到的脸盆;婚嫁礼品等,它浓缩了上世纪整整一个时代的记忆.某搪瓷设计公司新开发了一种新型复古搪瓷水杯,将其细分成6个等级,等级系数X 依次3,4,5,6,7,8,该公司交给生产水平不同的A 和B 两个厂生产,从B 厂生产的搪瓷水杯中随机抽取30件,相应的等级系数组成一个样本,数据如图所示.(1)依据图表,若从上述等级系数为7和8的搪瓷水杯中抽取2件,求这两件全部来自等级系数为8的搪瓷水杯的概率;(2)若A 厂生产搪瓷水杯的等级系数的平均值为6,在电商平台上A 厂生产的搪瓷水杯的零售价为36元/件,B 厂生产的搪瓷水杯的零售价为30元/件.设L =产品等级系数的平均值产品零售价,若以L 的值越大,产品越具可购买性为判断标准,根据以上数据,哪个工厂的产品更具可购买性?说明理由. 11.【解析】(1)设等级系数为7的搪瓷水杯为A ,B ,C ,等级系数为8的搪瓷水杯为a ,b ,c ,则从中抽取2件的基本事件为(),A B ,(),A C ,(),A a ,(),A b ,(),A c ,(),B C ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,(),a b ,(),a c ,(),b c ,共15种,其中两件全部来自等级系数为8的搪瓷水杯的基本事件为(),a b ,(),a c ,(),b c , 共3种,所以概率为31155=. (2)A 厂的产品更具可购买性,理由如下:将频率视为概率,可得B 厂生产的搪瓷水杯的等级系数的平均值为3946566373834.830X ⨯+⨯+⨯+⨯+⨯+⨯==,即B 厂生产的搪瓷水杯的等级系数的平均值等于4.8,因为A 厂生产搪瓷水杯的等级系数的平均值等于6,价格为36元/件, 所以61366A L ==. 因为B 厂生产的搪瓷水杯的等级系数的平均值等于4.8,价格为30元/件, 所以 4.80.1630B L ==. 因为10.166>,故A 厂生产的搪瓷水杯更具可购买性. 12.为了检测某种抗病毒疫苗的免疫效果,研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,绘制频率分布直方图如图所示,并经进一步检测,发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的小白鼠有110只.(1)求a 值;(2)求200只小白鼠该项指标值的平均数;(3)填写下面的22⨯列联表,并根据列联表判断是否有95%的把握认为注射疫苗后小白鼠产生抗体与指标值不小于60有关?参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.12.【解析】(1)由各频率之和为1,可得:0.0025200.0062520200.025200.0075201a ⨯+⨯+⨯+⨯+⨯=,解得0.00875a =.(2)200只小白鼠某项指标值的平均数0.002520100.0062520300.0087520x =⨯⨯+⨯⨯+⨯500.02520700.0075209061.5⨯+⨯⨯+⨯⨯=.(3)由频率分布直方图,200只小白鼠某项指标值的数据分布为:在[)0,20内有0.00252020010⨯⨯=个;[)20,40内有0.006252020025⨯⨯=个;[)40,60内有0.008752020035⨯⨯=个;[)60,80内有0.025********⨯⨯=个; []80,100内有0.00752020030⨯⨯=个;由已知,小白鼠体内产生抗体的共有160只,其中指标值不小于60的有110只,故有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570=++只,所以指标值小于60没有抗体的小白鼠有20,同理,指标值不小于60没有抗体的小白鼠有20只,故列联表如下:由()2220010002200 4.945 3.8411604070130K ⨯-=≈>⨯⨯⨯ 所以有95%的把握认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.13.党的十九大提出,要推进绿色发展,倡导简约适度、绿色低碳的生活方式.天然气作为一种清洁高效能源,不仅可以优化能源结构,缓解供需矛盾,而且对于改善环境、提高人民生活质量和实现可持续发展都起到十分重要的作用.某研究小组为了研究燃气灶烧水如何节省燃气的问题设计了一个实验,并获得了燃气开关旋钮旋转的弧度数x 与烧开一壶水所用时间y 的一组数据,且作了一定的数据处理(如下表),得到了散点图(如图).xyω()2101ii x x =-∑()2101ii ωω=-∑()()101iii x x yy =--∑()()101iii y y ωω=--∑1.4720.6 0.782.35 0.8119.3-16.2表中21i i x ω=,101110i i ωω==∑.(1)根据散点图判断,y a bx =+与2dy c x=+哪一个更适宜作烧水时间y 关于开关旋钮旋转的弧度数x 的回归方程类型?(不必说明理由)并求出y 关于x 的回归方程;(2)若旋转的弧度数x 与单位时间内煤气输出量t 成正比,那么x 为多少时,烧开一壶水最省煤气? 附:对于一组数据()11,u v ,()22,u v ,()33,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()121niii nii v v u u u u β==--=-∑∑,v u αβ=-.13.【解析】(1)2dy c x =+更适宜. 令21xω=,则y c d ω=+. 由公式可得:()()()101102116.2200.81iii ii y y d ωωωω==--===-∑∑, 20.3200.785c y d ω=-=-⨯=,所以所求回归方程为2205y x =+. (2)设t kx =,则煤气用量2202020552520k kS yt kx kx kx k x x x⎛⎫==+=+≥⋅= ⎪⎝⎭, 当且仅当205kkx x=时取“=”,即2x =时,煤气用量最小. 14.加班,系指除法定或者国家规定的工作时间外,即正常工作日延长工作时间或者双休日以及国家法定假期期间延长工作时间.有的工作人员在正常工作日不能积极主动工作,致使有的工作任务要到正常工作日延长工作时间完成,这不能称为“加班”,只有建立合理的考核方案,才能调动广大工作人员的积极性.某劳动组织对“工作时间”的评价标准如下表: 每天的工作时间(单位:小时) [)6,8 [)8,10 [)10,12 []12,14评价级别良好普通加班 严重加班超重加班2019年5月1日,该劳动组织从某单位某个月中随机抽取10天“工作时间”的统计数据绘制出的频率分布直方图如下:(1)若严重加班的天数是普通加班天数的2倍,求m ,n 的值;(2)在(1)条件下,若从这10天中评价级别是“良好”或“普通加班”的天数里随机抽取2天,求“这2天的‘工作时间’属于同一评价级别”的概率.14.【解析】(1)依题意1 322151210 m n nnmm⎧⨯+⨯==⎧⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩.(2)由(1)可知这10天中评价级别是“良好”有1210210⨯⨯=天,设为,a b;评价级别是“普通加班”有1210210⨯⨯=天,设为,c d.从中抽取2天,所有可能为,,,,,ab ac ad bc bd cd共6种,其中这2天的“工作时间”属于同一评价级别的为,ab cd共2种,所以“这2天的‘工作时间’属于同一评价级别”的概率为21 63 =.15.搪瓷是在金属坯体表面涂搪瓷釉而得到的制品.曾经是人们不可或缺的生活必备品,厨房用具中的锅碗瓢盆;喝茶用到的杯子;洗脸用到的脸盆;婚嫁礼品等,它浓缩了上世纪整整一个时代的记忆.某搪瓷设计公司新开发了一种新型复古搪瓷水杯,将其细分成6个等级,等级系数X依次3,4,5,6,7,8,该公司交给生产水平不同的A和B两个广生产,从B厂生产的搪瓷水杯中随机抽取30件,相应的等级系数组成一个样本,数据如图所示:(1)依据上表,若从上述等级系数为7和8的搪瓷水杯中抽取2件,求这2件全部来自等级系数为8的搪瓷水杯的概率;(2)下图是5位网友对两厂生产的搪瓷水杯对比评分图,根据图表,利用评分均值和标准差比较两种搪瓷水杯的评分情况,并说明理由.15.【解析】(1)设等级系数为7的搪瓷水杯为A ,B ,C ,等级系数为8的搪瓷水杯为a ,b ,c ,则从中抽取2件的基本事件为(),A B ,(),A C ,(),A a ,(),A b ,(),A c ,(),B C ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,(),a b ,(),a c ,(),b c ,共15种,其中2件全部来自等级系数为8的搪瓷水杯的基本事件为(),a b ,(),a c ,(),b c ,共3种, 所以31155P ==. (2)因为()467895 6.8B x =++++÷=,所以B 厂生产的搪瓷水杯的评分平均分为6.8,标准差为()()()()()2222214 6.86 6.87 6.88 6.89 6.8 1.725S ⎡⎤=-+-+-+-+-=⎣⎦, 所以B 厂生产的搪瓷水杯的评分标准差为1.72,因为()56 6.5785 6.5A x =++++÷=,所以A 厂生产的搪瓷水杯的评分平均分为6.5,()()()()()2222215 6.56 6.5 6.5 6.57 6.58 6.515S ⎡⎤=-+-+-+-+-=⎣⎦ 所以A 厂生产的搪瓷水杯的评分标准差为1,综上,B 厂生产的糖瓷水杯的评分的均值较高;A 厂生产的搪瓷水杯的评分的标准差较小,比较稳定.16.新型冠状病毒疫情发生后,口罩的需求量大增,某口罩工厂为提高生产效率,开展技术创新活动,提出两种新的生产方式.为比较两种生产方式的效率,选取80名工人,将他们随机分成两组,每组40人,第一组工人用第一种生产方式,第二组工人用第二种生产方式. 第一种生产方式40名工人完成同一生产任务所用时间(单位:min )如表68 72 85 77 83 82 90 83 89 84 88 87 76 91 79 90 87 91 86 92 88 87 81 76 95 94 63 87 85 71 96637485929987827569第二种生产方式40名工人完成同一生产任务所用时间(单位:min )如饼图所示:(1)填写第一种生产方式完成任务所用时间的频数分布表并作出频率分布直方图; 生产时间 [)60,70[)70,80[)80,90[)90,100频数(2)试从饼图中估计第二种生产方式的平均数;(3)根据频率分布图和饼图判断哪种生产方式的效率更高?并说明理由.16.【解析】(1)根据第一种生产方式40名工人完成同一生产任务所用时间的表格数据,可得:生产时间 [)60,70[)70,80[)80,90[)90,100频数481810则所用时间的频数分布表并作出频率分布直方图:(2)根据平均数的计算公式,试从饼图中估计第二种生产方式的平均数为:⨯+⨯+⨯+⨯=650.25750.5850.2950.0575.5min(3)从频率分布直方图中估计第一种生产方式的平均数为:⨯+⨯+⨯+⨯=650.1750.2850.45950.2583.5min从平均数的角度发现:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.18.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率.18.【解析】(1)从条形图中可知这100人中,有56名学生成绩等级为B,故可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩等级为B 的人数约有1480044825⨯=. (2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯ 91.3=(分), 因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为a ,3名女生分别为1b ,2b ,3b .从中抽取2人的所有情况为1ab ,2ab ,3ab ,12b b ,13b b ,23b b ,共6种情况,其中恰好抽到1名男生的有1ab ,2ab ,3ab ,共3种情况,故所求概率12P =. 19.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专项规定.某小区采取一系列措施,宣传垃圾分类的知识与意义,并采购分类垃圾箱.为了了解垃圾分类的效果,该小区物业随机抽取了200位居民进行问卷调查,每位居民对小区采取的措施给出“满意”或“不满意”的评价.根据调查结果统计并做出年龄分布条形图和持不满意态度的居民的结构比例图,如图,在这200份问卷中,持满意态度的频率是0.65.(1)完成下面的22⨯列联表,并判断能否有95﹪的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异满意 不满意 总计 51岁及以上的居民 50岁及以下的居民 总计200(2)按“51岁及以上”和“50岁及以下”的年龄段采取分层抽样的方法从中随机抽取5份,再从这5份调查问卷中随机抽取2份进行电话家访,求电话家访的两位居民恰好一位年龄在51岁及以上,另一位年龄在50岁及以下的概率.20()P K k ≥0.050 0.025 0.010 0.005 0.001附表及参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.【解析】(1)在这200份问卷中,持满意态度的频数为2000.65130⨯=,持不满意态度和频数为20013070-=,∴22⨯列联表如下:∴222()200(45358535) 4.487 3.841()()()()8012013070n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯. 故有95﹪的把握认为“51岁及以上”和“50岁及以下”的居民对该小区采取的措施的评价有差异. (2)利用分层抽样的特点可知:“51岁以上”居民抽到2份记为:12,a a ; “50岁以下”居民抽到3份记为:123,,b b b .∴基本事件共有:121112132122(,),(,),(,),(,),(,),(,),a a a b a b a b a b a b 2312(,),(,),a b b b1323(,),(,)b b b b ,共有10个. 满足条件的事件有:11121321(,),(,),(,),(,)a b a b a b a b 2223(,),(,)a b a b ,共有6个.∴求得电话家访的两位居民恰好一位年龄在“51岁以上”,另一位年龄在“50岁以下” 的概率为:63()105P A ==. 20.为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康,2019年6月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭2019年1至6月的人均月纯收入,作出散点如下:根据盯关性分析,发现其家庭人均月纯收入y 与时间代码x 之间具有较强的线性相关关系(记2019年1月、2月……分别为1x =,2x =,…,依此类推),由此估计该家庭2020年能实现小康生活.但2020年1月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入只有2019年12月的预估值的23. (1)求y 关于x 的线性回归方程;(2)求该家庭2020年3月份的人均月纯收入;(3)如果以该家庭3月份人均月纯收入为基数,以后每月增长率为8%,问该家庭2020年底能否实现小康生活? 参考数据:619310i ii x y==∑,68610x y =,101.08 2.16≈参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.20.【解析】(1)依题意得:123456 3.56x +++++==,686104106 3.56x y y x⋅===⨯,62191ii x==∑,619310i i i x y ==∑,所以616222169310861040916 3.56i ii i i x y x yb x x==--===-⨯-∑∑, 41040 3.5270a y bx =-=-⨯=,所以y 关于x 的线性回归方程为40270y x =+.(2)令12x =,得2019年12月该家庭人均月纯收入预估值为4012270750⨯+=元故,2020年3月份该家庭的人均月纯收入为27505003⨯=元. (3)每月的增长率为8%,设从3月开始到12月的纯收入之和为10S , 则()()91050050010.08...50010.08S =+⨯+++⨯+,()105001 1.0872501 1.08⎡⎤⨯-⎣⎦==-,1210100082508000S S =+=>,故到2020年底能如期实现小康.21.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在[)220,240的用户中应抽取多少户?21.【解析】 (1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得:x =0.0075,所以直方图中x 的值是0.0075. ------------- 3分 (2)月平均用电量的众数是2202402+=230. ------------- 5分 因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内, 设中位数为a ,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a =224,所以月平均用电量的中位数是224. ------------ 8分 (3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户, 月平均用电量为[260,280)的用户有0. 005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户, -------------10分 抽取比例=112515105+++=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5户.-- 12分22.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度x (单位:C ) 21 23 24 27 29 32 死亡数y (单位:株) 61120275777经计算:611266i i x x ===∑,611336i i y y ===∑,61()()557i i i x x y y =--=∑,621()84i i x x =-=∑,621()3930ii y y =-=∑,621()23.6ˆ64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程^^^y b x a =+(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的回归方程0.23030.06ˆxye =,且相关指数为20.9522R =.(i)试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好;(ii )用拟合效果好的模型预测温度为35C 时该紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,)u v ,22(,)u v ,,(,)n n u v ,其回归直线ˆˆv u αβ∧=+的斜率和截距的最小二乘估计分别为:121()()()niii ni i u u v v u u β∧==--=-∑∑,a v u β∧∧=-;相关指数为:22121()1()niii niii v v R v v ∧==-=--∑∑.22.【解析】(1)利用回归方程的公式,求得线性回归方程为:ˆy =6.6x −139.4;(2)(i )()()6221621236.641110.06020.93983930ˆi i i i ii y y R y y ==-=-=-≈-=-∑∑,因为0.9398<0.9522,所以回归方程0.2303ˆ0.06x y e =比线性回归方程ˆy =6.6x −138.6拟合效果更好;(ii )当温度35x C =时,。

相关文档
最新文档