第六章 单形和聚形

合集下载

6第六讲 单形与聚形

6第六讲 单形与聚形

2’
对每一种点群
(对称型),
6’
6’’
7’’ 4' 7’
初始晶面与对 称要素的相对
3’
5’
1
5
3
位置最多只可 能有7种。
7 ’ ’’ 6’’’
4
7 6
最小重复单位
2
第六章 单形与聚形
146种结晶单形—— 形态+对称性 (包括不同对称型中相同的单形名,同一对称型中相同单形 只考虑一种);
几何单形47种 ——形态(只考虑形态不考虑对称型)。
注 意

单形的晶面在聚形里可以变得面目全非,例如: 立方体晶面不一定是正方形,八面体的晶面不一 定是三角形,等等。
聚形分析示意图
锆石晶体中的两种聚形
a—{100}四方柱
m—{110}四方柱
p—{101}四方双锥
u—{301}四方双锥
第六章 单形与聚形
3. 聚形分析步骤:
(1)确定对称型,归属晶族晶系;
3)进行晶体定向,选择3个L2分别作为X、Y、Z轴。 则可定出上述七种单形的形号:a、平行双面 {100};b、平行双面{010};c、平行双面 {001};d、斜方柱{h0l};e、斜方双锥{hkl}; m、斜方柱{hk0};k、斜方柱{0kl}。 4)根据各单形晶面的数目、晶面间的相互关系以及 想象地使晶面扩展相交后单形的形状,使上述单 形的名称进一步确认。
第六章 单形与聚形
(3)左形与右形:形态相同,空间取向呈镜像关系。 这些单形特点是只有对称轴,没有对称面,中心和反伸轴。
例:
(a)中级晶族偏方面体分左、右形。 (b)五角三四面体:和五角三八面体分左、右形。
面体类 单形的 左右形
五角三四面体 和五角三八面体 的左、右形。

晶体材料基础---第六、七讲 晶体结构及对称性(5) 单形和聚形

晶体材料基础---第六、七讲 晶体结构及对称性(5) 单形和聚形
与六方双锥的区别是 横截面不是正六边形 形
复三方双锥:12
中级晶族各晶系的单形
①柱类:三方柱、复三方柱、四方 柱、复四方柱、六方柱、复六方柱
注意:晶面和交棱都平行于高次轴。
中级晶族各晶系的单形
②单锥类:三方单锥、复三方单锥、 四方单锥、复四方单锥、六方单锥、复 六方单锥
注意:出现在没有对称中心和其它水平对称要素 的对称型中。所有晶面交高次轴于一点。
实例⑴
正交晶系以L22P(mm2)为例:
将L2为Z轴,对称面的法线分别为X、Y轴,进行极射 赤平投影。
在1/4的扇形区域内,原始晶面与对称要素之间的相 对位置关系有7种: 3个角顶(1、2、3号晶面) 3条边上(4、5、6号晶面) 中部(7号晶面)
六 单形的推导
Z Y Y X X
位置1:单面{001} 位置2:平行双面{100} 位置3:平行双面{010} 位置4:双面{h0l} 位置5:双面{0kl} 位置 6:斜方柱{hk0} 位置 7:斜方单锥{hkl}
称型逐一进行推导,能导出146种不同的单
形,称为结晶单形。
实际晶体单形的对称型判断
实际晶体的单形都是结晶单形.可根据晶 面花纹、蚀像、物性等特点判断。 如黄铁矿立方体晶面 上常发育有相互垂直的不是3L44L36L29PC
四 47种几何单形的形态特点
五角十二面体的三个变形
有关单形的几个概念:
⒋左形(left-hand form)和右 形(right-hand form) :形状完全 相同而在空间的取向正好彼此相反 的两个形体,若相互间不能借助于 旋转、但可借助于反映而使两者的 取向达到一致,此二同形反向体即 构成左形和右形。
三方偏方面体 的左形和右形
六四面体:

单形与聚形名词解释

单形与聚形名词解释

单形与聚形名词解释
单形与聚形是一对在语言学和形态学领域中常用的术语,用来描述词汇中名词
的不同形态。

这两个术语描述了名词在不同语境中的变化方式和类别。

单形是指一个名词仅有一个形态的情况,即它在单数和复数形式上没有区别。

例如,诸如"fish"(鱼)和"deer"(鹿)这类名词,无论是指一个还是多个数量,它
们的形态都保持不变。

相反,聚形则是指一个名词存在不同形态的情况,即在单数和复数形式上有明
显的区别。

例如,诸如"cat"(猫)和"cats"(猫们)这类名词,单数形式是"cat",
而复数形式则在词尾添加了字母"s"。

单形和聚形的区别在于名词的形态变化,特别是在数量上。

单形名词在单数和
复数形式上没有区别,而聚形名词在单数和复数形式上有明显的变化。

这些术语的理解对于语言学习和交流非常重要。

在英语中,了解名词的单形和
聚形变化规律有助于正确使用和理解语言,同时也帮助我们更好地表达自己的意思。

6单形与聚形

6单形与聚形

对称型国际符号
23 、 m3 、 43、 m3m 43m 、
四 方
1 2 3 1 2 1 2 3 1 2 3 1
4 、 422 、 4/m 、 4mm 、 4/mmm
三 方 六 方 斜 方
3、 3m
32、
3m、
6、 62、 6/m、 6mm、 6/mmm、 62m 222、 mm2、 mmm
单 斜
2、
6. 从不同角度划分单形
6.1 6.2 6.3 6.4 6.5 一般形与特殊形 开形与闭形 左形与右形 正形与负形 定行与变形
二、聚形
1. 概念:
两个以上单形的聚合 如: 四方柱和四方双锥的聚形
2 单形聚合的原则
不是任意的! 能够在同一对称型中出现的结晶单形才能 相聚 所有单形的对称型与该聚形的对称型一致
4. 四十七种几何单形

从结晶学意义上可推导出146种不同单形--几何单形47种
146种结晶单形
晶面数目 各晶面间的几何关系 单形单独存在时的形态
47种几何单形 晶面形状、数目、相互关系、晶面与对称要素的 相对位置横切面的形状 单ห้องสมุดไป่ตู้符号是识别单形最重要的依据
4. 四十七种几何单形

P58-59图
m、
2/m
P55 表
各晶系国际符号序位与定向关系
第一序位
第二序位
L3 晶轴
第三序位
二晶轴角分线 四方 — 二晶轴角 分线 三、六方 — 垂直 Y轴
等轴晶系 中级晶族
晶轴
Z轴
斜方晶系 单斜晶系
X轴 Y轴
Y轴
Z轴
对称型的国际符号
例: L2PC — 2/m
3L23PC — mmm L4—4 3L44L36L29PC—m3m 符号含义: 1、2、3、4、6或1、3、4、6 — Ln或Lin m — P(的法线)

单形和聚形

单形和聚形

E、菱面体类有两种。菱面体,由六个两两平行的 菱形晶面组成,上下错开60度。复三方偏三角面 体,将菱面体晶面沿高次轴方向平分成两个三角 形。
F、偏方面体,晶面为偏四方形,与双锥类 似,上下与高次轴各交于上一点,但错开 一定角度,此类有:三方偏方面体,四方 偏方面体,六方偏方面体。且分左右形。
3)高级晶族单形,共有15个。
聚形分析:
同一单形的晶面形状, 大小, 性质完全相同;
一个聚形最多只可能由7种单形相聚;
聚形分析程序:
找出所有对称要素, 确定对称型、晶系和晶族;
确定单形的数目, 以及每种单形的晶面数, 与对称要素间关系等; 确定单形。
四方柱和四方双锥 的聚形示意图
立方体和菱形十 二面体及其聚形

_ 111
111 _ 111
四面体类:
四面体
4个全等的等边三角形
四面体的每个三角形 晶面分成3个三角形
三角三四面体
四面体的每个三角形 晶面分成3个四边形
四角三四面体
五角三四面体
四面体的每个三角形 晶面分成3个五边形
六四面体
四面体的每个三角形 晶面分成6个三角形
四面体
四角三四面体
将四面体各等边三角形中心与边中点的连线垂直三 角形面提起得四角三四面体
晶面与对称要素间的三种关系:
● ●
● ●
垂直:
平行:
斜交: 四方锥
单面
四方柱
对于32种对称型,总共可推导出146种结晶学上不同 的单形。
几何上不同的47种单形
• 如果仅从几何性质考虑,而不考虑单形的 真实对称性时,146种结晶学上不同的单形 便可归并为几何性质不同的47种几何学单 形。
3.单形命名的依据:

第六章 单形与聚形

第六章 单形与聚形

石盐
磁铁矿 莹石
前面课程我们知道,属于 同一对称型的晶体可以具有 完全不同的外形
晶面符号——各个晶面在晶体坐 标系统中的空间方位。但是,不能 表述晶面间相互关系,也就是说, 我们还没有解决由晶面所围成的各 种不同几何形态(即晶体的外形或 形态)的称谓————本章加以解 决。
立方体、八面体 六八面体
第六章 单形和聚形
本章概要
1.单形的概念;146种结晶单形与47几何单形的关系 — 重点 2.单形的其它分类; 3.聚形的概念、单形聚合原则、聚形分析步骤。
问题的引出
矿物形态是我们非常关注的内容之一。 晶体的形态往往是一些矿物的重要特征,是晶 体鉴定和开发应用的科学依据和物质基础。
晶体外形 ● 内因(晶体的化学成分和内部结构决定)
三、 47种几何单形
• 一般说来,对于一个单形的描述,要注意晶面的数目、形 状、相互关系、晶面与对称要素的相对位置及单形的横切
面等。
• 单形的晶面数目、形状(包括晶面、横切面的形状)常是 命名的主要依据。
• 47种几何单形分类:
中、低级晶族 :
等轴晶系:
1、面类
1、四面体组
2、柱类
2、八面体组
3、单锥类
二、实际晶体单形的对称型判断
实际晶体的单形都是结晶单形,可根据晶面花纹、 蚀象、物理性质等特点判断。
如黄铁矿立方体晶面上常发育相 互垂直的晶面条纹,说明其对称 型:
是 m3(3L24L33PC) , 不是m3 m 。
蚀象:把晶体置于不饱和溶液中晶体就开始溶 解。由于角顶和棱与溶剂接触的机会多, 所以 这些地方溶解得快些, 因而晶体可溶成近似球 状。晶面溶解时,首先在一些薄弱的地方溶 解出小凹坑,称为蚀象(etch figure) 。

矿物岩石课件:单形与聚形

矿物岩石课件:单形与聚形
立方体
六方双锥
3L44L36L29PC
L66L27PC
八面体 六方柱
一、单形
(二)47种几何单形
一个对称型最多能导出7种单形。 经数学推导,32个对称型共导出146种结晶单形,但几何形态不 同的只有47种,称47 种几何单形。 ① 低级晶族的单形(7种) ② 中级晶族的单形(25种) ③ 高级晶族的单形(15种 ④ 最为常见的单形只有18种。
二、聚形
二、聚形
立方体和菱形十二面体及其聚形
二、聚形
聚形分析步骤: 1.找出聚形的所有对称要素,确定晶 体所属的对称型。
二、聚形
聚形分析步骤: 2 . 观察聚形上有几种不同的晶面,以确定 聚形中单3.数出每种单形的晶面数目,从而对单形的 可能范围作出初步判断。
二、聚形
聚形分析步骤: 4.根据聚形的对称型、单形晶面数目、晶面的 相对位置以及晶面与对称要素之间的关系,便 可确定每个单形的名称。
二、聚形
聚形分析时应注意的问题: (1)要牢记单形相聚的原则,熟悉常见单形在各晶 系中的分布; (2)不能把同形等大的一组晶面(即一个单形)分 成几个单形;如立方体的六个相同的晶面,不能看作三 个平行双面;
一、单形
一、单形
认识和掌握单形应从以下几方面着手: ◎晶面数目 ◎晶面形状 ◎晶面的相互关系 ◎单形横截面形状 ◎晶面与对称要素关系 例如:立方体
二、聚形
➢ 两个或两个以上的单形聚合形成的晶形称聚形。 ➢ 单形的相聚不是任意的,必须是属于同一对称型的单形才能相聚在 一起。 ➢ 换句话说:聚形也属于某一对称型。
二、聚形
➢ (3)单形相聚形成聚形时,由于晶面互相切割而改变了单形原来的晶 面形状,因此不能根据聚形晶体中的晶面形状来分析单形。 (4)在一个晶体中,可以出现两个或两个以上名称相同的单形。

单形聚形(晶体理想形状)

单形聚形(晶体理想形状)

Z
Y X
Y
X
8
晶体学
在上述7个单形中,第2、3号单形完全一样, 第4、5号单形也完全一样(形状一样、对称性 也一样),这样就可将之视为一个单形。 因此,mm2对称型一共有5个单形。
9
晶体学
单形的理论推导
• 1) 对低级晶族的点群, 考虑如下位置: {hkl}, {0kl}, {h0l}, {hk0}, {100}, {010}, {001}
4
晶体学
单形符号
• 单形符号(形号):以简单的数字符号的形式来表征一个 单形的所有组成晶面及其在晶体上取向的一种结晶学符号。
• 单形符号的构成:在同一单形的各个晶面中,按一定的 原则选择一个代表晶面,将它的晶面指数顺序连写而置于 大括号内,例如写成{h k l}用以代表整个单形。
– 代表晶面应选择单形中正指数为最多的晶面,也即选择第一象限 内的晶面,在此前提下,要求尽可能使│h│≥│k│≥│l│
{hkl}, {hhl}, {hkk}, {hk0}, {111}, {110}, {100} • 对原始晶面进行对称操作, 画出所有晶面的投影, 然后判断
是何种单形.
10
晶体学
单形的理论推导
mmm
c
(hkl)
低级晶族单形mmm 1. {hkl}
• 蓝色图形为对称要素投影 • 红色圆圈为原始晶面 • 绿色图形是经过对称操作后
四方晶系单形4/mmm:
1. {hkl}
• 蓝色图形为对称要素投影 • 红色圆圈为{hkl}原始晶面 • 绿色者为对称操作后的晶面 • 此单形有16个晶面, 判断此单
形为复四方双锥
15
晶体学
单形的理论推导
4/mmm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、聚形
• 1、定义:两个或两个以上单形的聚合即为之。 • 2 、 聚形与单形的区别: 形态上的区别 —— 单形 只有一种同形等大的晶面;而聚形则有多种晶面, 其中属于同一单形的晶面同形等大。 • 3 、 聚形形成的条件: 聚形的聚合不是任意的, 必须是属于同一对称型的单形才能聚合。该条件 的一个推论:组成聚形的单形的坐标系必须一致。 • 4、聚形分析:即找出聚形由哪几个单形所组成, 写出对称型,写出单形晶面的个数,指出相对位 置、晶面符号,假想晶面在空间扩展相交以后的 单形形态。
对 称 型 的 国 际 符 号
对称型的圣弗利斯符号
• 47种几何单形的形状见表I-6-2。现将它们按低、 中、高级晶族依次描述如下。 • 一般说来,对于一个单形的描述,包括晶面的形 状、数目、相互关系,晶面与对称要素的相对位 置以及单形横切面的形状。当晶体定向后,晶面 符号 ( 单形符号 ) 是识别单形最重要的依据,有关 这方面的情况将在各晶系晶体分述中详加讨论。 本节将只对47种几何形态作概括的流览。
1、聚形分析的步骤
• (1)写出聚形的对称型,确定晶族、晶 系。 • (2)进行晶体定向 • (3)确定单形数目:共有多少种不同形 态和大小的晶面,单形聚合时不会减少 单形的晶面个数。 • (4)写出各单形的晶面符号, • (5)确定单形的形号和单形名称。
三、晶体的定向
• 在实验中掌握。要强调的几点: • (1)要严格地按晶面符号的定义来写出各晶面 符号,严格按各晶系晶体定向原则对晶体进行定 向。 • (2)对不能得出具体的数字的晶面符号,则以 (hkl)或(hkil)表示。 • (3)4轴定向中晶面符号的h+k-i=0 • 证明: • (4)坐标原点要位于晶体的中心,而不能位于 底面
3.单形的推导
• 单形的各个晶面既然可以通过对称型中对 称要素的作用相互重复,那么将一个原始 晶面置于对称型中,通过对称型中全部对 称要素的作用,必可以导出一个单形的全 部晶面。可以设想,不同的对称型可以导 出不同单形;在同一对称型中原始晶面与对称要素的相对位置不同,也可以导出不 同的单形来。
4.四十七种几何单形
2.单形符号
• 单形符号简称形号,它是指在单形中选择一个代表面,把该晶面的 晶面指数用“{ }”括起来,用以表征组成该单形的一组晶面的结晶学 取向的符号。 • 单形是由对称要素联系起来的一组晶面,晶轴是在服从晶体固有对 称性的前提下,依对称要素选择的。因此,同一单形的各个晶面与 晶轴都有着基本相同的相对位置。如图I一6—1中的立方体的每一个 晶面部与一个晶轴垂直而与另两个晶轴平行;八面体的每一个晶面 都截三个晶轴等长。因此,同一单形的各个晶面的指数的绝对值不 变,而只有正负号的区别。如立方体有六个晶面,其晶面符号应分 别为 (100) 、 (010) 、 (001) 、 (100) 、 (010) 、 (001) 。知道了单形的一 个晶面的符号,则该单形的共它晶面的符号即可导出。因此,可以 选择一个代表晶面,定出单形符号,如立方体的形号为(100),八 面体的形号为(111)等。 • 习惯上,选择代表晶面定形号时,一般是选择正指数最多的晶 面.同时还遵循先前(即x轴上指数最大)、次右(即Y轴上的指数次大)、 后上(即Z轴上的指数最小)的原则。
一、单形
• 1.单形的概念 • 单形是由对称要素联系起来的一组晶面的总合。 换句话说,单形也就是藉对称型中全部对称要 素的作用可以使它们相互重复的一组晶面。因 此,同一单形的所有晶面彼此都是等同的。所 谓等同,是指它们具有相同的性质以及在理想 的情况下品面彼此同形等大。 • 如图I-6-1中所示的单形为立方体,它的六个正 方形晶面同形等大,通过其对称型中的对称要 素的作用可以相互重复。
相关文档
最新文档