2016年安徽省淮南一中自主招生试题数学(无答案)(最新整理)

合集下载

2016年安徽省中考数学真题(解析版)

2016年安徽省中考数学真题(解析版)
3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )
A.8.362×107B.83.62×106C.0.8362×108D.8.362×108
【解答】解:8362万=8362 0000=8.362×107,
故选:A.
4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )
【分析】(1)画出点B关于直线AC的对称点D即可解决问题.
(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.
【解答】解:(1)点D以及四边形ABCD另两条边如图所示.
(2)得到的四边形A′B′C′D′如图所示.
18.(1)观察下列图形与等式的关系,并填空:
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.
其中正确的是①③④.(把所有正确结论的序号都选上)
【考点】相似形综合题.
【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x= ,即ED= ;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和 ≠ ,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.

(完整word版)2016年安徽省淮南一中自主招生试题数学(无答案)

(完整word版)2016年安徽省淮南一中自主招生试题数学(无答案)

2016年淮南一中自主招生试题数 学一、选择题(共4小题,每题4分,满分16分)1.已知,且,,,00><∈b a R c b a 则下列不等式中一定成立的是( )A.22b a <B.22bc ac >C. b a 11>D. a b a 11>- 2.抛物线2ax y =与直线,,,,2131====y y x x 围成的长方形有公共点,则实数a 的取值范围( )A.191≤≤a B.291≤≤a C.131≤≤a D. 231≤≤a3.若1>b 且a 是正有理数,,32=+-a a bb 则a a b b --的值是( ) A .22B .3C .10D .32 4.若,⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=2222201611...411311211S 则S 的值为( ) A . 20162013 B .20162015 C .40322015 D . 40322017 二、填空题(共4小题,每题4分,满分16分)5.若关于x 的方程0342=-+x ax 有唯一实数解,则a 的值为________.6.已知,1223=++c b a 且bc ac ab c b a ++=++222则=--c b a 23_________.7.已知函数,322--=x x y 则使m y =成立的x 值恰好有三个,则m 的值为________8.如图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 是一元二次方程01582=+-x x 的两根,则=∠APC sin ________.三、解答题(共4题,满分48分)9.(10分)已知ABC ∆的两边AC AB 、的长是关于x 的一元二次方程()0655222=++++-k k x k x 两个实数根,第三边长为5。

(1)当k 为何值时,△ABC 是以BC 为斜边的直角三角形;(2)当k 为何值时,△ABC 是等腰三角形,并求出此时△ABC 的周长.10.(12分)如图,在梯形ABCD 中,DC AB //,︒=∠90BCD ,且AB=2,BC=3,3tan =∠ADC .(1)求证:DC=BC ;(2)E 是梯形内的一点,F 是梯形外的一点,且,,BF DE FBC EDC =∠=∠试判断ECF ∆的形状,并证明你的结论。

2016年安徽省中考数学试卷(含答案)(K12教育文档)

2016年安徽省中考数学试卷(含答案)(K12教育文档)

(直打版)2016年安徽省中考数学试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2016年安徽省中考数学试卷(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2016年安徽省中考数学试卷(含答案)(word版可编辑修改)的全部内容。

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2D .2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是( )A.a5B.a﹣5 C.a8D.a﹣8 3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A.8。

362×107B.83。

62×106 C.0.8362×108D.8。

362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A .B .C .D .5.(4分)(2016•安徽)方程=3的解是()A .﹣B .C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9。

5%) B.b=a (1+8。

9%×9。

5%)C.b=a(1+8。

(完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

(完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l 1与l 2相互平行,A 、B 是l 1上的两点,C 、D 是l 2上的两点,某人在点A 处测得∠CAB=90°,∠DAB=30°,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得∠DEB=60°,求C 、D 两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF 为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.2016年6月25日。

2016年安徽省淮南一中自主招生试题数学(无答案)

2016年安徽省淮南一中自主招生试题数学(无答案)

2016年淮南一中自主招生试题25•若关于x 的方程ax 4x 3 0有唯一实数解,则a 的值为6.已知 3a 2b c 12,且 a 2 b 2 c 2 ab ac be 则 a 3 b 2 c ______________________ . 7•已知函数y x 2 2x 3,则使y m 成立的x 值恰好有三个,贝y m 的值为 ____________________ 8.如图,AB 是半圆O 的直径,弦ADBC 相交于点P,且CDAB 是一元二次方程 x 2 8x 15 0 的两根,则sin APC ________ .1.已知 a , b , c R , a 0且 b 0,则下列不等式中一定成立的是 ( )2 . 2 2 .21 1 1 1A. a bB. ac bcC.-- D. --------— a a b a b a22.抛物线y ax 与直线x 1, x 3, y 1, y 2,围成的长方形有公共点, 值范围( )1 , 1 1 1 cA. — a 1B.- a 2C.- a 1D. - a 29 9 3 3、选择题(共4小题,每题4分,满分16 分)a b a 的值是( 3若b 1且a 是正有理数, )则实数 a 的取2 3,则 b a b a 2.2 C . 10 D . 231 1 2013 2016 1 承… 2015 2016 丄乜,则S 的值为(2016 2015 C . 4032 20174032二、填空题(共 4小题,每题 4分, 满分16分)三、解答题(共4题,满分48分)9. (10分)已知ABC的两边AB、AC的长是关于x的一元二次方程2 2x 2k 5 x k 5k 6 0两个实数根,第三边长为5。

(1 )当k为何值时,△ ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ ABC是等腰三角形,并求出此时△ ABC的周长.10. (12 分)如图,在梯形ABCD 中,AB//DC , BCD 90,且AB=2 , BC=3 , tan ADC 3. (1)求证:DC=BC ;(2)E是梯形内的一点,F是梯形外的一点,且EDC FBC, DE BF,试判断ECF的形状,并证明你的结论。

2016年安徽自主招生数学模拟试题:n次独立重复试验

2016年安徽自主招生数学模拟试题:n次独立重复试验

2016年安徽自主招生数学模拟试题:n次独立重复试验【试题内容来自于相关网站和学校提供】1:某人射击一次击中目标的概率为0.6,经过3次射击,设X表示击中目标的次数,则等于()A、B、C、D、2:某家具制造商购买的每10块板中平均有1块是不能用于做家具的,一组5块这样的板中有3块或4块可用的概率约为()A、0.40B、0.3C、0.07D、0.23:对同一目标独立地进行四次射击,至少命中一次的概率为,则此射手的命中率为()A、B、C、D、4:一射手对同一目标独立地射击四次,已知至少命中一次的概率为,则此射手每次击中的概率是()A、B、C、D、5:甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以的比分获胜的概率为()A、B、C、D、6:某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是 . (请用分数表示结果)7:已知随机变量X~B ,则P(X=2)=________.8:已知随机变量X服从正态分布,且=0.7,则9:甲、乙两篮球运动员在罚球线投球的命中率分别是0.7和0.6,每人投球3次,则两人都投进2球的概率是_______10:设随机变量服从二项分布,且,则,;11:若盒中装有同一型号的灯泡共只,其中有只合格品,只次品。

(1)某工人师傅有放回地连续从该盒中取灯泡次,每次取一只灯泡,求次取到次品的概率;(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望。

12:某校有5名学生报名参加义务献血清治疗重症甲流患者活动, 这5人中血型为A型的2名, 血型为B型的学生1 名,血型为O型的学生2名,已知这5名学生中每人符合献血条件的概率均为(1)若从这5名学生中选出2名,求所选2人血型为O型或A型的概率(2)求这5名学生中至少有2名学生符合献血条件的概率.13:现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,求至少有两人获奖的概率.14:甲、乙两个篮球运动员相互没有影响地站在罚球线上投球,其中甲的命中率为,乙的命中率为,现在每人都投球三次,且各次投球的结果互不影响。

2016淮南二中自招-数学 - 含答案

2016淮南二中自招-数学 - 含答案

参考答案一.选择题(共8小题)1.比较3040505,43,由大到小的关系是 ( ) A .304050543>> B .305040534>>C .405030435>> D .403050453>>2.已知20172016,20162016,20152016+=+=+=x c x b x a ,则多项式ac bc ab c b a c ---++22的值是( )A. 2B. 2C. 1D. 0 3.对每个x ,y 是y 1=2x ,y 2=x +2,y 3=三个值中的最大值,则当x 变化时,函数y 的最小值为( ) A .4B .6C .8D .【解答】解:分别联立y 1、y 2,y 1、y 3,y 2、y 3,可知y 1、y 2的交点A (2,4);y 1、y 3的交点B (,);y 2、y 3的交点C (4,6),∴当x ≤2时,y 最小=9; 当2<x ≤时,y 最小=;当<x ≤4时,y 最小=;当x >4时,y 最小=8. 故选D .4.如图,有一块矩形纸片ABCD ,AB=8,AD=6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A .B .C .2D .4【解答】解:∵AB=8,AD=6,纸片折叠,使得AD 边落在AB 边上, ∴DB=8﹣6=2,∠EAD=45°,又∵△AED 沿DE 向右翻折,AE 与BC 的交点为F ,∴AB=AD ﹣DB=6﹣2=4,△ABF 为等腰直角三角形,∴BF=AB=4, ∴CF=BC ﹣BF=6﹣4=2,而EC=DB=2,×2×2=2.故选:C .5.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是()A.若甲对,则乙对B.若乙对,则甲对C.若乙错,则甲错D.若甲错,则乙对【解答】解:若甲对,即只参加一项的人数大于14人,不妨假设只参加一项的人数是15人,则两项都参加的人数为5人,故乙错.若乙对,即两项都参加的人数小于5人,则两项都参加的人数至多为4人,此时只参加一项的人数为16人,故甲对.故选:B.6.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,保持上述运动过程,经过(2014,)的正六边形的顶点是()A.C或E B.B或D C.A或E D.B或F【解答】解:∵点A(1,0),B(2,0),∴OA=1,OB=2,∴正六边形的边长为:AB=1,∴当点D第一次落在x轴上时,OD=2+1+1=4,∴此时点D的坐标为:(4,0);如图1所示:当滚动到A′D⊥x轴时,E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,∵六边形ABCDEF是正六边形,∴∠A′F′G=30°,∴A′G=A′F′=,同理可得:HD=,∴A′D=2,∴在运动过程中,点A的纵坐标的最大值是2;如图1,∵D(2,0)∴A′(2,2),OD=2,∵正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(2014,)正好滚动2012个单位长度,∵=335…2,∴恰好滚动335周多2个,如图2所示,F′点纵坐标为:,∴会过点(2014,)的是点F,当点D还是在(2014,0)位置,则E点在(2015,0)位置,此时B点在D点的正上方,DB=,所以B点符合题意.综上所示,经过(2014,)的正六边形的顶点是B或F.故选D.7.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0【解答】解:①a>0时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,②a<0时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,综上所述,表达式正确的是a(y1﹣y2)>0.故选C.8.记s n=a1+a2+…+a n,令T n=,则称T n为a1,a2,…,a n这列数的“凯森和”.已知a1,a2,…,a500的“凯森和”为2004,那么13,a1,a2,…,a500的“凯森和”为()A.2013 B.2015 C.2017 D.2019【解答】解:∵Tn=,∴T500=2004,设新的理想数为Tx,501×Tx=13×501+500×T500,Tx=(13×501+500×T500)÷501=,=13+500×4 =2013.故选:A.二、填空题(本题共有5个小题,每小题4分,共20分。

2016年安徽师大附中高中自主招生数学试卷

2016年安徽师大附中高中自主招生数学试卷

2016年安徽师大附中高中自主招生数学试卷一、选择题(本大题共6小题,每小题8分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(8分)设a,b,c的平均数为M,a与b的平均数为N,N与c的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不能确定2.(8分)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=同一坐标系中的图象一定不可能是()A.B.C.D.3.(8分)如图,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,则∠AOC等于()A.120°B.130°C.140° D.150°4.(8分)已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2,则b+a的值为()A.﹣23 B.23 C.13 D.﹣135.(8分)如果二次方程x2﹣px﹣q=0(其中p,q均是大于0的整数)的正根小于3,那么这样的二次方程有()A.4个 B.5个 C.6个 D.7个6.(8分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.140°B.130°C.120° D.110°二、填空题(本大题共6小题,每小题0分,共48分)7.若函数f(x)=定义域为一切实数,则实数k的取值范围为.8.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.9.已知a、b、x、y都为实数,且y+|﹣2|=1﹣a2,|x﹣4|=3y﹣3﹣b2.则a+b+x+y 的值为.10.如图,正方形ABCD的边长为1,E是CD边外的一点,满足:CE∥BD,BE=BD,则CE=.11.实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z的最大值是.12.如图,已知⊙O1、⊙O2的半径分别为r1、r2,⊙O2经过点O1,且两圆相交于点A、B,C为⊙O2上的点,连接AC交⊙O1于点D,再连接BC、BD、AO1、AO2、O1O2有如下四个结论:①∠BDC=∠AO1O2;②=③AD=DC ④BC=DC,其中正确结论的序号为.三.解答题(本题共3小题,每小题16分,共54分)答题应写出文字说明、证明过程或演算步骤)13.(16分)设[x]表示不超过x的最大整数,如[4.3]=4,[﹣4,3]=﹣5.化简:++…+(结果用n表示,其中n 是大于0的整数).14.(18分)如图,在梯形PMNQ中,PQ∥MN,对角线PN和MQ相交于点O,并把梯形分成四部分,记这四部分的面积分别为S1,S2,S3,S4.试判断S1+S2和S3+S4的大小关系,并证明你的结论.15.(18分)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP ⊥BC,交OB于点P,连接MP.(1)点B的坐标为;用含t的式子表示点P的坐标为;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.2016年安徽师大附中高中自主招生数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题8分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(8分)(2016•镜湖区校级自主招生)设a,b,c的平均数为M,a与b的平均数为N,N与c的平均数为P,若a>b>c,则M与P的大小关系是()A.M=P B.M>P C.M<P D.不能确定【解答】解:由题意得:a+b+c=3M,a+b=2N,N+c=2P;∴M=,又∵a>b>c,∴a+b>2c,∴M﹣p=,∴M>P;故选B.2.(8分)(2016•镜湖区校级自主招生)已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与y=同一坐标系中的图象一定不可能是()A.B.C.D.【解答】解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数y=图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;B、由直线的图象知a<0,b<0,故a+b<0,所以y=的图象在二四象限,C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数y=的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数y=的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;故选:B.3.(8分)(2016•镜湖区校级自主招生)如图,⊙O中,弦AD∥BC,DA=DC,∠BCO=15°,则∠AOC等于()A.120°B.130°C.140° D.150°【解答】解:连接AC,设∠AOC=2x∵∠B=∠AOC=x∴∠D=180°﹣x∵AD=CD,OA=OC∴∠DAC=∠ACD=x,∠OCA=∠OAC=90°﹣x∵AD∥BC∴∠ACB=∠DAC=x,∴∠BCO=x﹣(90°﹣x)=x﹣90°=15°,∴x=70°,∴∠AOC=140°.故选:C.4.(8分)(2016•镜湖区校级自主招生)已知实数a≠b,且满足(a+1)2=3﹣3(a+1),3(b+1)=3﹣(b+1)2,则b+a的值为()A.﹣23 B.23 C.13 D.﹣13【解答】解:∵a、b是关于x的方程(x+1)2+3(x+1)﹣3=0的两个根,整理此方程,得x2+5x+1=0,∵△=25﹣4>0,∴a+b=﹣5,ab=1.故a、b均为负数.因此b+a=﹣﹣=﹣=﹣=﹣23.故选A.5.(8分)(2016•镜湖区校级自主招生)如果二次方程x2﹣px﹣q=0(其中p,q 均是大于0的整数)的正根小于3,那么这样的二次方程有()A.4个 B.5个 C.6个 D.7个【解答】解:由△=p2+4q>0,﹣q<0,知方程的根为一正一负.设f(x)=x2﹣px﹣q,则f(3)=32﹣3p﹣q>0,即3p+q<9.由于p,q均是正整数,所以p=1,q≤5或p=2,q≤2.于是共有7组(p,q)符合题意.故选:D.6.(8分)(2016•镜湖区校级自主招生)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.140°B.130°C.120° D.110°【解答】解:如下图,作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选:C.二、填空题(本大题共6小题,每小题0分,共48分)7.(2016•镜湖区校级自主招生)若函数f(x)=定义域为一切实数,则实数k的取值范围为[0,).【解答】解:函数f(x)=定义域为一切实数,可转化为:∀x∈R,kx2+4kx+3≠0.令w=kx2+4kx+3,下面分三类求解:一类:当k=0,由于3≠0,显然符合题意二类:当k>0,要想使二次函数w=kx2+4kx+3≠0,只需△<0,即(4k)2﹣4×3×k<0即三类:当k<0,要想使二次函数w=kx2+4kx+3≠0,只需△<0,即(4k)2﹣4×3×k<0即(不合,舍去)综上所述:[0,).故答案为:[0,).8.(2016•镜湖区校级自主招生)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是n(n+2).【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3﹣3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4﹣4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5﹣5个,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n(n+2);故答案为n(n+2).9.(2016•镜湖区校级自主招生)已知a、b、x、y都为实数,且y+|﹣2|=1﹣a2,|x﹣4|=3y﹣3﹣b2.则a+b+x+y的值为5.【解答】解:∵3(y﹣1)=|x﹣4|+b2≥0,∴y≥1,∵1﹣y=|﹣2|+a2≥0,∴y≤1,则y=1,∴x﹣4=0,即x=4,b=0,a=0,则a+b+x+y=0+0+4+1=5,故答案为:5.10.(2016•镜湖区校级自主招生)如图,正方形ABCD的边长为1,E是CD边外的一点,满足:CE∥BD,BE=BD,则CE=.【解答】解:,设CF=x,则,DF=1﹣x,EF=﹣,由△BDF~△ECF,得,即有,所以,,则,再由,即,所以,故答案为:11.(2016•镜湖区校级自主招生)实数x,y,z满足x+y+z=5,xy+yz+zx=3,则z 的最大值是.【解答】解:∵x+y=5﹣z,xy=3﹣z(x+y)=3﹣z(5﹣z)=z2﹣5z+3,∴x、y是关于t的一元二次方程t2﹣(5﹣z)t+z2﹣5z+3=0的两实根.∵△=(5﹣z)2﹣4(z2﹣5z+3)≥0,即3z2﹣10z﹣13≤0,(3z﹣13)(z+1)≤0.∴﹣1≤z≤,当x=y=时,z=;故z的最大值为;故答案为:.12.(2016•镜湖区校级自主招生)如图,已知⊙O1、⊙O2的半径分别为r1、r2,⊙O2经过点O1,且两圆相交于点A、B,C为⊙O2上的点,连接AC交⊙O1于点D,再连接BC、BD、AO1、AO2、O1O2有如下四个结论:①∠BDC=∠AO1O2;②=③AD=DC ④BC=DC,其中正确结论的序号为①②④.【解答】解:延长O2O1交圆O1于M,连接AB、AM、BM、O2B,∵圆O1与圆O2交于A、B,∴O2O1是AB的垂直平分线,∵O1A=O1B,∴∠AO1O2=∠AO1B=∠AMB,∵四边形AMBD是圆O1的内接四边形,∴∠AMB=∠BDC,∴①正确;∵O1A=O1B,∴∠C=∠AO2B=∠AO2M,∠AO1O2=∠AMB,∴△BDC∽△AO1O2,∴=,∴②正确;∵△BDC∽△AO1O2,∴∠O2AO1=∠DBC,∠BDC=∠AO1O2,∵O2A=O2B,∴∠AO1O2=∠O2AO1,∴∠DBC=∠BDC,∴DC=BC,∴④正确;无法证出∠C=∠DBC,即BD≠DC,∵AD=BD,∴③错误.故答案为:①②④.三.解答题(本题共3小题,每小题16分,共54分)答题应写出文字说明、证明过程或演算步骤)13.(16分)(2016•镜湖区校级自主招生)设[x]表示不超过x的最大整数,如[4.3]=4,[﹣4,3]=﹣5.化简:++…+(结果用n表示,其中n 是大于0的整数).【解答】解:由题意,[x]表示不超过x的最大整数,设n为正整数,则,于是,,∴, ∴原式==.14.(18分)(2016•镜湖区校级自主招生)如图,在梯形PMNQ 中,PQ ∥MN ,对角线PN 和MQ 相交于点O ,并把梯形分成四部分,记这四部分的面积分别为S 1,S 2,S 3,S 4.试判断S 1+S 2和S 3+S 4的大小关系,并证明你的结论.【解答】解:设PQ=m ,MN=n , ∵△PMN 和△QMN 同底等高, ∴S △PMN =S △QMN ,∴S 3+S 2=S 4+S 2,即:S 3=S 4. ∵△POQ ∽△NOM , ∴,∴.∵S 1:S 3=OQ :OM=m :n , ∴.∴(S 1+S 2)﹣(S 3+S 4)=S 1++S 2﹣2•S 1=S 1(1+﹣)=S 1(1﹣)2.∵,∴S 1+S 2>S 3+S 4.15.(18分)(2016•镜湖区校级自主招生)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为();(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.【解答】解:(1)由题意,OA=6,AB=4,∴B(6,4);延长NP角AB与Q,NB=6﹣t,则OQ=t,设QP=x,则NP=4﹣x,△OPQ和△NPB相似,即可得x=∴P(),=×OM×,(2)∵S△OMP∴S=×(6﹣t)×=t2+2t=(0<t<6).∴当t=3时,S有最大值.(3)存在.由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),则直线ON的函数关系式为:y=.设点T 的坐标为(0,b ),则直线MT 的函数关系式为:y=,解方程组,得∴直线ON 与MT 的交点R 的坐标为.∵S △OCN =×4×3=6,∴S △ORT =S △OCN =2.①当点T 在点O 、C 之间时,此时T 记为T 1,分割出的三角形是△OR 1T 1, 如图,作R 1D 1⊥y 轴,D 1为垂足,则S △OR1T1=R 1D 1•OT=••b=2.∴3b 2﹣4b ﹣16=0,b=.∴b 1=,b 2=(不合题意,舍去)此时点T 1的坐标为(0,).②当点T 在OC 的延长线上时,分割出的三角形是△R 2NE ,如图,设MT 交CN 于点E ,∵点E 的纵坐标为4,∴由①得点E 的横坐标为,作R 2D 2⊥CN 交CN 于点D 2,则 S △R2NE =•EN•D 2=••==2.∴b 2+4b ﹣48=0,b=.∴b 1=﹣2,b 2=(不合题意,舍去).∴此时点T 2的坐标为(0,).综上所述,在y 轴上存在点T 1(0,),T 2(0,)符合条件.参与本试卷答题和审题的老师有:刘老师;lcb001;whgcn;zlzhan;lily2011;danbo7801;左杰(排名不分先后)菁优网2017年5月25日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年淮南一中自主招生试题
数 学
一、选择题(共4小题,每题4分,满分16分)
1.已知则下列不等式中一定成立的是( )
,且,,,00><∈b a R c b a A. B. C. D. 22b a <22bc ac >b a 11>a
b a 11>-2.抛物线与直线围成的长方形有公共点,则实数的取2ax y =,,,,2131====y y x x a 值范围( )
A. B. C. D. 191≤≤a 291≤≤a 131≤≤a 23
1≤≤a 3.若且是正有理数,则的值是( )1>b a ,32=+-a a b
b a a b b --A .
B .
C .
D .22310324.若则的值为( ),⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝
⎛-=2222201611...411311211S S A . B . C .D . 20162013201620154032201540322017二、填空题(共4小题,每题4分,满分16分)
5.若关于的方程有唯一实数解,则的值为________.
x 0342=-+x ax a 6.已知且则_________.
,1223=++c b a bc ac ab c b a ++=++222=--c b a 2
37.已知函数则使成立的值恰好有三个,则的值为________
,322--=x x y m y =x m 8.如图,AB 是半圆O 的直径,弦AD 、BC 相交于点P ,且CD 、AB 是一元二次方程01582=+-x x 的两根,则________. =∠APC sin
三、解答题(共4题,满分48分)
9.(10分)已知的两边的长是关于的一元二次方程
ABC ∆AC AB 、x 两个实数根,第三边长为5。

()0655222=++++-k k x k x (1)当为何值时,△ABC 是以BC 为斜边的直角三角形;
k (2)当为何值时,△ABC 是等腰三角形,并求出此时△ABC 的周长.
k 10.(12分)如图,在梯形ABCD 中,,,且AB=2,BC=3,DC AB //︒
=∠90BCD .
3tan =∠ADC (1)求证:DC=BC ;
(2)E 是梯形内的一点,F 是梯形外的一点,且试判断,,BF DE FBC EDC =∠=∠ECF ∆的形状,并证明你的结论。

11.(12分)淮南市春苗中学初三年级欲在“五一”期间到上海开展研学活动,青春旅行社现有42座和48座两种客车供选择租用,若只租用42座客车若干辆,则正好坐满;若租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过36人;已知42座客车每辆租金400元,48座客车每辆租金440元。

(1)该校初三年级共有多少学生参加此次研学活动?
(2)请你帮该校设计一种最省钱的租车方案。

12.(14分)如图,抛物线经过轴上的两点和轴()02
≠++=a c bx ax y x ()()0021,、,x B x A y 上的点的圆心在轴上,且经过B 、C 两点,若.()P C Θ,,
80P y 62==AB a b ,求:(1)抛物线的解析式;
(2)D 在抛物线上,且C 、D 两点关于抛物线的对称轴对称,问直线BD 是否经过圆心P ?
并说明理由.(3)设直线BD 交于另一点E ,求点E 坐标.
P Θ。

相关文档
最新文档