高中数学选修2-2推理与证明教案及章节测试及答案
北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)(1)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( ) A .122k + B .121k + C .11+2122++k k D .112k 12k 2++- 2.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a +( ) A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个大于23.某电影院共有(3000)n n ≤个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么n 的可能取值有( )A .12个B .11个C .10个D .前三个答案都不对 4.设a R ∈,则三个数2,2,23a a a a +++( )A .都大于13 B .都小于13 C .至少有一个不大于13 D .至少有一个不小于135.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?A .正三角形的顶点B .正三角形的中心C .正三角形各边的中点D .无法确定 6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( )A .0B .13C .12D .18.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( )A .大前提错误B .小前提错误C .推理形式错误D .以上都不是 9.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( )A .12(1)k + B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.用数学归纳法证明(1)(2)()2135(21)+++=⋅⋅⋅-n n n n n n 的过程中,由k 到1k +时,右边应增加的因式是____________.14.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则126S =______15.已知数列{}n a 为等差数列,则有12320a a a -+=1234330a a a a -+-=123454640a a a a a -+-+=类似上三行,第四行的结论为________________.16.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x 219+],得到下列结论: 结论1:当2<x<3时,f (x )max=-1.结论2:当4<x<5时,f (x )max=1.结论3:当6<x<7时,f (x )max=3.……照此规律,结论6为_____ 17.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.18.观察下列等式:(1)24sinsin 033ππ+= (2)2468sinsin sin sin 05555ππππ+++= (3)2468sin sin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234S h h h h k +++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 20.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (3)n ≥行的从左至右的第3个数是_____.三、解答题21.已知数列{}n a 满足:()1(2)1n n na n a +=+-,且16(11)(211)a ==+⨯+. (Ⅰ)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式;(Ⅱ)试用数学归纳法证明(Ⅰ)中的猜想.22.观察下列等式:11122-= 11111123434-+-=+ 11111111123456456-+-+-=++ ……(1)根据给出等式的规律,归纳猜想出等式的一般结论;(2)用数学归纳法证明你的猜想.23.设,其中为正整数. (1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想. 24.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 25.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明.26.已知函数()f x 满足()()233log log .f x x x =- (1).求函数()f x 的解析式;(2).当n *∈N 时,试比较()f n 与3n 的大小,并用数学归纳法证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果.【详解】当n k =时,左边的代数式为111 12k k k k++⋯++++, 当1n k =+时,左边的代数式为11111 232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111 212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.2.D解析:D【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案.详解:因为1116a b c b c a +++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.3.A解析:A【解析】分析:由题意要保证三所学校的学生都看一场电影,则2007n ≥,依次验证即可得到答案. 详解:由题意要保证三所学校的学生都看一场电影, 则9851010201920072n ++≥=, 当2007n =时,则丙中学的学生2019人中分上、下场至少有12人在同一座位上; 当2008n =时,则丙中学的学生2019人中分上、下场至少有11人在同一座位上;当2018=n 时,则丙中学的学生2019人中分上、下场至少有1人在同一座位上; 当2019n =时,则甲乙丙中学的学生可以没有人在同一座位上;所以当n 有2007,2008,2009,,2018取法,即有12个取值,故选A.点睛:本题主要考查了适应应用问题,其中解答中正确理解题意,合理选择方法是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力,试题属于中档试题. 4.D解析:D【解析】分析:由题意结合反证法即可确定题中的结论.详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<, 事实上:()()()2223a a a a +++++ 245a a =++()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力. 5.B解析:B【解析】分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心.本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.6.B解析:B【解析】第一行数字之和为1112-=;第二行数字之和为2122-=;第三行数字之和为3142-=; 第四行数字之和为4182,...-=,第n 行数字之和为12n n a ,31041122a a ∴+=+ 810241032=+=,故选B.【方法点睛】本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.7.B解析:B【解析】∵三个数a ,b ,c 的和为1,其平均数为13 ∴三个数中至少有一个大于或等于13 假设a ,b ,c 都小于13,则1a b c ++< ∴a ,b ,c 中至少有一个数不小于13 故选B.8.C解析:C【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C.9.C解析:C【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.10.A解析:A【解析】将平面几何问题推广为空间几何的问题,利用了类比推理.本题选择A选项.点睛:在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.11.B解析:B【解析】【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t)减去二者的和就是节省的时间;由此可推广到一般结论【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了++ 2m+2t+T22m t T分钟,共节省了T t- T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.故选B.【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法. 12.C解析:C【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项.【详解】由n=k 时,左边为11112k k k k +++++, 当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++ 所以增加项为两式作差得:11121221k k k +-+++,选C. 【点睛】 运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n 取第一个值n 0(n 0∈N *)时命题成立,第二步是归纳递推(或归纳假设)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立,只要完成这两步,就可以断定命题对从n 0开始的所有的正整数都成立,两步缺一不可.二、填空题13.【分析】根据右边式子的含义以及n 的变化给式子带来的变化进行求解【详解】当时右式为当时右式为则右边应增加的因式是故答案为:【点睛】本题考查数学归纳法中由到时增加项的求解解题的关键是理解左边式子的意义属 解析:2(21)k +【分析】 根据右边式子的含义,以及n 的变化给式子带来的变化,进行求解.【详解】当(*)n k k N =∈时,右式为2135(21)k k ⋅⋅⋅-,当1n k =+时,右式为12135(21)(21)22135(21)(21)k k k k k k +⋅⋅⋅-+=⋅⋅⋅⋅-+, 则右边应增加的因式是2(21)k +,故答案为:2(21)k +【点睛】本题考查数学归纳法中由n k =到1n k =+时增加项的求解,解题的关键是理解左边式子的意义,属于容易.14.【分析】将杨辉三角中的奇数换成1偶数换成0可得第1次全行的数都为1的是第2行第2次全行的数都为1的是第4行…由此可知全奇数的行出现在2n 的行数即第n 次全行的数都为1的是第2n 行126=27﹣2故可得解析:【分析】将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,问题得以解决.【详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S 126=2×31+2=64,故答案为:64点睛:本题考查归纳推理,属中档题.15.【解析】观察前三个式子可知三个式子的项数分别是所以第四个式子有项前三个式子奇数项为正偶数项为负项的系数满足二项式定理系数的形式所以第四项的结论:故答案为【方法点睛】本题通过观察几组多项式式归纳出一般 解析:1234565101050a a a a a a -+-+-=【解析】观察前三个式子,可知三个式子的项数分别是3,4,5,所以第四个式子有6项,前三个式子奇数项为正,偶数项为负,项的系数满足二项式定理系数的形式,所以第四项的结论:1234565101050a a a a a a -+-+-=,故答案为1234565101050a a a a a a -+-+-=.【方法点睛】本题通过观察几组多项式式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.16.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】 由题意得,当1213x <<时,其中()max f x 根据上述的运算规律,可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下). 17.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11【解析】A 到E 的时间,为2+4=6小时,或5小时,A 经C 到D 的时间为3+4=7小时,故A 到F 的最短时间就为9小时,则A 经F 到G 的时间为9+2=11小时,即组装该产品所需要的最短时间是11小时18.(或)【解析】由式子可知第n 个式子分母是2n+1共2n 项所以 解析:24sin sin 2121n n ππ+++++24sin sin 02121k n n n ππ++=++(或212sin021n k k n π==+∑) 【解析】 由式子可知,第n 个式子,分母是2n+1,共2n 项。
最新北师大版高中数学高中数学选修2-2第一章《推理与证明》检测(含答案解析)

一、选择题1.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .92.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球5.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法6.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④7.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( ) A .大前提错误B .小前提错误C .推理形式错误D .以上都不是8.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁9.根据给出的数塔猜测12345697⨯+=( )19211⨯+= 1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111110B .1111111C .1111112D .111111310.下列推理属于演绎推理的是( ) A .由圆的性质可推出球的有关性质B .由等边三角形、等腰直角三角形的内角和是180°,归纳出所有三角形的内角和都是180°C .某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分D .金属能导电,金、银、铜是金属,所以金、银、铜能导电11.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁12.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A.(45,44)B.(45,43)C.(45,42)D.该数不会出现二、填空题13.现有如下假设:所有纺织工都是工会成员,部分梳毛工是女工,部分纺织工是女工,所有工会成员都投了健康保险,没有一个梳毛工投了健康保险.下列结论可以从上述假设中推出来的是__________.(填写所有正确结论的编号)①所有纺织工都投了健康保险②有些女工投了健康保险③有些女工没有投健康保险④工会的部分成员没有投健康保险14.观察下面数表:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,………..设1027是该表第m行的第n个数,则m n+等于________.15.观察下面的数阵,则第40行最左边的数是__________.16.(2016·开封联考)如图所示,由曲线y=x2,直线x=a,x=a+1(a>0)及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即1222(1)aaa x dx a+<<+⎰.运用类比推理,若对∀n∈N*,111111122121An n n n n n+++<<++++++-恒成立,则实数A=________.17.把“二进制”数(2)1011001化为“十进制”数是 .18.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,……循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第100个括号内的数为_________.19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.20.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’埵(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束,……,)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中的三角垛倒数第二层茭草总束数为______.三、解答题21.已知等差数列{}n a 的公差不为零,且33a =,1a 、2a 、4a 成等比数列,数列{}n b 满足()1222*n n b b nb a n +++=∈N(1)求数列{}n a 、{}n b 的通项公式; (2)3121112*n n n nb b b a a n b b b ++++>-∈N . 22.观察下列等式:11122-= 11111123434-+-=+ 11111111123456456-+-+-=++ ……(1)根据给出等式的规律,归纳猜想出等式的一般结论; (2)用数学归纳法证明你的猜想. 23.观察下列等式:11=;2349++=; 3456725++++=;4567891049++++++=;……(1)照此规律,归纳猜想第()*n n N ∈个等式; (2)用数学归纳法证明(1)中的猜想.24.正项数列{}n a 的前n 项和n S 满足1n a n =-. (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{}n a 的通项公式,并用数学归纳法证明. 25.已知f (x )=f (0)+f (1),f (﹣1)+f (2),f (﹣2)+f (3),然后归纳猜想一般性结论,并证明你的结论. 26.设a ,b 均为正数,且a b .证明:(1)664224a b a b a b +>+(2>【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,可列出树形图,逐步列举,即可得到答案. 【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.2.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.6.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N *=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.7.C解析:C 【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C.8.C解析:C 【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符; 若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符; 当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符. 故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.9.B解析:B 【解析】 由1×9+2=11; 12×9+3=111; 123×9+4=1111; 1234×9+5=11111; …归纳可得:等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,∴123456×9+7=1111111, 本题选择B 选项.10.D解析:D 【解析】选项A, 由圆的性质类比推出球的有关性质,这是类比推理;选项B, 由等边三角形、直角三角形的内角和是0180,归纳出所有三角形的内角和都是0180,是归纳推理;选项C, 某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分,是归纳推理; 选项D, 金属能导电,金、银、铜是金属,所以金、银、铜能导电,这是三段论推理,属于演绎推理; 故选D.11.A解析:A 【解析】四人中只有一人说了真话,只有一人会证明此题,丙:丁会证明;丁:我不会证明,所以丙与丁中有一个是正确的;若丙说了真话,则甲必是假话,矛盾;若丁说了真话,则甲说的是假话,甲就是会证明的那个人,符合题意,以此类推,即可得到甲说真话,故选A.12.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).二、填空题13.①②③【解析】∵所有纺织工都是工会成员所有工会成员都投了健康保险∴所有纺织工都投了健康保险故①正确;∵所有纺织工都是工会成员所有工会成员都投了健康保险部分纺织工是女工∴有些女工投了健康保险故②正确;解析:①②③ 【解析】∵所有纺织工都是工会成员,所有工会成员都投了健康保险 ∴所有纺织工都投了健康保险,故①正确;∵所有纺织工都是工会成员,所有工会成员都投了健康保险,部分纺织工是女工 ∴有些女工投了健康保险,故②正确;∵部分梳毛工是女工,没有一个梳毛工投了健康保险 ∴有些女工没有投健康保险,故③正确; ∵所有工会成员都投了健康保险∴工会的部分成员没有投健康保险是错误的,故④错误. 故答案为①②③.14.13【解析】根据上面数表的数的排列规律13579…都是连续奇数第一行1个数第二行2=21个数且第1个数是3=22﹣1第三行4=22个数且第1个数是7=23﹣1第四行8=23个数且第1个数是15=24解析:13 【解析】根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数, 第一行1个数,第二行2=21个数,且第1个数是3=22﹣1 第三行4=22个数,且第1个数是7=23﹣1 第四行8=23个数,且第1个数是15=24﹣1 …第10行有29个数,且第1个数是210﹣1=1023,第2个数为1025,第三个数为1027;所以1027是第10行的第3个数,所以m=10,n=3, 所以m+n=13; 故填13.15.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数解析:1522 【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-,它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数,所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题..16.【解析】令依据类比推理可得A1=dx =ln(n +1)-lnnA2=dx =ln(n +2)-ln(n +1)…An =dx =ln(2n)-ln(2n -1)所以A =A1+A2+…+An =ln(n +1)-lnn 解析:ln 2【解析】 令12111111,,,121221n A A A n n n n n n <<<<<<+++-, 依据类比推理可得A 1=11n nx +⎰d x =ln(n +1)-ln n ,A 2=211n n x ++⎰d x =ln(n +2)-ln(n +1),…,A n =2211nn x -⎰d x =ln(2n )-ln(2n -1),所以A =A 1+A 2+…+A n =ln(n +1)-ln n +ln(n +2)-ln(n +1)+…+ln(2n )-ln(2n -1)=ln(2n )-ln n =ln 2.17.【解析】把二进制数化为十进制数是应填答案 解析:89【解析】把“二进制”数(2)1011001化为“十进制”数是6543012021212001289⨯+⨯+⨯+⨯+++⨯=,应填答案89。
北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(有答案解析)(1)

一、选择题1.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法2.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .43.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n =B .2m =-,1n =-C .2m =,1n =D .2m n ==-4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 6.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置? A .正三角形的顶点B .正三角形的中心C .正三角形各边的中点D .无法确定7.我们把平面几何里相似的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就称它们是相似体,给出下面的几何体:①两个球体;②两个长方体;③两个正四面体;④两个正三棱柱;⑤两个正四棱锥,则一定是相似体的个数是( ) A .4B .2C .3D .18.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④9.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .1810.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了11.用反证法证明命题:“若x ,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,反设正确的是( )A .假设(1)f ,(2)f ,(3)f 至多有两个小于12B .假设(1)f ,(2)f ,(3)f 至多有一个小于12C .假设(1)f ,(2)f ,(3)f 都不小于12D .假设(1)f ,(2)f ,(3)f 都小于1212.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________. 15.点()00,x y 到直线0Ax By c ++=的距离公式为d =,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项. 17.某同学在解决一道数学题时发现01212323434234345445567----222222222222====,,,,,依此规律可以求得112nk k k =+∑关于n 的最简表达式为__________.18.现有这么一列数,2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为__________.19.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (3)n ≥行的从左至右的第3个数是_____. 20.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性.22.已知数列{}n x 满足10x =,21n n n x x x c +=-++()n N *∈,104c <≤,求证:数列{}n x 是递增数列.23.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 24.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 25.已知数列{}n a 中,11a =,136nn na a a +=-. (1)写出234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的结论. 26.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:由题意结合分析法的定义可知题中的证明方法应用了分析法. 详解:题中的证明方法为执果索因,这是典型的分析法, 即原等式成立应用了分析法. 本题选择A 选项.点睛:本题主要考查分析法的特征及其应用,意在考查学生的转化能力和知识应用能力.2.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为)4π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.3.D解析:D 【解析】分析:讨论三种情况,甲判断正确,乙、丙判断不正确;乙判断正确,甲、丙判断不正确;丙判断正确,甲、乙判断不正确,由向量平行和垂直的条件,解方程结合选项即可得到结论.详解:若甲判断正确,乙、丙判断不正确, 可得2mn =且480m -+=,解得2,1m n ==, 则()()()2,2,1,1,4,4a b c ===-, 可得b 与c 不平行,a 与c 垂直, 则乙、丙判断不正确符合题意; 若判断正确,甲、丙判断不正确,可得44n -=且480m -+=且48m =-,解得2,1m n ==-或2,1m n =-=-, 则()()()2,2,1,1,4,4a b c ==-=- 或()()()2,2,1,1,4,4a b c =-=-=- 可得b 与c 不平行,a 与c 垂直, 则甲、丙判断不正确,符合题意; 若丙判断正确,甲、乙判断不正确, 可得480m -+≠且48m ≠-且44n -≠ 解得2m ≠且2m ≠-且1n ≠-,则3,2m n ==成立;2,1m n =-=-也成立;2,1m n ==也成立.2m n ==-,则甲乙丙判断均错.故选D.点睛:本题考查向量的平行和垂直的坐标表示,考查判断能力和运算能力,以及推理能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【详解】分析:分析n k =,1n k =+时,左边起始项与终止项,比较差距,得结果. 详解:n k =时,左边为111123k k k++⋅⋅⋅+++, 1n k =+时,左边为111111233313233k k k k k k ++⋅⋅⋅++++++++++, 所以左边需添加的项是11111123132331313233k k k k k k k ++-=+-+++++++,选B. 点睛:研究n k =到1n k =+项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.6.B解析:B 【解析】分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心.本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.7.B解析:B 【解析】分析:根据题意,结合题中所给的新定义,根据形状相同,大小不一定相同的几何体被视为相似体,逐一判断,可得结论.详解:两个长方体的长宽高的比值不能确定,两个正三棱柱的高与底面边长的比不能确定,两个正四棱锥的高与底面边长不能确定,所以②④⑤不能确定是正确的, 只有所有的球体和所有的正四面体都是相似体,所以有两个是正确的,故选B.点睛:该题属于新定义的问题,属于现学现用型,这就要求我们必须把握好题中的条件,然后对选项中的几何体逐一判断,最后求得结果.8.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N *=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.9.B解析:B 【解析】从平面图形类比空间图形,从二维类比三维,可得如下结论:正四面体的内切球半径等于这个正四面体高的14.证明如下:球心到正四面体一个面的距离即球的半径r ,连接球心与正四面体的四个顶点.把正四面体分成四个高为r 的三棱锥,所以4×13S•r=13•S•h ,r=14h . (其中S 为正四面体一个面的面积,h 为正四面体的高) 故选B .点睛:平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的内切球半径等于这个正四面体高的14,证明方法是等积法(平面上等面积,空间等体积). 10.C解析:C 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.11.D解析:D 【解析】试题分析:根据题意,由于反证法证明命题:“若2()f x x px q =++,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,即将结论变为否定就是对命题的反设,因此可知至少有一个的否定是一个也没有,或者说假设(1)f ,(2)f ,(3)f 都小于12,故选D.考点:反证法. 12.B解析:B【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T 分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.二、填空题13.【解析】分析:令可求得由得两式相减得可依次求出观察前四项找出规律从而可得结果详解:中令可求得由得两式相减得即可得…归纳可得故答案为点睛:归纳推理的一般步骤:一通过观察个别情况发现某些相同的性质二从已解析:212n n -【解析】分析:令1n =,可求得112a =,由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥, 两式相减,得()1122n n a a n -+=≥,可依次求出234,,a a a ,观察前四项,找出规律,从而可得结果.详解:n n S n a =- 中令1n ,=可求得1a =1112122-=由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥,两式相减,得11n n n a a a -=-+,即()1122n n a a n -+=≥, 可得222321;42a -==333721;82a -==4341521;182a -==… 归纳可得212n n na -=,故答案为212n n -. 点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离d ==2. 点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.16.【分析】分析题意根据数学归纳法的证明方法得到时不等式左边的表示式是解答该题的突破口当时左边由此将其对时的式子进行对比得到结果【详解】当时左边当时左边观察可知增加的项数是故答案是【点睛】该题考查的是有解析:2k . 【分析】分析题意,根据数学归纳法的证明方法得到1n k =+时,不等式左边的表示式是解答该题的突破口,当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--,由此将其对n k =时的式子进行对比,得到结果.【详解】当n k =时,左边11112321k =++++-…, 当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--, 观察可知,增加的项数是1121(21)222k k k k k ++---=-=, 故答案是2k . 【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.17.【解析】分析:由已知中:可得:利用裂项相消法可得答案详解:由已知中:归纳可得:故故答案为:点睛:常见的归纳推理类型及相应方法常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子解析:332nn +-. 【解析】 分析:由已知中:01212323234345456,,, (222222222)=-=-=- 可得:1123222k k k k k k -+++=-,利用裂项相消法,可得答案. 详解:由已知中:01212323234345456,,, (222222222)=-=-=-, 归纳可得:1123222k k k k k k -+++=-.故011223111344556233 (32222222222)k n n n k k n n n -=++++=-+-+-+-=-∑. 故答案为:332nn +-. 点睛:常见的归纳推理类型及相应方法 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. (2)形的归纳主要包括图形数目归纳和图形变化规律归纳.18.【解析】由题意可得分子为连续的质数分母依次为首项为2公比为2的等比数列故括号中的数应该为点睛:归纳推理是由部分到整体由特殊到一般的推理由归纳推理所得的结论不一定正确通常归纳的个体数目越多越具有代表性 解析:1116【解析】由题意可得,分子为连续的质数,分母依次为首项为2、公比为2的等比数列,故括号中的数应该为1116. 点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.19.【解析】试题分析:前行共有=个数所以第个数是故答案为考点:1合情推理与演绎推理;2等差数列求和解析:262n n -+ 【解析】试题分析:前n 1-行共有123...++++1n -=(1)2n n -(3)n ≥个数,所以第3个数是 ()216322n n n n --++=.故答案为262n n -+. 考点:1、合情推理与演绎推理;2等差数列求和.20.【解析】试题分析:运用推理考点:1归纳推理2复数的运算 解析:()()123123cos sin i αααααα+++++【解析】试题分析:运用推理()()123123cos sin i αααααα+++++ 考点:1.归纳推理.2.复数的运算.三、解答题21.(1)112S =,223S =,334S =,1n n S n =+,*n N ∈;(2)证明见解析. 【分析】(1)1n =时,可求出1S ,2n ≥时,利用1n n n a S S -=-可得到关于n S 的递推关系,即可求出2S ,3S 的值,进而猜想出n S 的表达式; (2)根据数学归纳法的步骤证明即可. 【详解】(1)当1n =时,()22111S S -=,∴112S =, 当2n ≥时,()()211n n n n S S S S --=-,∴112n n S S -=-,∴223S =,334S =, 猜想1n nS n =+,*n N ∈; (2)下面用数学归纳法证明: ①当1n =时,112S =,112n n =+,猜想正确; ②假设n k =时,猜想正确,即1k kS k =+, 那么当1n k =+时,可得()111121121k k k S k S k k ++===-++-+,即1n k =+时,猜想也成立.综上可知,对任意的正整数n ,1n nS n =+都成立. 【点睛】本题考查数学猜想和数学归纳法的应用,属于中档题. 22.证明见解析. 【分析】 若104c<,要证{}nx 是递增数列.即证n x 对任意1n 成立,然后利用数学归纳法的证明步骤证明即可. 【详解】 证明:若104c <≤,要证{}n x 是递增数列. 即210n n n x x x c +-=-+>,即证n x <1n ≥成立.下面用数学归纳法证明:当104c <≤时,n x 对任意1n ≥成立.①当1n =时,1102x =<,结论成立②假设当n k =(1k,N k *∈)时结论成立,即k x <因为函数()2f x x x c =-++在区间1,2⎛⎫-∞ ⎪⎝⎭内单调递增,所以()1k k x f x f+=<=∴当1n k =+时,1k x +成立.由①,②知,0n x <<1n ≥,N n *∈成立. 因此,21n n n n x x x c x +=-+>,即{}n x 是递增数列.【点睛】本题考查数列的递推关系式的应用,数学归纳法的应用,考查转化思想以及计算能力,属于中档题.23.①:9;②:16;③:2n ;④:2k ;⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【分析】根据数学归纳法的定义依次填空得到答案. 【详解】123219++++=,123432116++++++=,由此猜想2123(1)(1)321n a n n n n =++++-++-++++=,下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立, 即2123(1)(1)321k a k k k k =++++-++-++++=.当1n k =+时,1123(1)(1)(1)321k a k k k k k +=++++-+++++-++++()2211k k a k +=+=+,等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 故答案为:①:9;②:16;③:2n ;④:2k ; ⑤:123(1)(1)(1)321k k k k k ++++-+++++-++++;⑥:21k +;⑦:2(1)k + 【点睛】本题考查了数学归纳法,意在考查学生对于数列归纳法的理解和应用能力.24.(1)212a a =-,3232a a a -=-,43243aa a-=-;(2)(1)(2)(1)n n n a a n n a ---=--;(3)证明见解析; 【分析】(1)根据数列的递推关系式,代入运算,即可求解2a 、3a 、4a ; (2)由(1)可猜想得(1)(2)(1)n n n aa n n a---=--;(3)利用数学归纳法,即可证得猜想是正确的. 【详解】(1)由题意,数列{}n a 满足1a a =,112n na a +=-(*n N ∈); 所以212a a=-,2321232a a a a -=-=-,43132243a a a a -==--; (2)由(1)可猜想得(1)(2)(1)n n n aa n n a---=--;(3)①当1n =时,1a a =,上式成立; ②假设当n k =时,(1)(2)(1)k k k aa k k a---=--成立,则当1n k =+时,()()()()()()()1111122211221k kk k a a k k a a k k a k k a k k a+--===--------+-⎡⎤⎣⎦--- ()()()()()111211111k k a k k a k ka k k a+--+-⎡⎤⎡⎤--⎣⎦⎣⎦==+-+-+-⎡⎤⎣⎦由①②可得,当n N +∈时,(1)(2)(1)k k k aa k k a---=--成立,即数列{}n a 的通项公式为(1)(2)(1)k k k aa k k a---=--.【点睛】本题主要考查了数列的递推关系式的应用,以及数学归纳法的证明,其中解答中根据数列的递推公式,准确计算,同时熟记数学归纳法的证明方法是解答的关键,着重考查了推理与论证能力,属于基础题. 25.(1)235a =,313a =,4317a =,猜想321n n a =+(2)见解析【解析】 【分析】(1)依递推公式计算234,,a a a ,并把各分子都化为3,可归纳出n a ;(2)用数学归纳法证明即可. 【详解】解:(1)11a =,136n n n a a a +=-,∴235a =,33193a ==,4317a =, 猜想321n na =+ (2)用数学归纳法证明如下: ①当1n =时,由13121a ==+知猜想成立; ②假设()*n k k N =∈时,猜想成立,即321k ka =+ 则()()119393321362162132211621k k k k k k k k a a a +++=====-++-+--+ ∴1n k =+时,猜想成立,根据①②可知,猜想对一切正整数n 都成立. 【点睛】本题考查归纳推理,考查数学归纳法,属于基础题.在用数学归纳法证明时,在证明1n k =+时的命题时一定要用到n k =时的归纳假设,否则不是数学归纳法.26.22(1)n n a n +=+,证明见解析【分析】设21111111111491625(1)n a n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N ),分别求出前4项的值,并猜想,利用数学归纳法证明即可 【详解】 解:设21111111111491625(1)n a n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N ), 1234131121115111131,11,111,1111,44493491684916255a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-==--==---==----= ⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭猜想:22(1)n n a n +=+证明:①当1n =时,显然成立;②假设当n k =(k N +∈)命题成立,即22(k 1)k k a +=+,当1n k =+时,212212(2)1(2)11(2)2(1)(2)2(2)k k k k k a a k k k k +⎡⎤++-++=⋅-=⋅=⎢⎥++++⎣⎦,则1n k =+时成立, 由①②可知,猜想成立, 所以22(1)n n a n +=+【点睛】关键点点睛:此题考查归纳推理的应用,考查数学归纳法,考查计算能力,解题的关键是由n k =到1n k =+时,要弄清1,k k a a +的关系,即1211(2)k k a a k +⎡⎤=⋅-⎢⎥+⎣⎦,然后化简可得结果,属于中档题。
高中数学选修2-2第二章《推理与证明》单元测试题(含答案)

高中数学选修2-2第二章《推理与证明1》单元测试题单元练习题一、选择题1.数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )A .都不大于2-B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-3.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③+;④-2中,与等价的有( ) A .1个 B .2个 C .3个 D .4个 4.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值 C .只有最大值或只有最小值 D .既有最大值又有最小值5.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a <C .5481a a a a +>+D .5481a a a a =6. 若234342423log [log (log )]log [log (log )]log [log (log )]0x x x ===,则x y z ++=( )A .123B .105C .89D .58 7.函数xy 1=在点4=x 处的导数是 ( )A .81B .81-C .161D .161-二、填空题1.从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
2.已知实数0≠a ,且函数)12()1()(2a x x a x f +-+=有最小值1-,则a =__________。
3.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________。
4.若正整数m 满足m m 102105121<<-,则)3010.02.(lg ______________≈=m5.若数列{}n a 中,12341,35,7911,13151719,...a a a a ==+=++=+++则10____a =。
高中数学 选修2-2:第2章 推理与证明 章末综合测评 含答案

章末综合测评(二)推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是() A.归纳推理B.类比推理C.演绎推理D.非以上答案【解析】根据演绎推理的定义知,推理过程是演绎推理,故选C.【答案】 C3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】由归纳推理的特点知,选B.4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( )A .完全正确B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k . 【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】 根据数学归纳法的步骤可知,n =k (k ≥2且k 为偶数)的下一个偶数为n =k +2,故选B.7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123 D.199【解析】利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a>b>c,且a+b+c =0,求证:b2-ac<3a”最终的索因应是() 【导学号:05410056】A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】因为a>b>c,且a+b+c=0,所以3c<a+b+c<3a,即a>0,c<0.要证明b2-ac<3a,只需证明b2-ac<3a2,只需证明(-a-c)2-ac<3a2,只需证明2a2-ac-c2>0,只需证明2a+c>0(a>0,c<0,则a-c>0),只需证明a +c+(-b-c)>0,即证明a-b>0,这显然成立,故选A.【答案】 A9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N+)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有() A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD .b 1+b 2+…+b n =b 1+b 2+…+b 21-n 【解析】 令n =10时,验证即知选B. 【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a 2 016-5=( )图1A .2 018×2 014B .2 018×2 013C .1 010×2 012D .1 011×2 013【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=(n -1)(n +6)2,∴a 2 016-5=2 015×2 0222=2 013×1 011. 【答案】 D11.在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图2中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 015+a 2 016+a 2 017=( )图2A .1 006B .1 007C .1 008D .1 009【解析】 依题意a 1=1,a 2=1;a 3=-1,a 4=2;a 5=2,a 6=3;…,归纳可得a 1+a 3=1-1=0,a 5+a 7=2-2=0,…,进而可归纳得a 2 015+a 2 017=0,a 2=1,a 4=2,a 6=3,…,进而可归纳得a 2 016=12×2 016=1 008,a 2 015+a 2 016+a 2 017=1 008.故选C.【答案】 C 12.记集合T={0,1,2,3,4,5,6,7,8,9},M =⎩⎨⎧⎭⎬⎫a 110+a 2102+a 3103+a 4104|a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x+y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b 2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1 14.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【导学号:05410057】【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】 (5,7)15.当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,你能得到的结论是__________.【解析】 根据题意,由于当n =1时,有(a -b )(a +b )=a 2-b 2,当n =2时,有(a -b )(a 2+ab +b 2)=a 3-b 3,当n =3时,有(a -b )(a 3+a 2b +ab 2+b 3)=a 4-b 4,当n ∈N +时,左边第二个因式可知为a n +a n -1b +…+ab n -1+b n ,那么对应的表达式为(a -b )·(a n +a n -1b+…+ab n -1+b n )=a n +1-b n +1.【答案】 (a -b )(a n +a n -1b +…+ab n -1+b n )=a n +1-b n +116.如图3,如果一个凸多面体是n (n ∈N +)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f (n )对异面直线,则f (4)=________,f (n )=__________.(答案用数字或n 的解析式表示)图3【解析】 所有顶点所确定的直线共有棱数+底边数+对角线数=n +n +n (n -3)2=n (n +1)2.从题图中能看出四棱锥中异面直线的对数为f (4)=4×2+4×12×2=12,所以f (n )=n (n -2)+n (n -3)2·(n -2)=n (n -1)(n -2)2.【答案】 n (n +1)2 12 n (n -1)(n -2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2.【证明】 (1)当a ,b >0时,有a +b2≥ab , ∴lg a +b2≥lg ab ,∴lg a +b 2≥12lg ab =lg a +lg b 2.(2)要证6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.18.(本小题满分12分)观察以下各等式: sin 230°+cos 260°+sin 30°cos 60°=34, sin 220°+cos 250°+sin 20°cos 50°=34, sin 215°+cos 245°+sin 15°cos 45°=34.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】 猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α=sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α=34.19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】(1)因为PM⊥BB1,PN⊥BB1,又PM∩PN=P,所以BB1⊥平面PMN,所以BB1⊥MN.又CC1∥BB1,所以CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1SACC1A1cos α.其中α为平面BCC1B1与平面ACC1A1所成的二面角.证明如下:因为CC1⊥平面PMN,所以上述的二面角的平面角为∠MNP.在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.21.(本小题满分12分)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A . 又因为P A ⊄平面DEF ,DE ⊂平面DEF ,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF .又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC ,所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n(n ≥2). (1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N +,都有b 1+b 2+…+b n <n 3.【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N +. 下面利用数学归纳法加以证明:①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N +)时,结论也成立,即a k =13k -2.那么当n =k +1时,由题设与归纳假设可知:a k +1=(k -1)a k k -a k =(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1) =13k +1=13(k +1)-2. 即当n =k +1时,结论也成立,综上,对任意n ∈N +,a n =13n -2成立. (2)b n =a n ·a n +1a n +a n +1 =13n -2·13n +113n -2+13n +1 =13n +1+3n -2 =13(3n +1-3n -2),所以b 1+b 2+…+b n =13[(4-1)+(7-4)+(10-7)+…+(3n +1-3n -2)] =13(3n +1-1),所以只需要证明13(3n +1-1)<n3⇔3n +1<3n +1⇔3n +1<3n +23n+1⇔0<23n(显然成立),所以对任意的n∈N+,都有b1+b2+…+b n<n 3.。
最新北师大版高中数学高中数学选修2-2第一章《推理与证明》检测(答案解析)

一、选择题1.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于22.某个命题与正整数n 有关,如果当()*,n k k N =∈ 时命题成立,那么可推得当1n k =+时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )A .当n=7时该命题不成立B .当n=7时该命题成立C .当n=9时该命题不成立D .当n=9时该命题成立3.某电影院共有(3000)n n ≤个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么n 的可能取值有( ) A .12个 B .11个C .10个D .前三个答案都不对4.期末考试结束后,甲、乙、丙、丁四位同学预测数学成绩甲:我不能及格. 乙:丁肯定能及格. 丙:我们四人都能及格.丁:要是我能及格,大家都能及格.成绩公布后,四人中恰有一人的预测是错误的,则预测错误的同学是( ) A .甲 B .乙 C .丙 D .丁5.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确6.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确7.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中A.一定有3号球B.一定没有3号球C.可能有5号球D.可能有6号球8.下列推理属于演绎推理的是()A.由圆的性质可推出球的有关性质B.由等边三角形、等腰直角三角形的内角和是180°,归纳出所有三角形的内角和都是180°C.某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分D.金属能导电,金、银、铜是金属,所以金、银、铜能导电9.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A.丁B.乙C.丙D.甲10.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )A.乙B.甲C.丁D.丙11.用数学归纳法证明“1112n n++++…111()24n Nn n+≥∈+”时,由n k=到1n k=+时,不等试左边应添加的项是( )A.12(1)k+B.112122k k+++C.11121221k k k+-+++D.1111212212k k k k+--++++12.下面推理过程中使用了类比推理方法,其中推理正确的是()A.平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则B.平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C.在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为D.若,则复数.类比推理:“若,则”二、填空题13.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为a的正四面体的内切球半径为__________.14.甲、乙、丙三位同学被问到是否去过,,A B C三个城市时,甲说:我没去过C城市;乙说:我去过的城市比甲多,但没去过B城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________.15.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是 ________.16.甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)17.在平面内,点,,P A B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数,x y ,满足向量关系式OP xOA yOB =+,且1x y +=.类比以上结论,可得到在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式__________.18.已知函数()xf x xe =,()1'f x 是函数()f x 的导数,若()1n f x +表示()'n f x 的导数,则()2017f x =__________.19.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》中提出了一个“茭草形段”问题:“今有茭草六百八十束,欲令‘落一形’埵(同垛)之,问底子几何?”他在这一问题中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上一束,下一层3束,再下一层6束,……,)成三角锥的堆垛,故也称三角垛,如图,表示从上往下第二层开始的每层茭草束数,则本问题中的三角垛倒数第二层茭草总束数为______.20.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可测,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表222+++中,“…”即代表无数次重复,但该表达式却是个定值,它可以通过2x x +=,求得2x =,类比上述过程,则3333=__________.三、解答题21.已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241n n S a =+,n N +∈. (1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法予以证明.22.已知数列{}n a 的前n 项和为n S ,且20S =,()*2n n S n na n N +=∈.(1)试写出数列{}n a 的任意前后两项(即n a 、1n a +)构成的等式;(2)用数学归纳法证明:()*23n a n n N =-∈.23.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 24.求证:()()2333*1212L n L n n N +++=+++∈.25.记S n =1+2+3+…+n ,T n =12+22+32+…+n 2.(Ⅰ)试计算312123,,S S S T T T 的值,并猜想n nS T 的通项公式. (Ⅱ)根据(Ⅰ)的猜想试计算T n 的通项公式,并用数学归纳法证明之. 26.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.2.A解析:A 【解析】分析:本题考查的知识点是数学归纳法,由归纳法的性质,我们由P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立,结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立,由此不难得到答案.详解:由题意可知,原命题成立则逆否命题成立, P (n )对n=8不成立,P (n )对n=7也不成立, 否则n=7时成立,由已知推得n=8也成立. 与当n=7时该命题不成立矛盾 故选:A .点睛:当P (n )对n=k 成立,则它对n=k+1也成立,由此类推,对n >k 的任意整数均成立;结合逆否命题同真同假的原理,当P (n )对n=k 不成立时,则它对n=k-1也不成立,由此类推,对n <k 的任意正整数均不成立.3.A解析:A 【解析】分析:由题意要保证三所学校的学生都看一场电影,则2007n ≥,依次验证即可得到答案. 详解:由题意要保证三所学校的学生都看一场电影, 则9851010201920072n ++≥=,当2007n =时,则丙中学的学生2019人中分上、下场至少有12人在同一座位上; 当2008n =时,则丙中学的学生2019人中分上、下场至少有11人在同一座位上;当2018=n 时,则丙中学的学生2019人中分上、下场至少有1人在同一座位上; 当2019n =时,则甲乙丙中学的学生可以没有人在同一座位上; 所以当n 有2007,2008,2009,,2018取法,即有12个取值,故选A.点睛:本题主要考查了适应应用问题,其中解答中正确理解题意,合理选择方法是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力,试题属于中档试题.4.A解析:A【解析】分析:若甲预测正确,显然导出矛盾.详解:若甲预测正确,则乙,丙 , 丁都正确,乙:丁肯定能及格.丙:我们四人都能及格.丁:要是我能及格,大家都能及格.,即四人都及格显然矛盾, 故甲预测错误. 故选A.点睛:本题考查推理与论证,根据已知分别假设得出矛盾进而得出是解题关键.5.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.6.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题7.D解析:D 【解析】甲说:“我无法确定.”说明两球编号的和可能为7包含(2,5),(3,4),可能为8包含(2,6),(3,5),可能为9包含(3,6),(2,7)乙说:“我无法确定.”说明两球编号的乘积为12包含(3,4)或(2 ,6) 根据以上信息,可以推断出抽取的两球中可能有6号球 故选D点睛:本题是一道通俗易懂的合情推理题目,主要考查同学们的逻辑思维能力和推理能力,问题难度不大,认真审题是关键.8.D解析:D 【解析】选项A, 由圆的性质类比推出球的有关性质,这是类比推理;选项B, 由等边三角形、直角三角形的内角和是0180,归纳出所有三角形的内角和都是0180,是归纳推理;选项C, 某次考试小明的数学成绩是满分,由此推出其它各科的成绩都是满分,是归纳推理; 选项D, 金属能导电,金、银、铜是金属,所以金、银、铜能导电,这是三段论推理,属于演绎推理; 故选D.9.D解析:D【分析】利用反证法,可推导出丁说的是真话,甲乙丙三人说的均为假话,进而得到答案. 【详解】假定甲说的是真话,则丙说“甲说的对”也为真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故甲说的是谎话;假定乙说的是真话,则丁说:“反正我没有责任”也为真话, 这与四人中只有一个人说的是真话相矛盾, 故假设不成立,故乙说的是谎话;假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话相矛盾,故假设不成立,故丙说的是谎话;综上可得:丁说是真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,故甲负主要责任,故答案为甲 【点睛】本题主要考查了命题真假的判断,以实际问题为背景考查了逻辑推理,属于中档题.解题时正确使用反证法是解决问题的关键.10.A解析:A 【分析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论. 【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的, 由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A. 【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.11.C解析:C 【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项. 【详解】 由n=k 时,左边为11112k k k k+++++,当n=k+1时,左边为11111231(1)(1) k k k k k k k k +++++++++++++所以增加项为两式作差得:11121221k k k+-+++,选C.【点睛】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.12.D解析:D【分析】对四个答案中类比所得的结论逐一进行判断,即可得到答案【详解】对于,空间中,三条直线,若,则与不一定平行,故错误对于,若,则若,则不正确,故错误对于,在平面上,正三角形的面积比是边长比的平方,类比推出在空间中,正四面体的体积是棱长比的立方,棱长比为,则它们的体积比为,故错误对于,在有理数中,由可得,,解得,故正确综上所述,故选【点睛】本题考查的知识点是类比推理,解题的关键是逐一判断命题的真假,属于基础题.二、填空题13.【解析】分析:先根据类比将正四面体分割成四个小三棱锥再根据体积关系求内切球半径详解:设正四面体的内切球半径为各面面积为所以点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到6【解析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径.详解:设正四面体的内切球半径为r,各面面积为S,所以223()11634334a ahh S r S r-⨯⨯=⨯⨯⨯∴===.点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.14.A【解析】分析:一般利用假设分析法找到甲去过的城市详解:假设甲去过的城市为A则乙去过的城市为AC丙去过A城市假设甲去过的城市为B时则乙说的不正确所以甲去过城市不能为B故答案为A点睛:(1)本题主要考解析:A【解析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C,丙去过A城市.假设甲去过的城市为B时,则乙说的不正确,所以甲去过城市不能为B.故答案为A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.15.31【解析】分析:由图形的特点只需看第10个图形中火柴的根数是在的基础上增加几个即可详解:第1个图形中有根火柴棒;第2个图形中有根火柴棒;第3个图形中有根火柴棒;第10个图形中有根火柴棒点睛:本题主解析:31【解析】分析:由图形的特点,只需看第10个图形中火柴的根数是在4的基础上增加几个3即可.详解:第1个图形中有4根火柴棒;+=根火柴棒;第2个图形中有437+⨯=根火柴棒;第3个图形中有43210+⨯=根火柴棒.第10个图形中有43931点睛:本题主要考查了归纳推理的应用,齐总解答中根据图形的变化规律,得到火柴棒的根数是在4的基础上增加几个3的关系是解答的关键,着重考查了推理与运算能力.16.丙【解析】假如甲说的是对的则乙说了假话丙说的是真话与条件不符;假如乙说的是真话则甲说的是假话丙说的也是假话符合条件;假如丙说的是真话则甲乙二人中必有一人说的是真话与条件不符所以乙说的是真话是丙做的好解析:丙.【解析】假如甲说的是对的,则乙说了假话,丙说的是真话,与条件不符;假如乙说的是真话,则甲说的是假话,丙说的也是假话,符合条件;假如丙说的是真话,则甲乙二人中必有一人说的是真话,与条件不符,所以乙说的是真话,是丙做的好事.故答案为丙.17.且【解析】此类比仅是数量的变化即在空间中四点共面的充要条件是:对于平面内任一点有且只有一对实数满足向量关系式且解析:OP xOA yOB zOC =++,且1x y z ++= 【解析】此类比仅是数量的变化,即在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式OP xOA yOB zOC =++,且1x y z ++=18.【解析】依题意以此规律可推出故答案为 解析:()2017xx e +【解析】依题意()()11xxxf x e xe x e '=+=+,()()()()2112x x x x f x x e e x e x e '⎡⎤=+=++=+⎣⎦,()()()()3223x x x x f x x e e x e x e '⎡⎤=+=++=+⎣⎦,以此规律,可推出()()20172017x f x x e =+,故答案为()2017x x e +.19.120【解析】试题分析:由题意第n 层茭草束数为1+2+…+n=利用1+3+6+…+=680求出n 即可得出结论解:由题意第n 层茭草束数为1+2+…+n=∴1+3+6+…+=680即为n (n+1)(2n解析:120 【解析】试题分析:由题意,第n 层茭草束数为1+2+…+n=,利用1+3+6+…+=680,求出n ,即可得出结论.解:由题意,第n 层茭草束数为1+2+…+n=,∴1+3+6+…+=680,即为[n (n+1)(2n+1)+n (n+1)]=n (n+1)(n+2)=680, 即有n (n+1)(n+2)=15×16×17, ∴n=15,∴=120.故答案为120 考点:归纳推理.20.9【解析】由易得:故答案为:9解析:9 【解析】由3x x =,易得:x 9=.故答案为:9三、解答题21.(1)11a =,23a =,35a =(2)猜想21n a n =-,证明见解析. 【分析】(1)利用24(1)n n S a =+代入计算,可得结论;(2)猜想21n a n =-,然后利用归纳法进行证明,检验1n =时等式成立,假设n k =时命题成立,证明当1n k =+时命题也成立. 【详解】(1)1n a ≥,且24(1)n n S a =+,∴当1n =时,21(1)1a -=,11a ∴=,当2n =时,()22241(1)a a +=+,23a ∴=,或21(a =-舍), 当3n =时,()23344(1)a a +=+,35a ∴=,或33(a =-舍),11a ∴=,23a =,35a =;(2)由(1)猜想21n a n =-,下面用数学归纳法证明:①当1n =时,11a =,显然成立, ②假设n k =时,结论成立,即21k a k =-, 则当1n k =+时,由24(1)k k S a =+, 有()2211144(1)(1)k k k k k a S S a a +++=-=+-+,()()22111124121210k k k k a a k a k a k ++++∴--+=--+-=, 121k a k +∴=+,或121(k a k +=-+舍),1n k ∴=+时结论成立,由①②知当*n N ∈,21n a n =-均成立. 【点睛】本题考查了归纳法的证明,归纳法一般三个步骤:()1验证1n =成立;()2假设n k =成立;()3利用已知条件证明1n k =+也成立,从而求证,这是数列的通项一种常用求解的方法,属中档题.22.(1)()111n n n a na +-=+;(2)证明见解析. 【分析】(1)由2n n S n na +=,可得出()11211n n S n n a ++++=+,两式相减,化简即可得出结果;(2)令1n =代入2n n S n na +=求出1a 的值,再由20S =求出2a 的值,可验证1n =和2n =时均满足23n a n =-,并假设当()2,n k k k N *=≥∈时等式成立,利用数学归纳法结合数列{}n a 的递推公式推导出1n k =+时等式也成立,综合可得出结论. 【详解】(1)对任意的n *∈N ,由2n n S n na +=可得()11211n n S n n a ++++=+, 上述两式相减得()11211n n n a n a na +++=+-,化简得()111n n n a na +-=+;(2)①当1n =时,由2n n S n na +=可得1121a a +=,解得11a =-,满足23n a n =-; ②当2n =时,由于2120S a a =+=,则211a a =-=,满足23n a n =-;③假设当()2,n k k k N *=≥∈时,23n a n =-成立,则有23k a k =-,由于()111k k k a ka +-=+,则()()()()212312111231212131111k k k k k k ka k k a k k k k k k +-+--+-+=====-=+-----. 这说明,当1n k =+时,等式23n a n =-也成立.综合①②③,()*23n a n n N =-∈.【点睛】本题考查数列递推公式的求解,同时也考查了利用数学归纳法证明数列的通项公式,考查计算能力与推理能力,属于中等题. 23.(Ⅰ)111,,357;(Ⅱ)证明见解析. 【解析】分析:(Ⅰ)分别将1,23n ,=代入递推公式,即可求得2a ,3a ,4a 的值; (Ⅱ)猜想121n a n =-,检验1n =时等式成立,假设当()*n k k N =∈时等式成立,证明当1n k =+时等式也成立.详解:解:(Ⅰ)由题意,1211121213a a a ===++,232113221513a a a ===++, 343115221715a a a ===++ (Ⅱ)由1234,,,a a a a 猜想1.21n a n =- 以下用数学归纳法证明:对任何的*n N ∈,1.21n a n =-证明:①当1n =时,由已知,得左边11a =,右边11.211=⨯-所以1n =时成等式.②假设当()*n k k N =∈时,121k a k =-成立, 则1n k =+时,()111121121212112121k k k a k a a k k k +-====+++-⨯+-, 所以,当1n k =+时,等式也成立.根据①和②,可知对于任何*n N ∈,1.21n a n =-成立. 点睛:本题考查数列的递推公式,合情推理,运用数学归纳法证明问题的一般方法和步骤. 用数学归纳法证明一个与正整数有关的命题时,其步骤为: ①归纳奠基:证明当取第一个自然数0n 时命题成立;②归纳递推:假设n k =,(k *∈N ,0k n ≥)时,命题成立,证明当1n k =+时,命题成立; 24.见解析. 【解析】试题分析:等式是关于正整数n 的一个式子,所以可以用数学归纳法证明,先检验n=1的情况,再假设当*n k,k 1,k N =≥∈时,等式成立,即()23331+2++k 1+2++k =,继而证明n k 1=+时, ()()()3233331+2++k +k 11+2++k +k 1+=+成立,即可。
新北师大版高中数学高中数学选修2-2第一章《推理与证明》检测(含答案解析)

一、选择题1.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确2.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n =B .2m =-,1n =-C .2m =,1n =D .2m n ==-3.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,它体现了一种无限与有限的转化过程.比如在表达式11111+++中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11x x +=求得152x +=,类似上述过程,则33++=( )A .1312+ B .3 C .6D .224.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5055.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( ) A .乙亥年B .戊戌年C .庚子年D .辛丑年6.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .237.利用反证法证明“若220x y +=,则0x =且0y =”时,下列假设正确的是( ) A .0x ≠且0y ≠ B .0x =且0y ≠ C .0x ≠或0y ≠D .0x =或0y =8.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现9.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c ++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=10.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -11.下面推理过程中使用了类比推理方法,其中推理正确的是( )A .平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则 B .平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C .在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为D .若,则复数.类比推理:“若,则”12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 14.学校建议孩子们周末去幸福广场看银杏叶,舒缓高三学习压力,返校后甲、乙、丙、丁四位同学被问及情况.甲说:“我没去”;乙说:“丁去了”;丙说:“乙去了”;丁说:“我没去”.班主任了解到这四位同学中只有一位同学去了幸福广场,但只有一位说了假话,则去了幸福广场的这位同学是_______.15.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.16.把“二进制”数(2)1011001化为“十进制”数是 .17.在平面几何中,正三角形ABC 的内切圆半径为1r ,外接圆半径为2r ,则1212r r =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球半径为1R ,外接球半径为2R ,则12R R =__________. 18.观察下列数表:1 3 57 9 11 1315 17 19 21 23 25 27 29设2017是该表第m 行的第n 个数,则m n +的值为__________.19.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =____. 20.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.三、解答题21.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记nn na c T =,*n N ∈,证明:()122214n c c c n n +++<+. 22.已知数列{}n a 满足:12a =,1(1)(1)n n na n a n n +=+++,*n N ∈. (1)求证:数列{}na n为等差数列,并求出数列{}n a 的通项公式; (2)记2(1)n nb n a =+(*n N ∈),用数学归纳法证明:12211(1)n b b b n +++<-+,*n N ∈23.设数列的前n 项和为且对任意的正整数n 都有:.(1)求;(2)猜想的表达式并证明.24.设f (x )=3ax 2+2bx+c ,若a+b+c=0,f (0)>0,f (1)>0,求证:a >0且﹣2<<﹣1.25.(1)求证:当2a >时,222a a a ++-<; (2)证明:不可能是同一个等差数列中的三项.26.已知数列{}n a 中,11a =,()122nn na a n N a ++=∈+ (1)求2a ,3a ,4a 的值,猜想数列{}n a 的通项公式; (2)运用(1)中的猜想,写出用三段论证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列时的大前提、小前提和结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误,所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.2.D解析:D 【解析】分析:讨论三种情况,甲判断正确,乙、丙判断不正确;乙判断正确,甲、丙判断不正确;丙判断正确,甲、乙判断不正确,由向量平行和垂直的条件,解方程结合选项即可得到结论.详解:若甲判断正确,乙、丙判断不正确, 可得2mn =且480m -+=,解得2,1m n ==, 则()()()2,2,1,1,4,4a b c ===-, 可得b 与c 不平行,a 与c 垂直, 则乙、丙判断不正确符合题意; 若判断正确,甲、丙判断不正确,可得44n -=且480m -+=且48m =-,解得2,1m n ==-或2,1m n =-=-, 则()()()2,2,1,1,4,4a b c ==-=- 或()()()2,2,1,1,4,4a b c =-=-=- 可得b 与c 不平行,a 与c 垂直, 则甲、丙判断不正确,符合题意; 若丙判断正确,甲、乙判断不正确, 可得480m -+≠且48m ≠-且44n -≠ 解得2m ≠且2m ≠-且1n ≠-,则3,2m n ==成立;2,1m n =-=-也成立;2,1m n ==也成立.2m n ==-,则甲乙丙判断均错.故选D.点睛:本题考查向量的平行和垂直的坐标表示,考查判断能力和运算能力,以及推理能力.3.A解析:A 【解析】由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的()0m m =>,则两边平方得,得23m =,即23m m +=,解得m m ==舍去,故选A. 4.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.5.C解析:C 【解析】2015年是“干支纪年法”中的乙未年,2016年是“干支纪年法”中的丙申年,那么2017年是“干支纪年法”中的丁酉年,2018是戊戌年,2019年是己亥年,以此类推记得到2020年是庚子年. 故答案为C .6.C解析:C【解析】可以用归纳思想,1条弦,分圆成2个部分。
最新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(包含答案解析)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .93.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+ D .(cos sin )x e x x --5.下列类比推理正确的是( )A .把()a b c +与x y a +类比,则有x y x y a a a +=+B .把()a a b +与()a a b ⋅+类比,则有()2a ab a a b ⋅+=+⋅C .把()nabc 与)n x y z (++类比,则有)n n n n x y z x y z ++=++( D .把()ab c 与()a b c ⋅⋅类比,则有()()a b c c a b ⋅⋅=⋅⋅6.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为A .4B .6C .8D .327.下列四个类比中,正确的个数为(1)若一个偶函数在R 上可导,则该函数的导函数为奇函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推理与证明一、核心知识1.合情推理(1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。
归纳推理是由部分到整体,由个别到一般的推理。
(2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。
类比推理是由特殊到特殊的推理。
2.演绎推理(1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。
演绎推理是由一般到特殊的推理。
(2)演绎推理的主要形式:三段论“三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是P。
其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。
3.直接证明直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。
直接证明包括综合法和分析法。
(1)综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。
(2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。
要注意叙述的形式:要证A,只要证 B ,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。
4反证法(1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否 定是错误的,从而肯定原结论是正确的证明方法。
(2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确 ,即所求证命题正确。
(3)反证法的思维方法:正难则反 ....5.数学归纳法(只能证明与正整数有关的数学命题)的步骤 (1)证明:当 n 取第一个值 n0(n0∈N*)时命题成立;(2)假设当 n=k (k ∈N*,且 k ≥n0)时命题成立,证明当 n=k+1 时命题也成立 由(1),(2)可知,命题对于从 n0 开始的所有正整数 n 都正确。
二、典型例题 例1. 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( B )A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+. 例2. 已知*111()1()23f n n N n=++++∈,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,由此推测:当2n ≥时,有 *21(2)()2n n f n N +>∈ 例3. 已知:23150sin 90sin 30sin 222=++ ; 23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题:_______________________________________=23( * )并给出( * )式的证明.解:一般形式: 23)120(sin )60(sin sin 222=++++ ααα 证明:左边 = 2)2402cos(12)1202cos(122cos 1 +-++-+-ααα =)]2402cos()1202cos(2[cos 2123 ++++-ααα= -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 2123ααα]240sin 2sin α =]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=23(将一般形式写成 2223sin (60)sin sin (60),2ααα-+++=2223sin (240)sin (120)sin 2ααα︒︒-+-+=等均正确。
)例4.若c b a ,,均为实数,且62,32,22222πππ+-=+-=+-=x z c z y b y x a 。
求证:c b a ,,中至少有一个大于0。
答案:(用反证法)假设c b a ,,都不大于0,即0,0,0≤≤≤c b a ,则有0≤++c b a ,而3)632()1()1()1()62()32()22(222222-+++-+-+-=+-++-++-=++ππππππz y x x z z y y x c b a=3)1()1()1(222-+-+-+-πz y x ∴222)1(,)1(,)1(---z y x 均大于或等于0,03>-π,∴0>++c b a ,这与假设0≤++c b a 矛盾,故c b a ,,中至少有一个大于0。
例5.求证:1+3+5+…+(2n+1)=(n ∈N*)三、课后练习1.数列1,3,6,10,15,…的递推公式可能是( B )A.⎩⎨⎧ a 1=1,a n +1=a n +n (n ∈N *)B.⎩⎨⎧a 1=1,a n=a n -1+n (n ∈N *,n ≥2)C.⎩⎨⎧ a 1=1,a n +1=a n +(n -1)(n ∈N *)D.⎩⎨⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2) [解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎨⎧a 1=1,a n-a n -1=n (n ≥2,n ∈N *).2.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( D )A .1B .1+2C .1+2+3D .1+2+3+4[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D. 3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( D )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 4.已知a +b +c =0,则ab +bc +ca 的值( D )A .大于0B .小于0C .不小于0D .不大于0 [解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( B ) A .a >b B .a <b C .a =b D .a 、b 大小不定[解析] a =c +1-c =1c +1+c,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0,所以c +1+c >c +c -1>0,所以a <b . 6.若sin A a =cos B b =cos C c,则△ABC 是( C )A .等边三角形B .有一个角是30°的直角三角形C .等腰直角三角形D .有一个角是30°的等腰三角形[解析] ∵sin Aa=cos Bb=cos Cc ,由正弦定理得,sin Aa =sin Bb=sin Cc,∴sin B b =cos Bb =cos Cc =sin Cc,∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.7.观察式子:474131211,3531211,23211222222<+++<++<+,…,则可归纳出式子为( C )A 、121131211222-<+++n n B 、121131211222+<+++n n C 、nn n12131211222-<+++D 、122131211222+<+++n nn解析:用n=2代入选项判断。
8.设)()(,cos )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则=)(2008x f解:x cos ,由归纳推理可知其周期是49.函数()f x 由下表定义:若05a =,1()n n a f a +=,0,1,2,n =,则2007a = 4 .10.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为___7__.11.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖______48n +_____块.(用含n 的代数式表示)12. △ABC 的三个角A 、B 、C 成等差数列, 求证:cb ac b b a ++=+++311。
答案:证明:要证cb ac b b a ++=+++311,即需证3=+++++++cb c b a ba cb a 。
即证1=+++cb ab ac 。
又需证))(()()(c b b a b a a c b c ++=+++,需证222b ac a c +=+∵△ABC 三个角A 、B 、C 成等差数列。
∴B=60°。
由余弦定理,有 60cos 2222ca a c b -+=,即ac a c b -+=222。
∴222b ac a c +=+成立,命题得证。
13.用分析法证明:若a >0,则212122-+≥-+aa a a 。
答案:证明:要证212122-+≥-+aa a a ,只需证212122++≥++aa a a 。
∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++aa aa 只需证)1(222211441222222a a aa aa aa +++++≥++++,只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+aa a a ,即证2122≥+a a ,它显然成立。
∴原不等式成立。
14.ABC ∆中,已知B a b sin 323=,且C A cos cos =,求证:ABC ∆为等边三角形。
解: 分析:由32,323sin sin sin 32sin 3sin 323ππ=⇒=⇒=⇒=A A B A B B a b由C A C A =⇒=cos cos B C A ===∴3π所以ABC ∆为等边三角形15.已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.。