五年级数学奥数题..(最新整理)
五年级奥数题练习及答案(55题)

五年级奥数题练习(55题)1、(1+2+8)÷(1+2+8)=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。
3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。
那么,这列数中的第10个数是。
4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。
5、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。
参加E组的人数最少,只有4人,那么,参加B组的有人。
6、菜地里的西红柿获得丰收,摘了全部的2/5时,装满了3筐还多16千克。
摘完其余部分后,又装满6筐,则共收得西红柿千克。
7、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。
因而提前3天完成任务。
这条路全长千米。
8、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。
9、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。
如6=3+3,12=5+7,等。
那么自然数100可以写成种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)10、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。
那么2008号运动员比赛了场。
11、0.15÷2.1×56=12、15+115+1115+ (1111111115)13、一个自然数除以3,得余数2,用所得的商除以4.得余数3。
若用这个自然数除以6,得余数。
(完整版)小学五年级奥数题及答案

(完整版)小学五年级奥数题及答案小学五年级奥数题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少? 2.A和B是小于100的两个非零的不同自然数。
5年级的数学奥数题

5年级的数学奥数题一、和差问题。
1. 甲、乙两数的和是30,差是6,求甲、乙两数。
- 解析:- 根据和差问题的基本公式,大数=(和 + 差)÷2,小数=(和 - 差)÷2。
- 这里甲、乙两数的和是30,差是6。
- 那么甲数(大数)=(30 + 6)÷2=18。
- 乙数(小数)=(30 - 6)÷2 = 12。
2. 两个连续奇数的和是56,这两个奇数分别是多少?- 解析:- 两个连续奇数相差2。
- 设较小的奇数为x,则较大的奇数为x + 2。
- 根据它们的和是56,可列方程x+(x + 2)=56。
- 2x+2 = 56,2x=54,x = 27。
- 则另一个奇数为27 + 2=29。
二、和倍问题。
1. 学校将360本图书分给二、三年级,已知三年级所分得的本数是二年级的2倍,问二、三年级各分得多少本图书?- 解析:- 把二年级分得的图书本数看作1份,三年级分得的本数就是2份,那么二、三年级共分得的份数就是1 + 2 = 3份。
- 这3份对应的总数是360本。
- 所以二年级分得的图书本数为360÷(1 + 2)=120本。
- 三年级分得的图书本数为120×2 = 240本。
2. 甲、乙两数的和是112,甲数除以乙数的商是6,甲、乙两数各是多少?- 解析:- 因为甲数除以乙数的商是6,所以甲数是乙数的6倍。
- 把乙数看作1份,甲数就是6份,它们的和一共是6+1 = 7份。
- 又因为甲、乙两数的和是112,所以1份(乙数)为112÷7 = 16。
- 甲数为16×6 = 96。
三、差倍问题。
1. 妈妈的年龄比小红大24岁,妈妈年龄是小红年龄的4倍,小红和妈妈各有多少岁?- 解析:- 妈妈年龄是小红年龄的4倍,把小红的年龄看作1份,妈妈的年龄就是4份,妈妈比小红多4 - 1=3份。
- 又已知妈妈的年龄比小红大24岁,所以1份就是24÷3 = 8岁,这就是小红的年龄。
小学五年级奥数试题(含答案)

小学五年级奥数试题(含答案)一、选择题1. 小明有8个苹果,小红有6个苹果,小明比小红多几个苹果?A. 2个B. 4个C. 6个D. 8个答案:B. 4个2. 一只小狗每天晨跑2公里,晚跑3公里,一周跑多少公里?A. 10公里B. 12公里C. 14公里D. 16公里答案:D. 16公里3. 一个月有30天,一个星期有7天,那么3个星期有多少天?A. 19天B. 20天D. 22天答案:C. 21天4. 小红拿了25个苹果,她和小明一共有38个苹果,请问小明拿了几个苹果?A. 10个B. 12个C. 13个D. 15个答案:B. 12个5. 一盒牛奶有900毫升,小明喝了1/4盒,还剩多少毫升?A. 200毫升B. 300毫升C. 450毫升D. 600毫升答案:C. 450毫升二、填空题1. 36 ÷ 6 = ____2. 54 - __ = 42答案:123. 78 + __ = 100答案:224. 3 × 5 - __ = 7答案:85. 72 ÷ __ = 8答案:9三、解答题1. 用算术法解答:小明和小红一起买了15颗苹果,小明买了3颗苹果,那么小红买了几颗苹果?答案:小红买了12颗苹果。
2. 用绘图法解答:平行四边形ABCD的周长是24cm,边长AB是4cm,请画出平行四边形ABCD。
答案:(请自行绘图)3. 用列式解答:一个数加上3等于10,这个数是多少?答案:这个数是7。
总结:通过以上的奥数试题,我们可以锻炼和提高我们的数学技能。
不仅需要掌握基本的运算规则和运算方法,还需要灵活运用解题思路和方法。
希望大家能够通过不断的练习和思考,提高自己的数学水平。
小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。
2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。
这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。
3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。
4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。
5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。
6. 一个合数至少有()个因数。
A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。
所以一个合数至少有3 个因数。
7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。
8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。
小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。
答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。
第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。
此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。
题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。
每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。
题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。
一楼到六楼走5 层楼梯,用时5×9 = 45 秒。
五年级小学生奥数题3篇

五年级小学生奥数题3篇【篇一】五年级小学生奥数题1、有两条各长30厘米的纸条, 粘贴在一起长56厘米, 粘贴在一起的部分长()厘米。
2、一条直线能将平面分为两部分, 两条直线最多能将平面分为4部分, 那么5条直线最多能将平面划分成()部分。
3、小华参加数学竞赛, 共有10道赛题。
规定答对一题给十分, 答错一题扣五分。
小华十题全部答完, 得了85分。
小华答对了几题?4、图书室有连环画28本, 文艺书36本, 买来的故事书比连环画和文艺书的总和少50本。
图书室有故事书多少本?5、用数字0, 1, 2, 3, 4中的任意三个数相加可以得到多少个不同的和。
6、钟鼓楼的钟打点报时, 5点钟打5下需要4秒钟。
问中午12点是打12下需要多少秒钟?7、二(2)班有44个同学划船, 大船每条可以坐6人, 租金10元, 小船每条可以坐4人, 租金8元, 如果你是领队, 要使租金最少, 租多少条大船, 多少条小船, 租金多少元。
8、小青比小李大5岁, 小李比小风大2岁, 小风比小云小4岁, 他们4人(), ()最小。
的比最小的大()岁。
9、有一个卖茶叶蛋的老太太, 第一次卖去锅内茶叶蛋的一半多2个, 第二次又卖去余下的一半多2个, 锅内还有1个茶叶蛋, 这个老太太原来一共有多少个茶叶蛋?10、3个空汽水瓶可以换1瓶汽水, 小花买18瓶汽水, 可以喝到多少瓶汽水?【篇二】五年级小学生奥数题1、两组学生进行跳绳比赛, 平均每人跳152下, 甲, 组有6人, 平均每人跳140下, 乙组平均每人跳160下, 乙组有多少人?2、甲、乙、丙三人的平均年龄为22岁, 如果甲、乙的平均年龄是18岁, 乙、丙的平均年龄是25岁, 那么乙的年龄是多少岁?3、五个数排一排, 平均数是9, 如果前四个数的平均数是7, 后四个数的平均数是10, 那么, 第一个数和第五个数是多少?4、甲、乙两个码头相距144千米, 汽船从乙码头逆水行驶8小时到达甲码头, 已知汽船在静不中每小时行驶21千米。
小学五年级奥数题五篇

【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第⼀届国际数学奥林匹克竞赛。
以下是⽆忧考整理的《⼩学五年级奥数题五篇》相关资料,希望帮助到您。
1.⼩学五年级奥数题 22.5-(□×32-24×□)÷3.2=10在上⾯算式的两个⽅框中填⼊相同的数,使得等式成⽴。
那么所填的数应是多少? 答案与解析:22.5-(□×32-24×□)÷3.2 =22.5-□×(32-24)÷3.2 =22.5-□×8÷3.2 =22.5-□×2.5 因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10)÷2.5=5 答:所填的数应是5。
2.⼩学五年级奥数题 某⼩学的六年级有⼀百多名学⽣。
若按三⼈⼀⾏排队,则多出⼀⼈;若按五⼈⼀⾏排队,则多出⼆⼈;若按七⼈⼀⾏排队,则多出⼀⼈。
该年级的⼈数是______。
答案与解析: 苏教版⼩学五年级奥数题及答案-排队:符合第⼀、第三条条件的⼈数为的最少⼈数为3×7+1=22⼈,经检验,22也符合第⼆个条件,所以22也是符合三个条件的最⼩值,但该⼩学有⼀百多名学⽣,所以学⽣总⼈数为22+3×5×7=127。
3.⼩学五年级奥数题 1、甲、⼄、丙、丁约定上午10时在公园门⼝集合.见⾯后,甲说:“我提前了6分钟,⼄是正点到的.” ⼄说:“我提前了4分钟,丙⽐我晚到2分钟.”丙说:“我提前了3分钟,丁提前了2分钟.”丁说:“我还以为我迟到了1分钟呢,其实我到后1分钟才听到收⾳机报北京时间10时整.” 请根据以上谈话分析,这4个⼈中,谁的表最快,快多少分钟? 2、甲、⼄、丙、丁4个同学同在⼀间教室⾥,他们当中⼀个⼈在做数学题,⼀个⼈在念英语,⼀个⼈在看⼩说,⼀个⼈在写信.已知: ①甲不在念英语,也不在看⼩说; ②如果甲不在做数学题,那么丁不在念英语; ③有⼈说⼄在做数学题,或在念英语,但事实并⾮如此; ④丁如果不在做数学题,那么⼀定在看⼩说,这种说法是不对的; ⑤丙既不是在看⼩说,也不在念英语. 那么在写信的是谁? 3、在国际饭店的宴会桌旁,甲、⼄、丙、丁4位朋友进⾏有趣的交谈,他们分别⽤了汉语、英语、法语、⽇语4种语⾔.并且还知道: ①甲、⼄、丙各会两种语⾔,丁只会⼀种语⾔; ②有⼀种语⾔4⼈中有3⼈都会; ③甲会⽇语,丁不会⽇语,⼄不会英语; ④甲与丙、丙与丁不能直接交谈,⼄与丙可以直接交谈; ⑤没有⼈既会⽇语,⼜会法语. 请根据上⾯的情况,判断他们各会什么语⾔? 4、甲、⼄、丙3个学⽣分别戴着3种不同颜⾊的帽⼦,穿着3种不同颜⾊的⾐服去参加⼀次争办奥运的活动.已知: ①帽⼦和⾐服的颜⾊都只有红、黄、蓝3种: ②甲没戴红帽⼦,⼄没戴黄帽⼦; ③戴红帽⼦的学⽣没有穿蓝⾐服: ④戴黄帽⼦的学⽣穿着红⾐服: ⑤⼄没有穿黄⾊⾐服. 试问:甲、⼄、丙3⼈各戴什么颜⾊的帽⼦,穿什么颜⾊的⾐服? 5、5位学⽣A,B,C,D,E参加⼀场⽐赛.某⼈预测⽐赛结果的顺序是ABCDE,结果没有猜对任何⼀个名次,也没有猜中任何⼀对相邻的名次(意即某两个⼈实际上名次相邻,⽽在此⼈的猜测中名次也相邻,且先后顺序相同);另⼀个⼈预测⽐赛结果为DAECB,结果猜对了两个名次,同时还猜中了两对相邻的名次.求这次⽐赛的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为 11 米/秒、22 米/秒和 33 米/秒,求他过桥的平均速度.解析:假设上坡、平路及下坡的路程均为 66 米,那么总时间=66÷11+66÷ 22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒)2.从前有座ft,ft上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上ft以30 千米/时的速度,到达ft顶后以60 千米/时的速度下ft.求该车的平均速度.解析:设两地距离为:[30, 60]= 60 (千米),上ft时间为:60÷30=2(小时),下ft时间为:60 ÷ 60 =1 (小时),所以该飞机的平均速度为:60⨯2÷(2+1)=40(千米)。
3.汽车以 72 千米/时的速度从甲地到乙地,到达后立即以 48 千米/时的速度返回甲地。
求该车的平均速度。
解析:想求汽车的平均速度=汽车行驶的全程÷总时间,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了。
在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用。
①把甲、乙两地的距离视为1 千米,总时间为:1÷72+1÷48,平均速度=2÷(1÷72+1÷48)=57.6千米/时。
②我们发现①中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为[72,48]=144 千米,这样计算时间时就好计算一些,平均速度=144×2÷(144÷72+144÷48)=57.6千米/时。
4.一只蚂蚁沿等边三角形的三条边由 A 点开始爬行一周. 在三条边上它每分钟分别爬行 50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?解析:假设每条边长为 200 厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度3111=200×3÷19= 19 (厘米/分钟)。
5.赵伯伯为了锻炼身体,每天步行 3 小时,他先走平路,然后上ft,最后又沿原路返回.假设赵伯伯在平路上每小时行4 千米,上ft每小时行3 千米,下ft每小时行6 千米,在每天锻炼中,他共行走多少千米?解析:上ft 3 千米/小时,平路4 千米/小时,下ft 6 千米/小时。
假设平路与上下ft距离相等,均为12 千米,则首先赵伯伯每天共行走12 ⨯4=48 千米,平路用时12 ⨯2÷4=6小时,上ft用时12 ÷3 = 4 小时,下ft用时12 ÷6 = 2 小时,共用时6 +4 + 2 =12 小时,是实际3 小时的4倍,则假设的48 千米也应为实际路程的4 倍,可见实际行走距离为48 ÷4 =12 千米。
方法二:设赵伯伯每天走平路用a 小时,上ft用b 小时,下ft用c 小时,因为上ft和下ft的路程相同,所以3b = 6c ,即b = 2c .由题意知a +b +c = 3 ,所以a + 2c +c =a + 3c = 3 .因此,赵伯伯每天锻炼共行4a + 3b + 6c = 4a + 3 ⨯ 2c + 6c = 4a +12c = 4(a + 3c) = 4 ⨯ 3 =12 (千米),平均速度是12÷3=4(千米/时).6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4 米/秒、6 米/秒和8 米/秒,求他过桥的平均速度。
解析:假设上坡、走平路及下坡的路程均为24 米,那么总时间为:24÷4+24÷6+24÷8=13(秒),24 ⨯ 3 ÷13 = 57过桥的平均速度为13 (米/秒).7.小明每天早晨 6:50 从家出发,7:20 到校,老师要求他明天提早 6 分钟到校。
如果小明明天早晨还是 6:50 从家出发,那么,每分钟必须比往常多走25 米才能按老师的要求准时到校。
问:小明家到学校多远?解析:原来花时间是 30 分钟,后来提前 6 分钟,就是路上要花时间为 24 分钟。
这时每分钟必须多走 25 米,所以总共多走了24×25=600米,而这和 30 分钟时间里,后 6 分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
8.甲、乙两船在相距100 千米的A、B 两港间航行.甲上行全程需用10 小时,乙上行全程需用6 小时40 分钟.甲下行全程需用5 小时,请问:乙下行全程需用几个小时?甲的顺水速度为:100÷5=20(千米/小时),甲的逆水速度为:100÷10=10(千米/小时);水速=(甲的顺水速度一甲的逆水速度)÷2=(20—10)÷2=5(千米/小时);乙船的逆水速度为:100÷62 =100×33 20乙船的船速=15+5=20(千米/小时);=15(千米/小时);乙船的下行时间为:100+(20+5)=4(小时).9.一条河的水流速度是每小时3 千米,一条船从此河的上游A 地顺流到达下游的C 地,然后掉头逆流向上到达中游的 B 地,共用 8 小时.已知这条船的顺流速度是逆流速度的 2 倍,A 地与B 地相距 24 千米.求 A、C 两地间的距离。
顺流速度比逆流速度多 1 倍,那么逆流速度为水速的 2 倍.逆流速度:3×2=6(千米/小时);顺流速度:6×2=12(千米/小时);从A--B 航行时间为:24÷12=2 小时;剩下路程所用的时间:8-2=6 小时;因为:BC= 顺水速度×顺水时间=逆水速度×逆水时间,所以,逆水航行的时间=2×顺水航行的时间,那么顺水航行 BC 这段路程用时间:[6÷(2+1)] ×1=2小时,BC=2×12=24(千米),A C=24+24=48(千米).10.一艘小船在河中航行,第一次顺流航行 33 千米,逆流航行 11 千米,共用 11小时;第二次用同样的时间,顺流航行了 24 千米,逆流航行了 14 千米.这艘小船的静水速度和水流速度是多少?(法1)两次航行顺流的路程差:33-24=9(千米),逆流的路程差:14-11=3(千米),也就是说顺流航行 9 千米所用的时间和逆流航行 3 千米所用时间相同,那么顺流航行 33 千米与逆流航行 33÷3=11 (千米)时间相同,则逆流速度:(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时).(法 2)根据顺流航行 9 千米所用的时间和逆流航行 3 千米所用时间相同,9 千米=顺流速度×时间=逆流速度×3 倍的时间,可得:顺流速度=3×逆流速度,而后仿照法 1 部分思路解答.11.A 、B 两港相距 560 千米,甲船往返两港需要 105 小时,逆流航行比顺流航行多了 35 小时,乙船的静水速度是甲船静水速度的 2 倍,那么乙船往返两港需要多少小时?先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16 千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4 千米,乙船在静水中的速度是每小时12×2=24 千米,所以乙船往返一次所需要的时间是 560÷(24+4)+560÷(24-4)=20+28=48 小时.12.一只帆船的速度是每分 60 米,船在水流速度为每分 20 米的河中,从上游的一个港口到下游某一地,再返回到原地,共用了 3 小时30 分,这条船从上游港口到下游某地共走了多少米?3 小时 30 分=3×60+30=210(分),顺水速度=60+20=80(米/分),逆水速度=60—20=40(米/分).又因为:顺水速度×顺水时间=逆水速度×逆水时间,逆水时间 =2×顺水时间,把顺水时间看成 1 份,那么顺水时间=210÷(2+1)=70(分),从上游港口到下游港口共走了 80×70=5600(米).13.某船从甲地顺流而下,5 天到达乙地;该船从乙地返回甲地用了 7 天.问:水从甲地流到乙地用了多少时间?(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺水每天走全程的1 ,逆水每天走全程的1 .5 7水速=(顺水速度一逆水速度)÷2= 1 ,所以水从甲地流到乙地需:1 ÷1= 3535 35 (天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法 2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行 5 天的路程等于水流 5+5×5=35(天)的路程,即木筏从 A 城漂到 B 城需 35 天.(法 3)逆水比顺水多 2 天到达,即船要多行驶 2 天,为什么会多 2 天呢,因为顺水时得到了 5 天的水速帮助,逆水时又要去克服 7 天的水速,这一切都是靠 2天的船速所实现的,即船速等于 6 天的水速;所以轮船顺流行 5 天的路程等于水流 5+5×6=35(天)的路程,即木筏从A 城漂到B 城需 35 天.14.一艘轮船在两个港口间航行,水速为每小时6 千米,顺水下行需要4 小时,返回上行需要7 小时.求:这两个港口之间的距离.两港口间的距离=顺水速度×顺水时间=(船速+水速)×顺水时间=(船速+6)×4 ;两港口间的距离=逆水速度×逆水时间=(船速-6)×7;所以可得:(船速+6)×4=(船速-6)×7,解得:船速=22,可得两港口间的距离为:(22+6)×4=(22—6) ×7=112(千米)15.甲、乙两人从相距40 千米的A、B 两地相向而行,甲以每小时3 千米的速度从A 地出发,乙以每小时5 千米的速度从B 地出发,此时风速是每小时2 千米,若甲顺风行走,那么他们几小时后相遇?相遇地点距A 地多远?【解析】甲的实际速度:3+2=5(千米/小时),乙的实际速度:5-2=3(千米/小时),相遇时间:40÷(5+3)=5(小时),甲行走的路程:5×5=25(千米).16.轮船从A 城到B 城需行3 天,而从B 城到A 城需行4 天.从A 城放一个无动力的木筏,它漂到B 城需多少天?【解析】(法1)逆水比顺水多一天到达,即船要多行驶一天,为什么会多一天呢,因为顺水时得到了三天的水速帮助,逆水时又要去克服四天的水速,这一切都是靠一天的船速所实现的,即船速等于 7 天的水速;所以轮船顺流行 3 天的路程等于水流 3+3×7=24(天)的路程,即木筏从 A 城漂到 B 城需24 天.(法2)用方程的思想,3×(船速+水速)=4×(船速—水速),即船速=7×水速.(法 3)用特殊值代入法,可以把全城看成 1,或者假设成其它方便计算的数值.17.甲轮船和自漂水流测试仪同时从上游的 A 站顺水向下游的 B 站驶去,与此同时乙轮船自 B 站出发逆水向 A 站驶来. 7.2 时后乙轮船与自漂水流测试仪相遇.已知甲轮船与自漂水流测试仪 2.5 时后相距 31.25 千米,甲、乙两船航速相等,求A,B 两站的距离.【解析】因为测试仪的漂流速度与水流速度相同,所以若水不流动,则 7.2 时后乙船到达 A 站,2.5 时后甲船距 A 站 31.25 千米,由此求出甲、乙船的航速为310.25÷2.5=12.5(千米/时), A,B 两站相距12.5×7.2=90(千米).18.一条河上有甲、乙两个码头,甲在乙的上游50 千米处。