小学数学五年级奥数3--排列组合(一)
五年级奥数培优必考知识点——组合

五年级奥数培优必考知识点组 合一、排列知识复习1.排列指从n 个不同元素中任意取出m 个(m ≤n )元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
注意:排列是有顺序性的。
2.排列数从n 个不同元素中任意取出m 个(m ≤n )元素的所有排列的个数,叫做排列数,记为A m 。
二、组合大家一起来思考:如果从5个小朋友中选出3个小朋友组成一组去观看《喜洋洋与灰太狼之虎虎生威》,那么有多少种不同的选法呢?A 5÷A 3=10(种)1.排列是专门解决“排队”问题的,组合是专门解决“分组”的,即排列有顺序性,而组合没有顺序性。
2.组合指从n 个不同元素中任意取出m 个(m ≤n )元素组成一组,不计较组内各元素的顺序,叫做从n 个不同元素中取出m 个元素的一个组合。
3.组合数从n 个不同元素中任意取出m 个(m ≤n )元素的所有组合的个数,叫做组合数,记为C m 。
Cm =[n ⨯(n -1)⨯(n -2)⨯(n -3)⨯⨯(n -m +1)]÷[m ⨯(m -1)⨯(m -2)⨯(m -3)⨯⨯ 3⨯2⨯1]4.组合的特殊公式⑴思考:从5个小朋友里一个人也不选有多少种方法数?要是从5个人里选5个人呢?C 5 =C 5 =1,即C n =C n =1⑵计算: C 3 和C 3 ;C 5 和C 5①C 3=(3⨯2)÷(2⨯1) =3C 3 =3÷1=3 n n n0 5 0 2 1 2 3 2 13 3 n②C 5=(5⨯4)÷(2⨯1) =10C 5=(5⨯4⨯3)÷(3⨯2⨯1) =10巩固练习:例:计算C 100 -2C 100【例 1】某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排共有多少种站法?【例 2】10支球队进行足球比赛,实行单循环制(每两队之间比一场),那么一共要举行多少场比赛?若进行双循环制(有主客场之分)。
小学数学排列组合题目解析与解题技巧

小学数学排列组合题目解析与解题技巧排列组合是数学中一个重要的概念,也是小学数学中的一个重要知识点。
掌握排列组合的解题技巧,可以帮助我们更好地解决相关题目。
本文将为大家详细解析小学数学排列组合题目,并提供解题技巧。
一、排列组合题目解析在小学数学中,排列组合题目大多是基于以下两个概念进行考察的:1. 排列:指的是从一组元素中选取若干个元素进行排列的方式。
当需要考虑元素的顺序时,就需要使用排列。
2. 组合:指的是从一组元素中选取若干个元素进行组合的方式。
当不需要考虑元素的顺序时,就可以使用组合。
接下来,我们通过一些具体的例题来解析排列组合的相关概念和解题技巧。
例题一:从1、2、3、4、5五个数字中任选两个数字,能够组成多少个不重复的两位数?解析:这是一个排列问题,我们要求的是选取两个数字进行排列,不同的排列方式构成了不同的两位数。
解题技巧:使用排列的计算公式n!/(n-r)!,其中n为总体样本数,r为选取的个数;"!"表示阶乘。
根据题目可知,n=5(因为有1、2、3、4、5五个数字),r=2(因为选取两个数字组成两位数)。
将这些值代入计算公式,得到结果:5! / (5-2)! = 5! / 3! = 5*4 = 20所以,能够组成20个不重复的两位数。
例题二:从1、2、3、4、5五个数字中任选三个数字,能够组成多少个和为偶数的组合?解析:这是一个组合问题,我们要求的是选取三个数字进行组合,使得组合的数字之和为偶数。
解题技巧:使用组合的计算公式n!/(r!(n-r)!),其中n为总体样本数,r为选取的个数。
根据题目可知,n=5(因为有1、2、3、4、5五个数字),r=3(因为选取三个数字进行组合)。
将这些值代入计算公式,得到结果:5! / (3!(5-3)!) = 5! / (3!2!) = 5*4*3*2 / (3*2) = 10所以,能够组成10个和为偶数的组合。
二、解题技巧总结在解决小学数学排列组合题目时,我们可以总结以下解题技巧:1. 判断问题类型:首先要判断题目是排列问题还是组合问题。
五年级奥数思维排列组合

五年级奥数思维排列组合
排列组合是一种思维方式,它可以帮助孩子们更好地理解数学知识,提高学习效率。
五年级的孩子们正处在学习数学的关键时期,掌握排列组合的技能对他们来说至关重要。
首先,孩子们要学会排列组合的基本概念,比如排列和组合的定义,以及它们之间的区别。
其次,孩子们要学会如何计算排列组合的结果,比如从一组数字中挑选出三个数字的排列组合有多少种可能。
此外,孩子们还要学会如何利用排列组合来解决实际问题。
比如,如果有三个人要排队,那么他们可以有多少种排列方式?孩子们可以利用排列组合的思维方式来解决这个问题。
最后,孩子们要学会如何利用排列组合来解决更复杂的问题,比如从一组数字中挑选出三个数字,使它们的和等于某个特定的数字,这就是一个更复杂的问题,孩子们可以利用排列组合的思维方式来解决这个问题。
总之,排列组合是一种重要的思维方式,五年级的孩子们要学会掌握排列组合的技能,以便更好地理解数学知识,提高学习效率。
小学五年级奥数题及答案3

小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别须要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时翻开甲乙两水管,5小时后,再翻开排水管丙,问水池注满还须要多少小时?2.修一条水渠,单独修,甲队须要20天完成,乙队须要30天完成。
假如两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的非常之九。
如今安排16天修完这条水渠,且要求两队合作的天数尽可能少,则两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
如今先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮番做,则恰好用整数天完工;假如第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮番做,则完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,假如分给男女生栽,平均每人栽6棵;假如单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
如今先翻开甲管,当水池水刚溢出时,翻开乙,丙两管用了18分钟放完,当翻开甲管注满水是,再翻开乙管,而不开丙管,多少分钟将水放完?8.某工程队须要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发觉粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2019这2019个自然数依次写下来得到一个多位数123456789.....2019,这个多位数除以9余数是多少2.A和B是小于100的两个非零的不同自然数。
五年级奥数题排列与组合的重难点

五年级奥数题排列与组合的重难点一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种不同的方法,……,在第n 类方法中有n m 种不同的方法,那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.二、排列与组合〔1〕排列定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解:1、定义中包括两个根本容:①取出元素②按照一定顺序。
因此,排列要完成的“一件事情〞是“取出m 个元素,再按顺序排列〞2、一样的排列:元素完全一样,并且元素的排列顺序完全一样。
假设只有元素一样或局部一样,而排列顺序不一样,都是不同的排列。
比方abc 与acb 是两个不同的排列描述排列的根本方法:树状图排列数公式:),)(1()2)(1(*∈+-⋅⋅⋅--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!⨯⨯⋅⋅⋅⨯-⨯-⨯=n n n n ,并规定1!0=。
全排列数公式可写成!n A n n =.由此,排列数公式可以写成阶乘式:)!(!)1()2)(1(m n n m n n n n A m n -=+-⋅⋅⋅--=〔主要用于化简、证明等〕排列应用题的主要解题方法有:直接法、间接法〔排除法〕、优先法、捆绑法、插空法、定序问题除法处理1、直接法:把符合条件的排列数直接列式计算2、间接法〔排除法〕:先不考虑题目中的限制条件,求出所有的排列数,然后从中减去不符合条件的排列数,从而得到所求的排列数。
小学奥数排列组合教案

小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。
2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3. 激发学生的学习兴趣,培养学生的耐心和细心。
二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数的计算方法。
2. 教学难点:排列组合的综合应用,解决实际问题。
四、教学方法1. 采用直观演示法,让学生通过实际操作理解排列组合的概念。
2. 采用案例教学法,分析典型例题,引导学生运用排列组合知识解决实际问题。
3. 采用讨论法,鼓励学生提问、交流、探讨,提高学生的逻辑思维能力。
五、教学安排1. 课时:每课时约40分钟2. 教学步骤:引入新课讲解概念举例讲解练习巩固课堂小结3. 课后作业:布置相关练习题,巩固所学知识。
教案一、引入新课1. 老师:同学们,你们平时喜欢做游戏吗?今天我们就来玩一个有趣的游戏,请大家观察这些数字(出示数字卡片),看看你能发现什么规律?2. 学生观察数字卡片,发现规律。
二、讲解概念1. 老师:同学们观察得很仔细,这些数字卡片其实就是我们今天要学习的内容——排列组合。
什么是排列呢?2. 学生回答:排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
3. 老师:很好,那什么是组合呢?4. 学生回答:组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合的个数。
5. 老师:同学们掌握得很好,我们来学习排列数和组合数的计算方法。
三、举例讲解1. 老师:我们以n=5,m=3为例,来计算排列数和组合数。
2. 学生计算排列数:5×4×3=60,计算组合数:C(5,3)=10。
3. 老师:同学们计算得很好,这些排列和组合在实际生活中有哪些应用呢?四、排列组合在实际生活中的应用1. 老师:比如说,我们有一排5个位置,要从中选出3个位置来安排3个同学,就有60种排列方式,10种组合方式。
小学五年级奥数专题之排列组合题一及答案

1、7个人站成一排,若小明不在中间,共有_______________种站法;若小明在两端,共有_________________种站法。
2、4个男生2个女生共6人站成一排合影留念,有________________种不同的排法;要求2个女生紧挨着有________________种不同的排法;如果要求2个女生紧挨着排在正中间有____________________种不同的排法。
3、A、B、C、D、E、F、G七位同学在操场排成一列,其中学生B与C必须相邻,请问共有________________________种不同的排法。
4、6名小朋友A、B、C、D、E、F站成一排,若A、B两人必须相邻,一共有________________________种不同的站法;若A、B两人不能相邻,一共有________________________种不同的站法;若A、B、C三人不能相邻,一共有________________________种不同的站法。
5、10个相同的球完全分给3个小朋友,若每个小朋友至少得1个,那么共有__________________种分法;若每个小朋友至少得2个,那么共有__________________种分法。
6、小红有10块糖,每天至少吃1块,7天吃完,她共有______________________种不同的吃法。
7、5个人站成一排,小明不在两端的排法共有__________________种。
8、停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有________________________种不同的停车文案。
9、将3盆同样的红花和4盆同样的黄花摆放在一排,要求3盆红花互不相邻,共有____________________种不同的放法。
10、12个苹果分给4个人,每人至少1个,则共有____________________种分法。
五年级下册数学奥数试题——排列组合应用

第2讲 排列组合应用一、知识点上一讲学习了排列组合的计算公式.这讲主要用排列组合解决一些实际问题.在解决实际问题时,先要判断出顺序对于问题的结果有没有影响,从而确定应该用排列还是组合来计算. 排列与顺序有关,而组合与顺序无关.二、典型例题例1 9支球队进行足球比赛:(1)如果实行单循环制,即每两队之间恰好比赛一场.每场比赛后,胜方得3分,负方不得分,平局双方各得1分,那么一共要举行多少场比赛?9支队伍的得分总和最多为多少?(2)如果实行双循环制,即每两队之间分主、客场.那么一共要举行多少场比赛?例2 围棋兴趣小组一共有8名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法?(2)如果从中选3名同学去参加一次全市比赛,共有多少种选法?例3 周末大扫除,老师要从10名男生和10名女生中选出5名留下打扫卫生.(1)如果任意选择,一共有多少中选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?例4 由数字43210、、、、可以组成多少个(1)没有重复数字的三位数?(2)没有重复数字的三位奇数?(3)小于2000的四位数?例5 (1)6个人分成A 、B 两队拔河.要求这两队都是3个人,一共有多少种分队的方法?(2)6个人分成两队拔河.要求这两队都是3个人,一共有多少种分队的方法?例6 五个同学照相,分别求出在下列条件下有几种排法?(1)五个人排成一排;(2)五个人排成一排,某两人必须有一人站在中间;(3)五个人排成一排,某两人必须站在两头;(4)五个人排成一排,某两人不能站在两头;(5)五个人排成一排,某两人必须站在一起.三、水平测试1. 某班毕业生中有10名同学参加聚会,他们互相握了一次手,请问这次聚会大家一共握了多少次手?2. 要从15名士兵中选出2名分别担任正、副班长,共有多少种不同的选法?3. 小明走进一家商店要买些新衣服,现在从他看中的5件上衣和4条裤子中选出3件上衣和2条裤子,一共有多少种选法?4. 将87654321,,,,,,,这8个数排成一行,使得8的两边各数之和相等,那么共有________种不同的排法.A. 1152B. 864C. 576D. 288。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合(一)
例1:探究“排列”
从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数?
乘法原理:排列原理:
例2:探究“组合”
从1、2、3、4、5中挑选两个数字,有多少种选法?
乘法原理:组合原理:
例3:排队问题
有6个年龄互不相同的人,3人一排,站成两排。
(1)如果可以随便站,那么一共有多少种排法?
(2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?
例4:圆圈连线
如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。
练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?
练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法?
练习3:学生会召集各班正、副班长,学习委员开会。
五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?
练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数?
练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形?
练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点?
练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。
比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。
一共需要比赛多少场?
练习8:学校体操队有18名同学,从中选出2名同学,
(1)分别担任正副队长,有多少种不同的选法?
(2)去参加全市的体操比赛,有多少种不同的选法?
练习9:新学期的班会上,大家要从9名候选人中选出4名同学组成班委会,那么一共有多少种选法?如果贝贝一定要当选,有多少种不同的选法?
练习10:7本不同的故事书,任选4本分给4名同学,每人一本,有多少种不同的分法?
练习11:一本书有400页,数字1在这本书里出现了多少次?
第十二届中环杯决赛题选
如图,半圆连同直径上共有10个点,以这些点为顶点,可以构成()
个三角形。