求一次函数解析式的常用方法

合集下载

人教版如何求一次函数的解析式

人教版如何求一次函数的解析式

2=k+ b
k= -2
6= -k+b 解得 b=4
∴一次函数的解析式:y= -2x+4
(2)如图,直线y=-2x+4与y轴的交点A(0,4), 与x轴的交点B(2,0)
(0,4) (2,0)
∴OA=4,OB=2
∴S △AOB =
OA × OB=4
y2x4
函数解析 式y=kx+b
从数到形
选取
画出
满足条件的两定点
b=-1
∴这个一次函数的解析式为y=2x-1

象这样先设出函数解析式,再根据条件
确定解析式中未知的系数,从而具体写出 这个式子的方法,叫做待定系数法.
整理归纳:
函数解析 式y=kx+b
从数到形
选取 解出
画出
满足条件的两定点
(x1,y1)与(x2,y2)选取
从形到数
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
求一次函数关系式的常见题型
1、利用图象求函数解析式
2、利用点的坐标求函数解析式
3、利用表格信息确定函数解析式
4、根据实际情况收集信息求函数解析式
归纳:
求函数关系式的一般步骤是怎样的呢?
可归纳为“一设、二代、三列、四解、五写”
一设:设出函数关系式的一般形式y=kx+b 二代:将已知点的坐标代入函数解析式 三列:列出关于k、b的一次方程 四解:解这个方程,求出k,b的值 五写:把求得k、b的值代入y=kx+b,写出函数 关系式
(2)写出购买量关于付款金额的函数解析式,
解:设购买量为x千克,付款金额为y元.

初中求函数解析式的四种常用方法

初中求函数解析式的四种常用方法

初中求函数解析式的四种常用方法
嘿,同学们!今天咱就来讲讲初中求函数解析式的四种常用方法,这可超级重要,一定要认真听哦!
第一种方法就是待定系数法啦!比如说有个一次函数,它过点(1,2)和(3,4),那咱就可以设这个函数解析式是 y=kx+b,然后把这两个点代进去,不就可以求出 k 和 b 的值啦,很神奇吧!你看,用这个方法是不是一下子
就能把函数解析式给确定下来啦!
再来说说第二种,那就是根据函数图像来求呀!如果给你一幅函数图像,哇,那里面藏着好多信息呢。

就像探险一样,从图像上找出关键的点,然后利用这些点来确定函数解析式。

好比说,图像上有个最高点或者最低点,嘿,那可是宝藏信息呀!你能放过吗?肯定不能呀!
第三种方法也超有意思,就是根据实际问题来建立函数模型。

比如说,
你去买文具,一支笔 2 块钱,那买 x 支笔的总价 y 不就是 y=2x 嘛!是不
是很简单,但又很实用呢!这不就跟咱们生活联系起来啦,多有意思呀!
最后一种呢,就是通过已知函数的性质来求了。

比如说已知一个函数是偶函数,那它就有特别的性质哦,利用这些性质就能求出解析式啦。

哎呀,这四种方法真的是各有各的奇妙之处呀!就像武林秘籍里的不同招式,学会了它们,对付函数解析式的问题那就是小菜一碟啦!同学们,一定要好好掌握呀,这样在数学的世界里才能游刃有余呢!
我的观点结论就是:这四种求函数解析式的方法很重要,掌握好它们,对我们初中数学的学习有极大的帮助,相信你们一定可以的!加油!。

求一次函数解析式的方法

求一次函数解析式的方法

例谈求一次函数解析式的常见题型——初二数学方法指导系列一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。

其中求一次函数解析式就是一类常见题型。

现以部分中考题为例介绍几种求一次函数解析式的常见题型。

希望对同学们的学习有所帮助。

一. 定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。

如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。

解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。

三. 两点型已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五. 斜截型例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线:;:。

当,时,直线与直线平行,。

又直线在y轴上的截距为2,故直线的解析式为六. 平移型例6. 把直线向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行直线在y轴上的截距为,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得,即故所求函数的解析式为()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

八. 面积型例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。

一次函数解析式快速求法(一秒出答案)

一次函数解析式快速求法(一秒出答案)

一次函数解析式快速求法(一秒出答案)直线斜率:k=tanα首先需要向大家解释清楚的是这个α指的是直线与X轴正方向的夹角,如下图这里会存在一个问题,就是同学们初中学的叫“锐角三角函数”,所以对于图2这样的钝角三角函数,大部分同学应该还不太会,那么这个问题我们可以简化一下,具体操作如下:对于图1,同学们很容易可以看出tanα=1,所以这一类比较简单,直接得出k=1 对于图2,先求出α的邻补角,即那个与X轴的负方向的夹角的正切值为1/2,然后因为直线是往下走的,所以K为负值,因此只需要将刚才那个正切值前面加上“-”号就可以了,即K=tanα=-1/2。

它在求一次函数的解析式的时候能减少计算量,节省考试时间。

举例说明:已知直线过A(-1,5), B(1,-1)两点,求直线的解析式。

常规方法是将这两点代入y=kx+b,然后解二元一次方程组,那么同学们可以这样操作:首先可以简单画个草图,然后像我这样构造一个直角三角形,tan∠ABC=3,又因为直线往下走,所以k=-3,于是直线解析式为y=-3x+b,再将(1,-1)代入,可口算出b=2,所以直线解析式为y=-3x+2。

肯定有同学认为这样做学校老师不会给分的,那么我教大家一个可以拿分的办法:考试的时候试卷上这样写:“将A,B两点坐标代入y=kx+b,解得k=-3,b=2。

”所有老师都希望学生通过解二元一次方程组来求这个直线解析式,但事实上我们可以偷偷使用我教的这个方法,但是卷面上可以假装解了一个二元一次方程组,老师不会看具体计算过程,因此这样写老师是会给分的。

一次函数解析式练习题一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。

其中求一次函数解析式就是一类常见题型。

例1. 已知函数y m x m=-+-()3328是一次函数,求其解析式。

例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。

例3. 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),求这个函数的解析式。

一次函数解析式的常见求法

一次函数解析式的常见求法

一次函数解析式的常见求法一、求函数解析式的几种方法:方法一:利用待定系数法。

解析:( 1)建立关于x, y的一元二次方程: y^2=2×x^2-8x+42,当x=0时,得到一次函数的解析式。

2.(解析:令y为所求函数的自变量,根据题意列出含有x的方程组即可解决。

) 3.(解析:注意所求的解不能超过两个,这样可以保证方程组有唯一解。

) 4.(解析:此法仅限于当y为已知实数时使用,且在自变量取定后,函数式能唯一确定的情况下使用。

)4.(解析:将y=f(x)-4y, f=x-4作为未知数代入( 1)中,可得y=f(x)-4y,而根据“同一平面内,两个函数的图象关于y轴对称”可知,所求函数的自变量必须是该函数的奇函数,因此只需要再令f=x-4,即可解决。

) 5.(解析:根据题目中已知条件,可列出关于x, y的一元二次方程,并对方程两边同时求导数。

当x=0时,二次函数的解析式为y=2x-6;当x=-3/2时,二次函数的解析式为y=-1/2-6/2。

利用待定系数法可得y=-x/2,或者直接根据两个函数的关系进行判断。

)6.(解析:设y为实际问题的一次函数,由已知条件知,二次函数与y有关,由待定系数法可知, y可取任意值。

)7.(解析:以点B为圆心, y=f(x)=kx-4为半径画圆,令f(y)与k是两个不同的自变量,则其图象关于y轴对称,即可解决问题。

)方法二:利用方程法。

解析:( 1)建立关于x, y的一元二次方程: y^2=2×x^2-8x+42,当x=0时,得到一次函数的解析式。

2.(解析:令y为所求函数的自变量,根据题意列出含有x的方程组即可解决。

) 3.(解析:注意所求的解不能超过两个,这样可以保证方程组有唯一解。

) 4.(解析:此法仅限于当y为已知实数时使用,且在自变量取定后,函数式能唯一确定的情况下使用。

) 5.(解析:根据题目中已知条件,可列出关于x, y的一元二次方程,并对方程两边同时求导数。

确定一次函数解析式的五种方法

确定一次函数解析式的五种方法

五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。

下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。

一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。

分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。

函数的解析式就确定出来了。

解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。

分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。

解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。

三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。

解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

一次函数解析式求法

一次函数解析式求法
一次函数定义
斜率 $k$ 的意义
截距 $b$ 的意义
解析式求法
表示函数图像的倾斜程度,$k > 0$ 时图像上升,$k < 0$ 时图像下降。
表示函数图像与 $y$ 轴交点的纵坐标。
通过已知的两个点坐标,利用两点式或点斜式求出一次函数的解析式。
关键知识点总结
忽视斜率 $k neq 0$ 的条件,将常数函数误认为一次函数。
已知斜率和一点坐标求解析式
已知一次函数的图像经过点 $(2, 3)$ 和 $(-1, -2)$,求这个一次函数的解析式。
例题
设一次函数解析式为 $y = kx + b$,根据已知条件列方程组

实际应用举例
$$begin{cases}
3 = 2k + b
2 = -k + b
实际应用举例
end{cases}$$
将求得的待定系数代回原解析式后,必须验证是否满足已知条件。
误区提示:常见的误区有以下几点
注意事项与误区提示
忽略了已知条件对解析式的限制;
在列方程或方程组时出现了错误;
在解方程或方程组时出现了计算错误;
没有验证求得的解析式是否满足已知条件。
01
02
03
04
注意事项与误区提示
04
解析式求法之图像法
创新思维在求解过程中运用
逆向思维
从问题的结论出发,逆向推导问题的条件,从而找到解决问题的新思路。
类比思维
将问题与其他类似问题进行类比,借鉴其他问题的解决方法,以启发新的解题思路。
转化思维
将问题转化为另一种形式或模型,以便利用已知的知识和方法进行求解。
06
总结回顾与拓展延伸
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求一次函数解析式的常用方法
一次函数是初中数学的重要内容之一,要学好它,首先会求它的解析式。

本文举例介绍求一次函数解析式的几种常用方法,供同学们学习时参考。

一、 定义法
一次函数y=kx+b (k≠0)的x 的指数等于1,系数k≠0,据此求一次函数的解析式。

例1 求一次函数y=(p+1)x p2-3p-3+2p 的解析式
解:由一次函数的定义可知p 2-3p-3=1
∴p=4或p=-1
又p+1≠0
p=4
所以所求解析式为y=5x+8
点评:用定义法求一次函数解析式关键是抓住“一次”即未知数的指数等于1且它的系数不等于0。

二、 两点坐标法
一次函数y=kx+b (k≠0)中,有两个字母需k 、b 要求,而将一次函数y=kx+b (k≠0)图象上的两点坐标代入y=kx+b (k≠0),得关于k 、b 的二元一次方程组解之可得k 、b
1、已知两点坐标
例2 已知一次函数的图像经过两点(-2,10),(4,-8),求该一次函数的解析式。

解:设所求一次函数解析式为y=kx+b (k≠0)
将(-2,10),(4,-8)代入得
⎩⎨⎧-=+=+-84102b k b k 解之得⎩⎨⎧-==3
4k b 所以所求一次函数的解析式为y=-3x+4
点评:已知一次函数经过两点,把这两点坐标代入y=kx+b 解出k 、b 即可。

2、已知表格
例3 某商店出售一种瓜子,其售价y (元)与瓜子质量x (kg )之间的关
系如下表:
由上表得y 与x 之间的关系式是 。

解:设所求关系式为y=kx+b
将(2,3.8)、(2,7.4)代入得:
⎩⎨⎧=+=+4.728.3b k b k 解得:⎩
⎨⎧==6.32.0k b ∴y=3.6x+0.2 将(3,11),(4,14.6)代入也适合
故y 与x 之间的关系式是y=3.6x+0.2
点评:一次函数的关系由表格给出时,从表格中选出两组较简数字代入y=kx+b 解出k 、b 即可。

3、已知图像
例4 如下图是某出租车单程收费y (元)与行程x (km )之间的函数关系图像,求出收费y (元)与行程x (km )(x≥3)之间的函数关系,并求行驶10km 需收费多少元?
解:设y 与x 的关系是y=kx+b
将(3,5),(8,11)代入得⎩
⎨⎧+=+=b k b k 81135
解得⎩⎨⎧==
57
5
6b k
∴y=65x+75
(x≥3) 当x=10时,y=65×10+ 75=12+ 75=1325
故行驶10km 需收费13元4角。

点评:已知一次函数的图像,从图像上选出两组较简数字代入y=kx+b 解出k 、b 即可,不要忘记写函数的定义域。

4、已知自变量及函数取值范围
例5 一次函数y=kx+b 的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数表达式为 。

解:按k 的正负分类来解
(1) 当k >0时,y 随x 增大而增大,则x=-3时,y=-5;x=6时,y=-2,有⎩⎨⎧+=-+-=-b
k b k 6532,解得k=13-,b=-4 ∴y=13
-x-4 (2)当k <0时,y 随x 增大而减小,则x=-3时,y=-2;x=6时,y=-5,有⎩⎨⎧+=-+-=-b
k b k 6532解得k=13-,b=-3 ∴y=13
-x-3 故函数表达式为:y=13-x-4或y=13
-x-3 点评:本题已知是不等关系,我们可依一次函数的性质列出方程组解这,注意对k 应分类讨论。

相关文档
最新文档