人教小学五年级长方体正方体的奥数题

合集下载

五年级下册数学长方体与正方体奥数练习题[共5篇]

五年级下册数学长方体与正方体奥数练习题[共5篇]

五年级下册数学长方体与正方体奥数练习题[共5篇]第一篇:五年级下册数学长方体与正方体奥数练习题长方体和正方体(二)【例题1】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习1:1.有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?【例题2】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了100平方厘米。

原正方体的表面积是多少平方厘米?练习2:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题3】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?练习3:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米? 【例题4】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习4:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3.有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?【例题5】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?练习5:1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题4】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?练习4:1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

小学数学五年级数学奥数举一反三长方体和正方体二14

小学数学五年级数学奥数举一反三长方体和正方体二14

2,有一块边长2分米的正方体铁块,现把它煅造成一根长方 体,这长方体的截面是一个长4厘米、宽2厘米的长方形,求 它的长。
3,像例题中所说,如果让长30厘米、宽10厘米的面朝下, 这时的水深又是多少厘米?
五年级奥数举一反三
【例题5】长方体不同的三个面的面积分别为10平方厘米、 15平方厘米和6平方厘米。这个长方体的体积是多少立方厘 米? 【思路导航】
五年级奥数举一反三
【练习3】 1,有一个小金鱼缸,长4分米、宽3分米、水深2分米。把一 块假山石浸入水中后,水面上升0.8分米。这块假山石的体 积是多少立方分米?
2,有一个正方体容器,边长是24厘米,里面注满了水。有 一根长50厘米,横截面是12平方厘米的长方形的铁棒,现将 铁棒垂直插入水中。问:会溶出多少立方厘米的水?
3,有一块边长是5厘米的正方体铁块,浸没在一个长方体容 器里的水中。取出铁后,水面下降了0.5厘米。这个长方体 容器的底面积是多少平方厘米?
五年级奥数举一反三
【例题4】有一个长方体容器(如下图),长30厘米、宽20 厘米、高10厘米,里面的水深6厘米。如果把这个容器盖紧, 再朝左竖起来,里面的水深应该是多少厘米?
五年级奥数举一反三
【练习2】 1,有三个正方体铁块,它们的表面积分别是24平方厘米、 54平方厘米和294平方厘米。现将三块铁熔成一个大正方体, 求这个大正方体的体积。
2,将表面积分别为216平方厘米和384平方厘米的两个正方 体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽 7厘米,求它的高。 3,把8块边长是1分米的正方体铁块熔成一个大正方体,这 个大正方体的表面积是多少平方分米?
【思路导航】 首先求出水的体积:30×20×6=3600(立方厘米)。当容器 竖起来以后,水流动了,但体积没有变,这时水的形状是一 个底面积是20×10=200平方厘米的长方体。只要用体积除以 底面积就知道现在水的深度了。

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。

这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。

根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。

例2:一个零件形状大小如下图,求它的表面积。

由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。

长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。

例3:有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

求它的表面积。

(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。

长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。

例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。

首先可以将这个立体图形分解为一个长方体和两个正方体。

长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。

正方体的边长为5,表面积为6×(5×5)=150平方厘米。

因此这个立体图形的表面积为300+150+150=600平方厘米。

例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。

五年级奥数长方体与正方体(二)教师版

五年级奥数长方体与正方体(二)教师版

五年级奥数长方体与正方体(二)教师版如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形 示例体积公式 相关要素长方体V abh = V Sh = h 、b 、a 三要素: h、S 二要素: 正方体3V a =V Sh= a一要素: h、S 二要素:不规则形体的体积常用方法: ①化虚为实法 ②切片转化法例题精讲长方体与正方体(二)③先补后去法④实际操作法⑤画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。

【答案】6【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。

小学奥数 长方体与正方体(二) 精选例题练习习题(含知识点拨)

小学奥数  长方体与正方体(二)  精选例题练习习题(含知识点拨)

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形示例 体积公式 相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法【例 1】 一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于 立方厘米。

例题精讲长方体与正方体(二)【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。

【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。

8个这样的铁环依此连在一起长厘米。

【例5】某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?高长【例6】某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别为235厘米、445厘米、515厘米的尼龙带进行加固(如下图),若每根尼龙带加固时截头重叠都是5厘米,那么这个长方体包装箱的体积是立方米。

完整word版)五年级下册数学长方体与正方体奥数练习题

完整word版)五年级下册数学长方体与正方体奥数练习题

完整word版)五年级下册数学长方体与正方体奥数练习题一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。

解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。

二、精讲精练例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练2:1.有一个外形以下图的零件,求它的体积和外表积。

(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?体积为4^3-1^3=64-1=63立方厘米外表积稳定,大小为6×4²=96平方厘米1【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的外表积比原先的长方体的外表积增长了50平方厘米。

原正方体的外表积是多少平方厘米?练3:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的外表积最多会削减多少平方分米?【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。

这个长方体的体积和外表积各是多少?练4:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那末这个长方体的体积是多少?依题意长*宽+长*高=88即长*(宽+高)=88而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3长方体的体积是11*5*3=165立方厘米。

(完整版)小学五年级长方体正方体的奥数题

(完整版)小学五年级长方体正方体的奥数题

小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

长方体和正方体奥数题

长方体和正方体奥数题

长方体和正方体奥数题把一个正方体木块平均锯成3个长方体.已知每个长方体的表面积是150平方厘米,求原来正方体的表面积是多1、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米。

每个正方体的表面积是多少平方厘米?2、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?3、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,是这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?4、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数。

这个长方体的体积和表面积各是多少?5、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方形的体积。

6、一个长方体水箱。

从里面量长20厘米,宽是30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面。

这时水面的高多少厘米?7、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?8、从一个长方体上截下一个体积是32立方厘米的小长方体后,剩下的部分正好是棱长4厘米的正方体,原来的长方体的表面积是多少平方厘米?9、一个长方体的纸盒,展开它的侧面得到一个边长是12分米的正方形。

这个纸盒的体积是多少?10、边长1米的正方体2100个,堆成了一个实心的长方体,它的高是10米,长和宽都大于高,长方体的长和宽的和是几米?评论这张转发至微博。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教小学五年级长方体正方体的练习题
1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?
2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?
3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?
4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?
5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?
6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?
7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?
8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米
9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?
10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?
11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?
12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是
12.6分米,这个长方体的高是多少?体积是多少?
13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?
14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?
15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?
16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?
17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

这个大长方体的表面积最大是多少平方厘米?最小多少平方厘米?
18、小明用三个完全相同的小正方体摆成了一个长方体,这个长方体的表面积是168平方米。

每个小正方体的表面积是多少呢?
19、一个长方体水箱容量是320升,这个水箱的底面是一个边长为8分米的正方形,水箱的高是多少分米?
20、二(1)班教室在二楼(共四层),教室长10米,宽6米,高4米,门窗面积19.6平方米,如果每平方米用涂料0.25千克来粉刷内墙壁,共需要涂料多少千克?
21、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。

现在在水中沉入一个棱长30分米的正方体铁块,这时容器中水深多少米?
22、一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是多少立方分米?
23、一个长方体,如果高减少3厘米,就成为一个正方体。

这时表面积比原来减少了96平方厘米。

原来长方体的体积是多少立方厘米?。

相关文档
最新文档