八年级数学 一次函数解析式求法 专题指导

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

初中数学华师大版八年级下册试题 求一次函数解析式-讲义

初中数学华师大版八年级下册试题 求一次函数解析式-讲义

求一次函数解析式重难点易错点辨析求一次函数的解析式题一:(1)已知正比例函数y=kx,当x= -3时,y=6.那么该正比例函数应为.(2)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则一次函数的解析式是.金题精讲(2)已知一次函数与y轴交点为(0,3),且经过点(1,2),则这个一次函数的解析式为.(3)已知一次函数y=kx+b中,k= -1,且经过点(-2,4),则这个一次函数的解析式为.题二:若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值() A.增加4 B.减小4 C.增加2 D.减小2题三:直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.题四:如图,一条直线过点A(0,4),B(2,0),将这条直线向左平移与x轴、y轴的负半轴分别交于点C、D,使DB=DC.(1)求直线CD的函数解析式;(2)求证:OD=OA;(3)求△BCD的面积;(4)在直线AB或直线CD上是否存在点P,使△PBC的面积等于△BCD的面积的2倍?如果存在,请求出点P的坐标;如果不存在,请说明理由.思维拓展题一:在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x-2,如果将坐标纸折叠,使l1与l2重合,此时点(-1,0)与点(0,-1)也重合,则直线l2所对应的函数关系式为()求一次函数解析式讲义参考答案题一:(1)y= -2x;(2)y=2x-2.金题精讲题一:(1)y=2x-4;(2)y= -x+3;(3)y= -x+2.题二:A.题三:(1)y=2x-2;(2)(2,2).题四:(1)y= -2x-4;(2)略;(3)8;(4) (-6,8),(2,-8),(-2,8),(6,-8).思维拓展题一:B.。

人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式

人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式
人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式
一、教学内容
本节课我们将学习人教版八年级下册数学第19章《一次函数》的19.2.2节:待定系数法求一次函数解析式。教学内容主要包括以下两部分:
1.理解待定系数法的概念,并掌握其步骤。
2.利用待定系数法求解以下类型的一次函数解析式:
-给定两点求函数解析式;
3.培养学生的合作交流能力,通过小组讨论、互助学习,使学生学会倾听他人意见,表达自己的观点,提高团队协作能力。
4.培养学生的创新意识,鼓励学生在掌握待定系数法的基础上,探索解题的其他方法,激发学生的创新思维。
三、教学难点与重点
1.教学重点
-待定系数法的概念及其应用:使学生掌握待定系数法的基本原理,并能够运用该方法求解一次函数解析式。
-给定斜率和一点求函数解析式;
-给定截距和一点求函数解析式。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识解决实际问题的能力,通过待定系数法求解一次函数解析式,使学生能够将数学与生活实际相结合,增强数学应用意识。
2.培养学生的逻辑思维能力和推理能力,让学生在求解过程中学会分析问题、制定解题策略,并逐步形成严谨的数学思维。
-掌握一次函数图像与解析式之间的关系:学生需要理解一次函数图像与斜率、截距之间的联系,以便在求解过程中更好地理解问题。
具体细节如下:
1.教学重点细节
-待定系数法的概念:通过实例引入,解释何为待定系数,并强调其在求解一次函数解析式中的重要性。
-求解步骤的讲解:详细讲解如何根据给定条件列出方程,如何解方程得到k和b的值,并最终得到一次函数的解析式。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解待定系数法的基本概念。待定系数法是一种求解一次函数解析式的方法,通过设定未知系数,列出方程组,进而求解出函数的解析式。它在解决实际问题中有着广泛的应用。

八年级数学教师集体备课教案一次函数解析式的确定

八年级数学教师集体备课教案一次函数解析式的确定

八年级数学教师集体备课教案一、新课导入1.导入课题大家知道,如果一个点在函数的图象上,那么这个点的横纵坐标x,y的值就满足函数关系式,试问:如果知道函数图象上的两个点的坐标,那么能确定函数的解析式吗?(板书课题)2.学习目标(1)会用待定系数法求一次函数的解析式.(2)会求分段函数的解析式以及确定自变量的取值范围.3.学习重、难点重点:求一次函数的解析式的思想方法.难点:正确建立一次函数模型.二、分层学习1.自学指导(1)自学内容:P93到P94的例4.(2)自学时间:5分钟.(3)自学方法:阅读教材内容,重点语句及疑点做上记号.(4)自学参考提纲:①例4中得到k,b的方程组的依据是什么?②用待定系数法求一次函数解析式的一般步骤是什么?③已知一次函数的图象经过点(9,0)和点(24,20),求其解析式.答案:y=43x-12④求与直线y=2x平行,且过点(1,1)的直线的解析式.答案:y=2x-12.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在看书、完成提纲时存在的问题和困难.②差异指导:对学习困难的学生进行针对性指导,特别是方法步骤指导.(2)生助生:学生相互交流,帮助矫正错误.4.强化(1)总结用待定系数法求一次函数解析式的一般步骤.(2)点两位学生板演自学参考提纲中的第③、④题,并点评.1.自学指导(1)自学内容:P94到P95练习上面的例5.(2)自学时间:10分钟.(3)自学方法:认真阅读例5对比分析内容,边看边思考解题思路过程.(4)自学参考提纲:①0≤x≤2与x>2时的价格有什么不同?②当0≤x≤2时,x与y的数量关系是正比例函数,由此得到y关于x的函数解析式是y=5x .③当x>2时,x与y的数量关系是一次函数,由此得到y关于x的函数解析式是y=4x+2.④对于②、③中的函数关系式合起来可以怎么表示?⑤回答P95的思考.⑥总结根据数量关系列一次函数的解析式的思路和一般步骤.⑦一个试验室在0:00—2:00保持20℃的恒温,在2:00—4:00匀速升温,每小时升高5℃.写出试验室温度T(单位:℃)关于时间t(单位:h)的函数解析式,(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)已知一次函数的图象过点(0,3)和(-2,0),那么函数图象必过下面的点(B)A.(4,6)B.(-4,-3)C.(6,9)D.(-6,6)2.(15分)根据图中的程序,当输入x=2时,输出结果y=2.3.(10分)y+1与z成正比例,比例系数为2,z与x-1成正比例.当x=-1时,y=7,那么y与x之间的函数关系式是(D)A.y=2x+9B.y=-2x+5C.y=4x+11D.y=-4x+34.(15分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论正确的是①③④ .二、综合应用(15分)5.如图所示,一次函数的图象与x轴、y轴分别相交于A、B两点,如果A 点的坐标为(2,0),且OA=OB,试求一次函数的解析式.解:∵A(2,0),OA=OB.∴B(0,-2).设一次函数的解析式为y=kx+b(k≠0).又∵一次函数的图象过A、B两点,∴220bk b=-+=⎧⎨⎩解得12kb==-⎧⎨⎩∴一次函数的解析式为y=x-2.6.某人从离家18千米的地方返回,他离家的距离s(千米)与时间t(分钟)的函数图象如图所示.(1)求线段AB的解析式;(2)求此人回家用了多长时间?解:(1)设线段AB的解析式为y=kx+b,∵图象过A(0,18), B(6,12).∴18612bk b=⎧⎨+=⎩解得118kb=-=⎧⎨⎩∴线段AB的解析式为y=-x+18(0≤x≤6);(2)设线段BC的解析式为y=k′x+b′,∵图象过B(6,12)和点(8,8).∴61288k bk b'+'='+'=⎧⎨⎩解得224.kb'=-'=⎧⎨⎩∴线段BC的解析式为y=-2x+24.∴C点的坐标为(12,0).∴此人回家用了12分钟.三、拓展延伸(15分)7.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按。

人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)

人教版数学八年级下册 用待定系数法求一次函数解析式(教案与反思)

第3课时用待定系数法求一次函数解析式路漫漫其修远兮,吾将上下而求索。

屈原《离骚》原创不容易,【关注】店铺,不迷路!前事不忘,后事之师。

《战国策·赵策》原创不容易,【关注】店铺,不迷路!原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!举世不师,故道益离。

柳宗元【知识与技能】1.学会用待定系数法确定一次函数解析式.2.了解两个条件确定一个一次函数,一个条件确定一个正比例函数. 【过程与方法】1.经历待定系数法的应用过程,提高解决数学问题的能力.2.体验一次函数中数形结合思想的运用.【情感态度】能把实际问题与数学问题相互转化,认识数学与生活的密切关系. 【教学重点】待定系数法确定一次函数解析式.【教学难点】灵活运用有关知识解决实际问题.一、情境导入,初步认识已知两个函数的图象如图所示,请根据图象写出每条直线的表达式.【教学说明】从图象知,图1中直线表示的是正比例函数,其解析式为y=kx形式,关键是如何求出k的值;由图可知图象过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线表示的是一次函数,其解析式为y=kx+b形式,代入直线上两点坐标(2,0)与(0,3),通过解方程组即可求出k、b,确定解析式.学生讨论后,由教师小结.确定正比例函数解析式需要1个条件,确定一次函数的解析式需要2个条件,先设出相应的解析式,然后将条件代入得到方程或方程组,求解后确定解析式.二、典例精析,掌握新知先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.例1已知正比例函数的图象经过点(-4,3),求它的解析式.【分析】求解正比例函数的解析式,我们可以首先设它的解析式为y=kx,根据已知条件,求解出k的值即可.根据这个正比例函数图象经过点(-4,3),意味着当x=-4时,y=3,从而得到k的值.解:由题意可知3=-4k,k=-34所以,这个正比例函数解析式为y=-34x.例2问点A(-1,3),B(1,-1),C(3,-5)是否在同一条直线上. 解:设直线AB的解析式为y=kxb,由题意得3 1k b k b=-+⎧⎨-=+⎩解得错误!未找到引用源。

八下数学 专题一 一次函数解析式的求法

八下数学   专题一 一次函数解析式的求法

八下数学 专题一 一次函数解析式的求法一 定义型解题关键:典题分析例1. (一次函数)已知函数y m xm =-+-()3328是一次函数,求其解析式。

例2. (正比例函数)已知函数 y=(k+2)x(k -3) 是正比例函数,求它的表达式。

随堂练习1. 当m 时,函数y =(m -2) +5是一次函数,此时函数解析式为 。

2. 已知 y=(k+2)x+k 2-4是正比例函数,求它的表达式。

二 一点型(只含一个待定系数)解题关键:32-m x例1. 已知一次函数y=kx-3的图像过点(2,-1),求这个函数的解析式。

随堂练习1. 已知变量y 和x 成正比例,且x =2时,y =-21,则y 和x 的函数关系式为 。

2. 直线y =kx +2与x 轴交于点(-1,0),则k = 。

三 两点型(含有两个待定系数)解题关键:典题分析例1. 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

随堂练习1. 已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________。

2. 已知一次函数的图像过点(3,5)与(-4,-9),则该函数的图像与y 轴交点的坐标为______。

四 斜截型 (K 表示斜率,b 代表截距)解题关键:例1. 已知直线y=kx+b 与直线y=-2x 平行,且在y 轴上的截距为2,则直线的解析式为_____________。

例2. 若直线y =kx +b 垂直直线y =3x +4,且过点(1,-2),则y= .随堂练习1. 若直线y =kx +b 平行直线y =3x +4,且过点(1,-2),则y = .2. 已知一次函数的图象与y=-21x 的图像平行,且与y 轴交点(0,-3),求此函数关系式。

3. 已知一次函数的图象与y=-21x 的图像垂直,且与y 轴交点(0,-3),求此函数关系式。

待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。

这种方法在求解函数解析式时被广泛应用。

2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。

在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。

3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。

根据已知条件,先假设函数的形式为y=ax+b。

(2)列出方程组。

根据题目所给的条件,列出关于a 和b 的方程组。

(3)解方程组。

通过求解方程组,得到a 和b 的值。

(4)写出解析式。

将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。

4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。

(1)假设函数形式为y=ax+b。

(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。

(4)写出解析式:y = 2x。

5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。

人教版八年级下册第十九章一次函数-求函数解析式及其应用教案

在教学方法上,我尝试了多种教学手段,如动态软件演示、实际案例分析和小组讨论等,以激发学生的学习兴趣。但从学生的反馈来看,可能还需要进一步优化教学手段,使其更贴近学生的认知水平。
最后,关于教学评价,我认为除了课堂表现和作业完成情况外,还应关注学生在解决问题过程中的思维过程和方法。这样,才能更全面地了解学生的学习情况,及时调整教学策略,提高教学质量。
3.增强学生的数学建模意识:将实际问题转化为数学模型,培养学生的数学建模能力,强化数学与现实生活的联系。
4.培养学生的团队协作和交流能力:在小组讨论和问题解决过程中,鼓励学生相互交流、协作,共同完成任务。
三、教学难点与重点
1.教学重点
-一次函数的定义:强调形如y=kx+b(k≠0,k、b是常数)的函数是一次函数,理解k和b分别代表的意义。
4.一次函数的应用:解决实际问题,如行程问题、价格问题等。
本节课将重点探讨如何求一次函数的解析式及其在实际问题中的应用。
二、核心素养目标
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过分析实际问题,引导学生运用一次函数的解析式进行逻辑推理,解决具体问题。
2.提高学生的数据分析能力:学会从实际问题中提取数据,运用一次函数的知识分析数据,为解决问题提供依据。
人教版八年级下册第十九章一次函数-求函数解析式及其应用教案
一、教学内容
人教版八年级下册第十九章“一次函数”中的求函数解析式及其应用,主要包括以下内容:
1.一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数。
2.求一次函数的解析式:通过已知点斜率k和截距b,或两个已知点坐标来求解。
3.一次函数的性质:斜率k的正负与函数的增减性;截距b的几何意义。

初中数学 华东师大版八年级上册 第四章 一次函数——求一次函数的解析式及常见题型总结

求一次函数的解析式及常见题型总结求一次函数的表达式求一次函数()0≠+=k b kx y 的解析式,就是求出b k ,的值,然后代入解析式即可.常用待定系数法求一次函数的解析式.待定系数法用待定系数法求一次函数的解析式的一般步骤:(1)设一次函数的解析式为b kx y +=,其中b k ,是待定的系数; (2)将已知点的坐标代入函数解析式,建立关于b k ,的方程(组); (3)解方程(组),求出待定系数b k ,的值;(4)将求出的b k ,的值代回所设的函数解析式,即得到所求的函数解析式.待定系数法的原理即下面的结论:点P ()n m ,与直线b kx y +=的关系:(1)如果点P ()n m ,在直线b kx y +=上,那么n m ,的值必满足函数解析式b kx y +=,即n b km =+;(2)如果n m ,是满足函数解析式b kx y +=的一对对应值,那么以n m ,为坐标的点P ()n m ,必在直线b kx y +=上.注意:(1)对于一次函数b kx y +=,待定系数有两个,分别是b k ,,如果其中一个系数的值知道或确定,那么只需要将其图象上一个点的坐标代入函数解析式即可求出另一个系数的值;如果b k ,的值都不知道,则需要其图象上两个点的坐标代入求解.(2)在解关于b k ,的二元一次方程组时,使用加减消元法进行.(3)在求分段函数的解析式时,要在每段解析式的后面注明相应的自变量的取值范围.(4)求函数的解析式是河南中考的重点,涉及到求一次函数、反比例函数和二次函数的解析式,难度不高.例 1. 若一次函数的图象经过()1,1和()3,1--两点,求这个一次函数的表达式,并说出它的增减性.分析:因为点在直线上,所以点的坐标满足函数关系式,利用待定系数法,可求出它的关系式,再由k 的符号得出它的增减性.k 的符号决定一次函数图象的升降和函数的增减性. 解: 设这个一次函数的表达式为b kx y += ∵该函数的图象经过()1,1和()3,1--两点∴⎩⎨⎧-=+-=+31b k b k 解之得:⎩⎨⎧-==12b k∴该一次函数的表达式为12-=x y . ∵02>=k∴y 随x 的增大而增大.例2. 已知一次函数b kx y +=的图象经过点()1,1-和点()5,1-,求当5=x 时的函数值.分析:要想求出当5=x 时的函数值,就必须求出该一次函数的表达式,然后代入求值.由于该一次函数的表达式已经给出,所以在求解的第一步就不用在设表达式了.解:∵一次函数b kx y +=的图象经过点()1,1-和点()5,1-∴⎩⎨⎧-=+=+-51b k b k 解之得:⎩⎨⎧-=-=23b k∴该一次函数的表达式为23--=x y . 当5=x 时,17253-=-⨯-=y .例3. 已知直线5+=kx y 经过点()1,2--,求该直线的表达式.分析:在该直线的表达式中,只有k 一个待定系数,所以只需要其图象上一个点的坐标即可,当然,建立的是关于k 的一元一次方程. 解:∵直线5+=kx y 经过点()1,2-- ∴152-=+-k 解之得:3=k∴该直线的表达式为53+=x y .回答:对于该一次函数,因为k _________0,所以该函数的图象是_________,(填“上升”或“下降”)y 随x 的增大而_________,图象不经过第_________象限. 习题1. 已知一次函数的图象经过点A ()1,2,B ()3,1--,C ()3,m ,求这个一次函数的表达式,并求出m 的值.习题2. 已知直线b kx y +=经过点()2,1-和()6,5-,求这条直线的函数表达式;当该直线上有一点P 的纵坐标是2时,求P 点的横坐标.专题 求一次函数的表达式的类型及方法 类型一、定义型例4. 已知函数()332+-=-m x m y 是一次函数,求这个函数的关系式.分析:根据一次函数关系式的自变量的系数0≠k ,自变量的次数为1,可得关于m 的表达式和方程,即可求得m 的值,继而可得到函数关系式.解:由题意可知:⎩⎨⎧=-≠-1203m m 解之得:3-=m .∴这个函数的关系式为36+-=x y .习题3. 已知()412-+-=k x k y k 是一次函数,求这个函数的关系式.类型二、两点型知道一次函数的图象经过的两个点的坐标,用待定系数法求其函数关系式. 例5. 已知一次函数的图象经过点()1,1和点()2,0,求该一次函数的关系式. 解:设该一次函数的关系式为b kx y += ∵该函数的图象经过点()1,1和点()2,0∴⎩⎨⎧==+21b b k 解之得:⎩⎨⎧=-=21b k∴该函数的关系式为2+-=x y .图(1)图(2)习题4. 已知一次函数的图象经过()3,2--A ,()3,1B 两点. (1)求这个一次函数的关系式;(2)试判断点()1,1-P 是否在这个一次函数的图象上.类型三、图象型已知一次函数b kx y +=的图象上两个点的坐标,用待定系数法求函数关系式.通常给出的是图象与两条坐标轴的交点坐标.例6. 已知一次函数的图象如图(1)所示,求这个函数的表达式. 解:设这个一次函数的表达式为b kx y +=由图象可知,该函数的图象经过()0,2,()3,0-两点∴⎩⎨⎧-==+302b b k 解之得:⎪⎩⎪⎨⎧-==323b k ∴这个函数的表达式为323-=x y . 习题5. 已知,如图(2)所示,直线AB 与x 轴交于 点A ,与y 轴交于点B . (1)写出A ,B 两点的坐标; (2)求直线AB 的函数关系式.类型四、平行型若两个一次函数的图象互相平行,则它们的k 值相等,b 值不相等.据此可用来确定系数k 的值.例7. 已知一次函数b kx y +=的图象平行于直线1+-=x y ,且经过点()4,0-,求这个一次函数的关系式.分析:根据两条直线的平行关系确定k 的值,然后再根据一个点的坐标代入求出b 的值.解:由题意可知:1-=k ∴b x y +-=∵该函数的图象经过点()4,0- ∴4-=b∴这个一次函数的关系式为4--=x y .习题6. 一次函数b kx y +=的图象与y 轴交于点()2,0-,且与直线213-=x y 平行,求它的函数表达式.类型五、相交型同一平面内两条直线的位置关系有两种:平行和相交.确定相交的两条直线的函数关系式,要明确交点的意义,即两个一次函数图象的交点的横坐标和纵坐标,是由这两条直线的关系式组成的方程组的解.例8. 已知一次函数的图象经过点()3,3-,并且与直线24-=x y 相交与y 轴上一点,求这个一次函数的关系式.分析:本题中的一个条件是直线24-=x y 与y 轴的交点,只要求出这个交点的坐标,再把交点坐标和()3,3-分别代入所设函数关系式中,便可求解.解:设这个一次函数的关系式为b kx y += ∵直线24-=x y 与y 轴的交点是()2,0- ∴这个一次函数的图象与y 轴的交点是()2,0-把()3,3-和()2,0-分别代入b kx y +=得:⎩⎨⎧-=-=+233b b k 解之得:⎪⎩⎪⎨⎧-=-=231b k . ∴这个一次函数的关系式为231--=x y .习题7. 已知三条直线12,32+-=-=x y x y 和2-=kx y 相交于一点,求该交点的坐标和第三条直线的表达式.分析:该交点的横坐标、纵坐标是方程组⎩⎨⎧+-=-=1232x y x y 的解.类型六、面积型给出的条件中有直线的坐标三角形的面积,求直线的解析式,注意分类讨论.例9. 直线b kx y +=经过点⎪⎭⎫⎝⎛-0,23,且与坐标轴所围成的直角三角形的面积为415,求直线的解析式. 分析:题中的三角形就是坐标三角形,它是直角三角形,两条直角边的长度隐含在一次函数的图象与两条坐标轴的交点坐标中:与x 轴的交点的横坐标的绝对值是其中一条直角边的长,与y 轴的交点的纵坐标的绝对值是另一条直角边的长. 解:直线b kx y +=与y 轴的交点坐标为()b ,0 由题意可知:4152321=⨯-⨯b图(3)∴5=b ,5±=b ∴5+=kx y 或5-=kx y∵直线b kx y +=经过点⎪⎭⎫⎝⎛-0,23∴0523=+-k ,或0523=--k解之得:310=k 或310-=k∴该直线的解析式为5310+=x y 或5310--=x y .例10. 如图(3)所示,在平面直角坐标系xOy 中,一次函数42+-=x y 的图象分别与x 轴、y 轴交于点A 、B ,点P 在x 轴上,若6=∆ABP S ,求直线PB 对应的函数关系式.分析:根据题意可得点P 可以在y 轴左边,也可以在y 轴右边,应分两种情况讨论.先求点A 和点B 的坐标,然后根据6=∆ABP S 确定点P 的位置,进而运用待定系数法可求出直线PB 对应的函数关系式.解:令0=x ,4=y ;令0=y ,则042=+-x ,解之得:2=x . ∴点A 的坐标为()0,2,点B 的坐标为()4,0 ∵6=∆ABP S∴6421=⨯⨯AP ,得3=AP ∴点P 的坐标为()0,1-或()0,5设直线PB 对应的函数关系式为b kx y +=∴⎩⎨⎧==+-40b b k 或⎩⎨⎧==+405b b k 解之得:⎩⎨⎧==44b k 或⎪⎩⎪⎨⎧=-=454b k ∴直线PB 对应的函数关系式为44+=x y 或454+-=x y .习题8. 已知一次函数b kx y +=的图象与x 轴交于点()0,6-A ,与y 轴交于点B .若 △AOB 的面积为12,求一次函数的关系式.类型七、范围型例11. 已知一次函数b kx y +=中,自变量x 的取值范围是1-≤x ≤4,相应函数值的范围是3-≤y ≤2,求此函数的表达式.分析:本题分两种情况讨论:(1)y 随x 的增大而增大;(2)y 随x 的增大而减小. 解:分两种情况:(1)当0>k 时,y 随x 的增大而增大,所以当1-=x 时,3-=y ;当4=x 时,2=y .∴⎩⎨⎧=+-=+-243b k b k 解之得:⎩⎨⎧-==21b k ∴此函数的表达式为2-=x y ;(2)当0<k 时,y 随x 的增大而减小,所以当1-=x 时,2=y ;当4=x 时, 3-=y .∴⎩⎨⎧-=+=+-342b k b k ,解之得:⎩⎨⎧=-=11b k ∴此函数的表达式为1+-=x y .综上所述,此函数的表达式为2-=x y 或1+-=x y .习题9. 一次函数b kx y +=的自变量的取值范围是3-≤x ≤6,相应函数值的取值范围是5-≤y ≤2-,求这个函数的关系式.类型八、表格型例12. 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数,求出日销售量y (件)与销售价x (元)的函数关系式.解:设此一次函数的关系式为b kx y +=,则:⎩⎨⎧=+=+20202515b k b k 解之得:⎩⎨⎧=-=401b k∴此一次函数的关系式为40+-=x y .习题10. 下表中,y 是x 的一次函数,求该函数的关系式,并补全下表.其它例13. 已知y 与2+x 成正比例,当4=x 时,12=y ,求y 与x 之间的函数关系式,并判断y 是x 的什么函数. 解:由题意可设()2+=x k y ∵4=x 时,12=y∴()1224=+k ,解之得:2=k11 ∴y 与x 之间的函数关系式为()4222+=+=x x y由关系式可知,y 是x 的一次函数.习题11. 已知2-y 与x 成正比例,且当2=x 时,4=y ,求y 与x 之间的函数关系式,并求当3=y 时,x 的值.习题12. 已知1y 与1+x 成正比例,2y 与1-x 成正比例,21y y y +=.当2=x 时,9=y ;当3=x 时,14=y .求y 关于x 的函数关系式.分析:由题意可设()111+=x k y ,()122-=x k y .。

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。

4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈求一次函数解析式的常见题型
一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。其中求 一次函数解析式就是一类常见题型。现以部分中考题为例介绍几种求一次函数解析式的 常见题型。希望对同学们的学习有所帮助。
一. 定义型
例 1. 已知函数
是一次函数,求其解析式。
解:由一次函数定义知
,故一次函数的解析式为
解:(1)若经过 A、B 两点的函数图像是直线,由两点式易得 (2)由于 A、B 两点的横、纵坐标的积都等于 4,所以经过 A、B 两点的函数图像还可以
是双曲线,解析式为 (3)其它(略)
解:设一次函数解析式为 由题意得
故这个一次函数的解析式为 四. 图像型 例 4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为
由图可知一次函数
的图像过点(1,0)、(0,2)

故这个一次函数的解析式为 五. 斜截型
例 5. 已知直线 式为___________。
(4)直线
的解析式为
例 9. 若直线 l 与直线
关于 y 轴对称,则直线 l 的解析式为____________。
解:由(2)得直线 l 的解析式为
十. 开放型
例 10. 已知函数的图像过点 A(1,4),B(2,2)两点,请写出满足上述条件的两个不 同的函数解析式,并简要说明解答过程。
直线
在 y 轴上的截距为
,故图像解析式为
七. 实际应用型
例 7. 某油箱中存油 20 升,油从管道中匀速流出,流速为 0.2 升/分钟,则油箱中剩油 量 Q(升)与流出时间 t(分钟)的函数关系式为___________。
解:由题意得
,即
故所求函数的解析式为


注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
八. 面积型
例 8. 已知直线 __________。
与两坐标轴所围成的三角形面积等于 4,则直线解析式为
解:易求得直线与 x 轴交点为( ,0),所以
,所以
,即
故直线解析式为

九. 对称型
若直线 与直线
关于
(1)x 轴对称,则直线 l 的解析式为
(2)y 轴对称,则直线 l 的解析式为
(3)直线 y=x 对称,则直线 l 的解析式为
与直线
平行,且在 y 轴上的截距为 2,则直线的解析
解析:两条直线 :
;:
。当

时,
直线
与直线
平行,

又 直线
在 y 轴上的截距为 2,
故直线的解析式为 六. 平移型 例 6. 把直线
向下平移 2 个单位得到的图像解析式为___________。
解析:设函数解析式为 与直线
, 直线 平行
向下平移 2 个单位得到的直线
注意:利用定义求一次函数
解析式时,要保证
。如本例中应保证
二. 点斜型
例 2. 已知一次函数
的图像过点(2,-1),求这个函数的解析式。
解: 一次函数 ,即
的图像过点(2,-1)
故这个一次函数的解析式为
变式问法:已知一次函数
,当
时,y=-1,求这个函数的解析式。
三. 两点型
已知某个一次函数的图像与 x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这 个函数的解析式为_____________。
相关文档
最新文档