八年级数学下一次函数知识点总结

合集下载

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,汽车以60km/h的速度匀速行驶,行驶时间t和行驶路程s是变量,速度60km/h就是常量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子计算出唯一的y值。

- 函数的表示方法有三种:解析式法(如y = 3x - 2)、列表法(列出x和y的对应值表格)、图象法(画出y关于x的图象)。

二、一次函数。

1. 一次函数的概念。

- 形如y=kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx是正比例函数,它是特殊的一次函数。

2. 一次函数的图象和性质。

- 图象:一次函数y = kx + b(k≠0)的图象是一条直线。

当b = 0时,y=kx的图象是经过原点(0,0)的直线。

例如,y = 2x的图象是过原点的直线,y=2x + 1的图象是y = 2x向上平移1个单位得到的直线。

- 性质。

- 当k>0时,y随x的增大而增大。

例如在y = 3x+2中,k = 3>0,y随x的增大而增大。

- 当k<0时,y随x的增大而减小。

例如在y=-2x + 3中,k=-2<0,y随x的增大而减小。

3. 一次函数图象的平移。

- 对于一次函数y = kx + b,向上(下)平移m个单位长度得到y=kx + b± m;向左(右)平移n个单位长度得到y = k(x± n)+b。

例如,y = 2x+1向上平移3个单位得到y = 2x+4,向左平移2个单位得到y = 2(x + 2)+1=2x + 5。

4. 求一次函数的解析式。

八下数学一次函数知识点

八下数学一次函数知识点

八下数学一次函数知识点
一次函数是初中数学的重要内容之一,在数学学习中具有重要的
作用。

对于初中学生来说,掌握一次函数的知识点对于高中和大学数
学学习的启蒙都有很大帮助。

1. 一次函数的定义和特点
一次函数又叫线性函数,是指函数y=kx+b(其中k和b均为常数),它的图像是一条直线。

其中k称为斜率,表示直线的倾角,b称为截距,表示直线与Y轴的交点。

一次函数的图像是直线,具有单调
性和可逆性。

2. 一次函数的性质
(1)斜率关系:当k>0时,函数y=kx+b递增;当k<0时,函数
y=kx+b递减;当k=0时,函数y=b是一条水平直线。

(2)截距关系:当b>0时,函数图像与X轴正半轴的交点坐标
为(0,b);当b<0时,函数图像与X轴负半轴的交点坐标为(0,b);当
b=0时,函数图像与X轴相交于原点(0,0)。

(3)零点关系:当y=0时,函数的零点是-x/b,表示函数与X
轴的交点。

(4)函数值关系:当x取某一值时,函数的值为kx+b,可以用
直线的斜率截距式计算出函数的值。

3. 一次函数的应用
一次函数有广泛的应用,它常常出现在各类数学问题和生活中。

其中包括:直线函数方程的应用、直线函数的应用相关题、消费者价
格感知度问题、生态平衡问题、干细胞扩展问题、马路工程问题等等。

总之,一次函数是初中数学中非常重要的内容之一,掌握一次函
数的定义、性质和应用,不仅对于初中数学学习有帮助,对于高中数
学和大学数学学习也有很大的帮助。

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版单选题1、已知函数y=2x−1x+2,当x=a时的函数值为1,则a的值为()A.3B.-1C.-3D.1答案:A分析:当x=a时的函数值为1,把x=a代入函数式中,得2a−1a+2=1求解a=3.∵函数y=2x−1x+2中,当x=a时的函数值为1,∴2a−1a+2=1,∴2a−1=a+2,∴a=3.故答案为A小提示:此题考查函数值, 令y=1,解分式方程,即可求出2、在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4答案:A分析:过点D作DE⊥x轴于点E,先证明△ABO≅△DAE(AAS),再由全等三角形对应边相等的性质解得D(7,3),最后由待定系数法求解即可.解:正方形ABCD中,过点D作DE⊥x轴于点E,∵∠ABO+∠BAO=∠BAO+∠DAE=90°∴∠ABO=∠DAE∵∠BOA=∠AED=90°,AB=AD∴△ABO≅△DAE(AAS)∴AO=DE=3,OB=AE=4∴D(7,3)设直线BD所在的直线解析式为y=kx+b(k≠0),代入B(0,4),D(7,3)得{b=47k+b=3∴{k=−1 7b=4∴y=−17x+4,故选:A.小提示:本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=−m(x−1)−n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)答案:B分析:直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n的图象与x轴的交点为(2,0),进而得到一次函数y=-mx-n的图象与x轴的交点为(2,0),由于一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,即可求得一次函数y=-m(x-1)-n的图象与x轴的交点坐标.解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=-mx-n的图象与x轴的交点为(2,0),∵一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,∴一次函数y=-m(x-1)-n的图象与x轴的交点坐标是(3,0),故选:B.小提示:本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.4、如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定答案:C分析:将点P(3,2)代入直线解析式,然后与方程对比即可得出方程的解.解:一次函数y=kx+b(k≠0)的图象经过点P(3,2),∴2=3k+b,∴x=3为方程2=kx+b的解,故选:C.小提示:题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米答案:A分析:先利用待定系数法求出两个蓄水池的函数解析式,再联立求出交点坐标即可得.解:设甲蓄水池的函数解析式为y=kx+b,由题意,将点(3,0),(0,4)代入得:{3k+b=0b=4,解得{k=−43b=4,则甲蓄水池的函数解析式为y=−43x+4,同理可得:乙蓄水池的函数解析式为y=2x+2,联立{y=−43x+4y=2x+2,解得{x=0.6y=3.2,即当甲、乙两池中水的深度相同时,y的值为3.2米,故选:A.小提示:本题考查了一次函数的实际应用,熟练掌握待定系数法是解题关键.6、在函数y=2x−3中,当自变量x=5时,函数值等于()A.1B.4C.7D.13答案:C分析:把x=5代入y=2x−3求解即可.解:把x=5代入y=2x−3得y=2×5-3=7,故选:C.小提示:本题考查求函数值,属基础题目,难度不大.7、若y=(m﹣1)x+m2﹣1是y关于x的正比例函数,则该函数图象经过的象限是()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限答案:D分析:根据正比例函数的定义知,m2−1=0且m−1≠0,由此可求得m的值,从而可知正比例函数图象所经过的象限.由题意知:m2−1=0且m−1≠0由m2−1=0得:m=±1由m−1≠0得:m≠1∴m=-1此时正比例函数解析式为y=-2x∵-2<0∴函数图象经过第二、四象限故选:D.小提示:本题考查了正比例函数的概念,把形如y=kx(k≠0)的函数称为正比例函数,掌握正比例函数概念是解题关键.特别注意一次项系数不为零.8、在平面直角坐标系中,直线l1与l2关于直线y=1对称,若直线l1的表达式为y=−2x+3,则直线l2与y轴的交点坐标为()A.(0,12)B.(0,23)C.(0,0)D.(0,−1)答案:D分析:先求解y=−2x+3与x,y轴的交点B,A坐标,再求解A关于y=1的对称点A′的坐标即可得到答案.解:如图,∵y=−2x+3,令x=0,y=3,令y=0,x=32,∴A(0,3),B(3,0),2作A,B关于直线y=1对称的点A′,B′,∵直线l1与l2关于直线y=1对称,即上图中的直线AB与直线A′B′关于直线y=1对称,∴x A=x A′=0,y A−1=1−y A′,∴y A′=−1,∴A′(0,−1),所以直线l2与y轴的交点坐标为:(0,−1).故选:D.小提示:本题考查的是求解一次函数与坐标轴的交点的坐标,坐标与图形,轴对称的坐标变化,掌握数形结合的方法是解题的关键.9、直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.﹣1D.24答案:A分析:由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.小提示:本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题的关键.10、如图,已知A(1,3),B(5,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是()A.k≠0B.k>1C.0≤k≤1D.0≤k≤2答案:D分析:先求出直线过点A、B的k值,再结合图象即可求得k的取值范围.解:当直线y=kx+1过点A(1,3)时,则k+1=3,解得:k=2,当直线y=kx+1过点B(5,1)时,则5k+1=1,解得:k=0,当x=0时,y=1,则直线经过定点(0,1),∵直线y=kx+1与线段AB有公共点,∴0≤k≤2,故选:D.小提示:本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.填空题11、如图,A(−2,1),B(2,3)是平面直角坐标系中的两点,若一次函数y=kx−1的图象与线段AB有交点,则k 的取值范围是_______.答案:k<-1或k>2分析:将A、B点坐标分别代入计算出对应的k值,然后利用一次函数图象与系数的关系确定k的范围.解:当直线y=kx-1过点A时,得-2k-1=1,解得k=-1,当直线y=kx-1过点B时,得2k-1=3,解得k=2,∵一次函数y=kx−1的图象与线段AB有交点,∴k<-1或k>2,所以答案是:k<-1或k>2.小提示:此题考查了一次函数图象与系数的关系:当k>0时,图象过第一、三象限,y随x的增大而增大,越靠近y轴正半轴k值越大;当k<0时,图象过二、四象限,y随x的增大而减小越靠近y轴正半轴k值越小.12、某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______.答案: 3 y=4x+2##y=2+4x分析:根据题意列出一元一次方程,函数解析式即可求解.解:∵14>10,∴超过2千克,设购买了a千克,则2×5+(a−2)×0.8×5=14,解得a=3,设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为:y=2×5+(x−2)×5×0.8=10+4x−8=4x+2,所以答案是:3,y=4x+2.小提示:本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.13、张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.答案: 10+5x(x为正整数), 235分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.小提示:解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.14、已知一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围为______.答案:−12<m ⩽3 分析:根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 解:∵一次函数y =(2m +1)x +m −3的图象不经过第二象限,∴该图象经过第一、三象限或第一、三、四象限,{2m +1>0m −3≤0,解得:﹣12<m ≤3. 所以答案是:﹣12<m ≤3.小提示:本题考查了一次函数的性质及解不等式组,解题的关键是熟知一次函数的性质并正确的应用.15、正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .答案:y =23x 或y =-23x分析:根据题意确定A 点纵坐标是2或者-2,设出正比例函数解析式,然后分情况将A 点坐标代入解析式即可求出.根据题意可得A 点坐标(3,2)或(3,-2),设正比例函数解析式为:y=kx ,代入解析式可得:k=23或-23,∴函数解析式是y =23x 或y =-23x .所以答案是:y =23x 或y =-23x .小提示:本题主要考查了正比例函数解析式,根据题意确定点A 的坐标是解题的关键.解答题16、已知函数y=(5m−3)x2−n+(m+n),(1)当m、n为何值时,此函数是一次函数?(2)当m、n为何值时,此函数是正比例函数?答案:(1)n=1,m≠35(2)n=1,m=-1分析:(1)根据一次函数的定义知2−n=1,且5m−3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2−n=1,m+n=0,据此可以求得m、n的值.(1)解:当函数y=(5m−3)x2−n+(m+n)是一次函数时,2−n=1,且5m−3≠0,解得,n=1,m≠35;(2)解:当函数y=(5m−3)x2−n+(m+n)是正比例函数时,{2−n=1 m+n=05m−3≠0,解得,n=1,m=−1.小提示:本题考查了一次函数、正比例函数的定义,解题的关键是掌握正比例函数是一次函数的一种特殊形式.17、今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.答案:(1)这一批树苗平均每棵的价格是20元;(2)购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.分析:(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解;(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.解:(1)设这一批树苗平均每棵的价格是x元,根据题意,得6300.9x −6001.2x=10,解之,得x=20.经检验知,x=20是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A种树苗每棵价格为20×0.9=18元,种树苗每棵价格为20×1.2=24元,设购进A种树苗t棵,这批树苗的费用为w,则w=18t+24(5500−t)=−6t+132000.∵w是t的一次函数,k=−6<0,w随着t的增大而减小,t≤3500,∴当t=3500棵时,w最小.此时,B种树苗有5500−3500=2000棵,w=−6×3500+132000=111000.答:购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.小提示:本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.18、某市出租车的计费标准如下:行驶路程不超过5 km时,收费8元,行驶路程超过5 km的部分,按每千米1.5元计费.(1)求出租车收费y(元)与行驶路程x(km)之间的函数关系式;(2)若某人一次乘出租车付出了车费11元,求他这次乘坐了多少千米的路程?答案:(1)y={8(0<x≤5)1.5x+0.5(x>5);(2)若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程.分析:(1)要先根据行驶路程的距离是否超出5千米来进行分类讨论,然后分别列出函数解析式即可;(2)先根据车费判断出此人的大概行驶路程,然后根据(1)中得出的不同的函数,看符合哪种情况,然后代入其中求出此人乘坐的路程.解:(1)由题意得:当0<x≤5时,y=8当x>5时,y=8+1.5(x-5)=1.5x+0.5∴出租车收费y元与行驶路程x(km)之间的函数关系式为y={8(0<x≤5)1.5x+0.5(x>5)(2) ∵11元>8元.∴y=11时,1.5x+0.5=11,解得x=7,∴若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程..小提示:本题主要考查一次函数关系式的应用问题.注意自变量的取值范围不能遗漏,不同的取值要进行分类讨论.。

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点数学知识点:一次函数一、概念一次函数也被称为线性函数,是指函数关系中的自变量的最高次数为一的函数。

一次函数的一般形式为y = ax + b ,其中a和b是实数,a不为零。

二、图像特征1. 斜率一次函数的斜率代表了其图像的倾斜程度。

斜率为正时,函数图像呈现上升趋势;斜率为负时,函数图像呈现下降趋势。

2. 截距一次函数的截距是指它与x轴和y轴的交点。

x轴的截距为函数的根,y轴的截距为b。

3. 函数图像一次函数的图像是一条直线,其斜率和截距决定了直线的位置和倾斜程度。

三、性质与运算1. 平行与相交两条一次函数图像平行,则它们的斜率相等;两条一次函数图像相交,则它们的斜率不相等。

2. 垂直两条直线互相垂直,则其斜率的乘积为-1。

3. 变换对一条任意的一次函数y = ax + b,可以进行平移、缩放和翻转等运算,得到不同的图像。

四、求解与应用1. 解一次方程一次函数可以用于解一次方程,即求解 ax + b = 0 中的x的值。

2. 实际问题应用一次函数可以用于描述很多实际问题,例如直线运动、费用与数量关系等。

通过建立相应的函数关系,可以解决实际问题。

3. 数据分析与预测通过一次函数对给定数据进行拟合,可以得到一条直线,并利用这条直线进行数据分析和预测。

五、常见误区1. 不是一次函数的误判有时候,某些函数看起来像是一次函数,但在具体计算时发现其自变量存在其他次数,因此需要仔细判断。

2. 导数与斜率的混淆一次函数的斜率等于其导数,但导数远不止于斜率的概念,需要清楚区分。

总结:一次函数是数学中一个重要的概念,它的图像特征、性质与运算、求解与应用以及常见误区等方面都需要我们理解和掌握。

通过学习一次函数,我们可以更好地理解数学中的平面坐标系和直线方程,并能够运用数学知识解决实际问题。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

一次函数知识点总结9篇

一次函数知识点总结9篇

一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。

它是一种最简单的线性函数,也是数学中最基础的函数之一。

一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。

一次函数的图象是一条直线,因此也被称为线性函数。

下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。

一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。

其中k称为斜率,b称为截距。

斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。

一次函数的自变量x的最高次数为1。

三、图象:一次函数的图象是一条直线,因此也称为线性函数。

直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。

当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。

当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。

四、应用:一次函数在现实生活中有着广泛的应用。

比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。

在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。

一次函数的应用范围十分广泛,在生活中随处可见。

一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。

在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。

希望通过本文的总结,能够对一次函数有更深入的了解和应用。

第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。

对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。

接下来我们就来总结一下一次函数的相关知识点。

一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。

一次函数的知识点总结

一次函数的知识点总结

一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。

在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。

斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。

从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。

一次函数的定义域为实数集R,值域也为实数集R。

它的图象可以延伸到整个坐标平面上。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。

而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。

2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。

一次函数的函数值可以用来描述一根直线上的点的位置。

3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。

这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。

4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。

递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。

三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。

它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。

1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。

当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。

而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。

2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结
基本概念:
1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x
的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x
称为自变量,把y称为因变量,y是x的函数。

3、定义域:
一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k.
即:y=kx+b(k,b为常数,k≠0)。

2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

3.当b=0时(即 y=kx),一次函数图像变为正比例函数,
正比例函数是特殊的一次函数。

4.在两个一次函数表达式中:
当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;
当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;
当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;
当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。

图像性质
1.作法与图形:
(1)列表.
(2)描点;
一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。

一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。

2.性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

一次函数的图象特征和性质:
y=kx+b b>0 b<0 b=0 y=kx
k>0 经过第一、二、三象

经过第一、三、四象

经过第一、三象

图象从左到右上升,y随x的增大而增大
k<0 经过第一、二、四象

经过第二、三、四象

经过第二、四象

图象从左到右下降,y随x的增大而减小
4、特殊位置关系:
①当平面直角坐标系中两直线平行时,其函数解析式中K值
(即一次项系数)相等
②当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数
(即两个K值的乘积为-1)
了解如何设一次函数解析式:
点斜式y-y
1=k(x-x
1
)(k为直线斜率,(x
1
,y
1
)为该直线所过的一个点)
两点式(y-y
1) / (y
2
-y
1
)=(x-x
1
)/(x
2
-x
1
)(已知直线上(x
1
,y
1
)与(x
2
,y
2
)两
点)
截距式(y=-b/ax+b a、b分别为直线在x、y轴上的截距 ,已知(0,b),(a,0) )
实用型(由实际问题来做)
扩展
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求任意线段的长:√(x
1-x
2
) 2+(y1-y2) 2
3.求两个一次函数式图像交点坐标:解两函数式,就是解方程组
4.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2 ]
5.若两条直线y
1=k
1
x+b
1
平行y
2
=k
2
x+b
2
,那么k
1
=k
2
,b
1
≠b
2
6 . 向右平移n个单位 y=k(x-n)+b
向左平移n个单位 y=k(x+n)+b
向上平移n个单位 y =kx+b+n
向下平移n个单位 y =kx+b-n
总结与前几章的关系
1、一元一次方程与一次函数的关系
任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:
当某个一次函数的值为0时,求相应的自变量的值.
从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.
2、一次函数与一元一次不等式的关系
任何一个一元一次不等式都可以转化为
ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式, 所以解一元一次不等式可以看作:
当一次函数值大(小)于0时,求自变量的取值范围. 3、一次函数与二元一次方程组
(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b
c
x b a +-
的图象相同. (2)二元一次方程组的解可以看作是两个一次函数的图象交点.。

相关文档
最新文档