最新人教版五年级数学下册有趣经典的奥数题及答案解析
有趣的奥数题五下

有趣的奥数题五下引言奥数是指奥林匹克数学竞赛,是一项旨在培养学生逻辑思维、创造性思维和解决问题能力的数学竞赛。
在五年级,学生们已经掌握了基本的数学概念和运算技巧,可以开始接触一些有趣的奥数题目来提高他们的思维能力。
本文将介绍一些有趣的奥数题,希望能够激发学生们的数学兴趣和思考能力。
1. 题目一小明有一串彩色的珠子,其中有红、蓝、绿三种颜色。
他想要将这些珠子按照颜色排列成一条颜色相同的项链。
已知红色珠子有10个,蓝色珠子有8个,绿色珠子有6个。
请问小明最多可以制作出多少条不同的项链?解析:小明可以从三种颜色中选择一种作为起始颜色,并按照一定的顺序排列。
假设小明选择红色作为起始颜色,那么他可以将10个红色珠子排成一条项链;然后他可以选择蓝色或绿色作为第二种颜色,将8个蓝色或6个绿色珠子排在红色珠子的后面。
因此,小明最多可以制作出3条不同的项链。
2. 题目二小明有一张标有数字的卡片,上面写着从1到100的整数。
他想要从中选出一些数字,使得选出的数字之和恰好等于100。
请问小明有多少种不同的选法?解析:这是一道经典的组合数学问题。
小明可以选择从1到100中的任意一个数字作为第一个选出的数字,然后再从剩下的数字中选出一些数字,使得它们的和等于100。
因此,小明有很多种不同的选法。
我们可以使用递归的方法来解决这个问题。
def find_combinations(target, start, end):if target == 0:return 1elif target < 0 or start > end:return 0else:return find_combinations(target, start + 1, end) + find_combinations(t arget - start, start + 1, end)total_combinations = find_combinations(100, 1, 100)print("小明有", total_combinations, "种不同的选法。
最新人教版五年级数学下册有趣经典的奥数题及答案解析

最新人教版五年级数学下册有趣经典的奥数题及答案解析1.甲乙两个水管分别需要20小时和16小时注满一池水。
丙水管单独开,排一池水需要10小时。
如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答案解析:甲的工作效率为1/20,乙的工作效率为1/16,丙的工作效率为1/10.同时打开甲乙两水管5小时后,水池中的水量为(1/20+1/16)×5=11/80.注满一池水需要1/(1/20+1/16-1/10)=40小时。
所以还需要40-5=35小时。
2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。
如果两队合作,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答案解析:甲队的工作效率为1/20×4/5=1/25,乙队的工作效率为1/30×1/9=1/270.设两队合作x天,则甲队单独完成的工作量为x/25,乙队单独完成的工作量为x/270.根据题意可得方程x/25+x/270=1/16,解得x=10.所以两队要合作10天。
3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。
现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?答案解析:设甲的工作效率为a,乙的工作效率为b,丙的工作效率为c。
则有方程组:a+b=1/4,b+c=1/5,a+c=2/6=1/3,b×6=1-2a-2c。
解得a=1/6,b=1/12,c=1/4.乙单独做完这件工作需要1/b-6=12小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工。
如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?答案解析:设甲的工作效率为a,乙的工作效率为b。
小学五年级下册奥数题精选

小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。
在同样的风速下,逆风跑70米,也用了10秒钟。
问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。
5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。
事先规定。
兄妹二人不许搭伴。
第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。
请你判断,小华、小红和小林各是谁的妹妹。
解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。
第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。
对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。
王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。
所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。
五年级下册数学奥数题及答案

五年级下册数学奥数题及答案导言数学是一门基础学科,也是五年级学生必修的科目之一。
在五年级下册的数学课程中,奥数题是一种常见的考核形式。
通过解答奥数题,可以提高学生的逻辑思维能力和创造性解决问题的能力。
本文将为你提供一些五年级下册数学奥数题以及相应的答案。
希望能够帮助你更好地理解和掌握数学奥数题的解题方法。
一、选择题1. 小图书馆里有10本科学书、6本文学书和4本历史书,请问从中任选一本书时,科学、文学和历史这三类书被选中的概率相同,这本书是科学书的概率是多少?A. 1/2B. 1/3C. 2/7D. 4/9答案:D解析:由题意可知,科学、文学和历史这三类书被选中的概率相同,即选中一本科学书的概率为1/3。
因此,答案为D。
2. 小明拥有4个红色的球和6个蓝色的球,现从中任选一个球,不看颜色,再随机从剩下的球中任选一个球。
求首次选中红色球并且第二次选中蓝色球的概率。
A. 1/6B. 2/15C. 1/5D. 4/15答案:B解析:首次选中一个红色球的概率为4/10,然后剩下的球中有6个蓝色球和3个红色球,因此第二次选中一个蓝色球的概率为6/9。
根据乘法原理,得到首次选中红色球并且第二次选中蓝色球的概率为(4/10) * (6/9) = 2/15。
因此,答案为B。
3. 有一段有10个小孩子的队伍,其中小明和小红不愿意站在同一侧,问在队伍的两侧各站4个小孩子的情况下,小明和小红不站在同一侧的方法数有多少种?A. 220B. 180C. 160D. 240答案:C解析:总的排列方法数为C(10, 4) = 210。
在这些排列方法中,小明和小红站在同一侧的情况有C(8, 2) = 28种。
因此,小明和小红不站在同一侧的方法数为210 - 28 = 182。
因此,答案为C。
二、填空题1. 把36用两个不同的质数相乘,得到的积是_________。
答案:2 \* 3 \* 2 \* 3 = 36解析:36可以分解为2 \* 3 \* 2 \* 3的形式。
小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。
问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。
如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。
根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。
因此所求的答案为5人。
2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。
但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。
3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。
x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。
如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。
直到两数相同为止。
问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。
小学五年级趣味数学题及答案(30道)-奥数

小学五年级趣味数学题及答案(30道)奥数1. 小华有5个苹果,小红有3个苹果,他们一共有多少个苹果?答案:小华和小红一共有8个苹果。
2. 小明家养了6只猫,每只猫有4条腿,一共有多少条腿?答案:小明家的猫一共有24条腿。
3. 小丽有10个橘子,她吃掉了3个,还剩下多少个?答案:小丽还剩下7个橘子。
4. 小刚有7个篮球,小强有3个篮球,他们一共有多少个篮球?答案:小刚和小强一共有10个篮球。
5. 小红有8个玩具,她送给了小华3个,还剩下多少个?答案:小红还剩下5个玩具。
6. 小明有10个铅笔,他用了3个,还剩下多少个?答案:小明还剩下7个铅笔。
7. 小华有5个橙子,小红有2个橙子,他们一共有多少个橙子?答案:小华和小红一共有7个橙子。
8. 小明有8个气球,他放飞了3个,还剩下多少个?答案:小明还剩下5个气球。
9. 小丽有6个娃娃,她送给了小华2个,还剩下多少个?答案:小丽还剩下4个娃娃。
10. 小刚有7个球,小强有4个球,他们一共有多少个球?答案:小刚和小强一共有11个球。
11. 小红有9个糖果,她吃掉了4个,还剩下多少个?答案:小红还剩下5个糖果。
答案:小明还剩下8个苹果。
13. 小华有6个橙子,小红有3个橙子,他们一共有多少个橙子?答案:小华和小红一共有9个橙子。
14. 小明有8个气球,他放飞了4个,还剩下多少个?答案:小明还剩下4个气球。
15. 小丽有7个娃娃,她送给了小华3个,还剩下多少个?答案:小丽还剩下4个娃娃。
16. 小刚有9个球,小强有5个球,他们一共有多少个球?答案:小刚和小强一共有14个球。
17. 小红有10个糖果,她吃掉了5个,还剩下多少个?答案:小红还剩下5个糖果。
18. 小明有11个苹果,他吃了3个,还剩下多少个?答案:小明还剩下8个苹果。
19. 小华有7个橙子,小红有4个橙子,他们一共有多少个橙子?答案:小华和小红一共有11个橙子。
20. 小明有9个气球,他放飞了5个,还剩下多少个?答案:小明还剩下4个气球。
五年级数奥数题及答案

五年级数奥数题及答案五年级的奥数题目通常涉及一些基本的数学概念和技巧,例如数列、几何、排列组合等。
以下是一些适合五年级学生的奥数题目及其答案:1. 题目:一个数列的前几项是 2, 4, 6, 8, ... 请问第20项是多少?答案:这是一个等差数列,公差为2。
第n项的公式是 a_n = a_1 + (n - 1) * d,其中a_1是首项,d是公差。
所以第20项 a_20 = 2 + (20 - 1) * 2 = 2 + 38 = 40。
2. 题目:一个长方体的长、宽、高分别是 6 厘米、4 厘米和 3 厘米,求这个长方体的表面积。
答案:长方体的表面积公式是 S = 2(ab + bc + ac),其中a、b、c分别是长、宽、高。
代入数值得到 S = 2(6*4 + 4*3 + 6*3) = 2(24 + 12 + 18) = 2 * 54 = 108 平方厘米。
3. 题目:一个班级有 40 名学生,其中 2/5 是男生,剩下的是女生。
问这个班级有多少名女生?答案:班级有 40 * (1 - 2/5) = 40 * (3/5) = 24 名女生。
4. 题目:一个水池可以以固定的速率被注满。
如果用 3 个水龙头同时注水,需要 2 小时注满水池。
如果用 4 个同样的水龙头同时注水,需要多少时间?答案:设每个水龙头每小时注水的量为 x。
3 个水龙头 2 小时注满水池,即 3 * 2 * x = 1 池。
所以每个水龙头每小时注水量 x =1/6 池。
用 4 个水龙头同时注水,所需时间为 1 / (4 * (1/6)) =3/2 = 1.5 小时。
5. 题目:一个数字,将其各位数相加得到 15,这个数字最小是多少?答案:要使数字最小,位数应该尽可能少,且最高位不能为 0。
我们可以从 1 开始尝试,1 + 4 + 9 + 1 = 15,所以最小的数字是1491。
6. 题目:一个数字,将其各位数相乘得到 48,这个数字最大是多少?答案:要使数字最大,位数应该尽可能多。
小学五年级精选奥数题及解析

小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。
技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。
你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。
那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。
9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。
(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。
11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学有趣经典的奥数题及答案解析一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B 的最小值...3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有( )A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A,5 B,6 C,7 D,83.一次考试共有5道试题。
做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。
如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?9.甲乙两车同时从AB两地相对开出。
第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。
第二次相遇时离B地的距离是AB全程的1/5。
已知甲车在第一次相遇时行了120千米。
AB两地相距多少千米?10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。
如果水流速度是每小时2千米,求两地间的距离?11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?3.甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?5、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?6、有7个数,它们的平均数是18。
去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。
求去掉的两个数的乘积。
7、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。
如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。
但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。
问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套?8、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?小学五年级奥数题答案一、工程问题1、解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2、解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3、由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。