苏教版高中数学必修一第一章 集合知识点整理
苏教版高中数学必修1第1章集合章末复习课课件

例1 设集合A中含有三个元素2x-5,x2-4x,12,若-3∈A,则x的值为__3_.
∵-3∈A,∴-3=2x-5或-3=x2-4x. ①当-3=2x-5时,解得x=1,此时2x-5=x2-4x=-3,不符合元 素的互异性,故x≠1; ②当-3=x2-4x时,解得x=1或x=3,由①知x≠1,且x=3时满足元 素的互异性. 综上可知,x=3.
跟踪训练3 设集合M={x∈R|-2<x≤5},N={x∈R|2-t≤x<3t+1}. (1)若t=2,求M∩(∁RN);
当t=2时,M={x∈R|-2<x≤5},N={x∈R|0≤x<7}, ∴∁RN={x|x<0,或x≥7}, ∴M∩(∁RN)={x|-2<x<0}.
(2)若M∪(∁RN)=R,求实数t的取值范围.
反ቤተ መጻሕፍቲ ባይዱ感悟
集合与不等式(组)结合的运算包含的类型及解决方法 (1)两种类型:不含字母参数、含有字母参数. (2)解决方法:①对于不含字母参数的直接将集合中的不等式(组) 解出,在数轴上求解即可;②对于含有字母参数的,若字母参数 的取值对不等式(组)的解有影响,要注意对字母参数分类讨论, 再求解不等式(组),然后在数轴上求解.
反思感悟
集合中元素的互异性在解题中的应用 (1)借助于集合中元素的互异性找寻解题的突破口. (2)利用集合中原始元素的互异性检验结论的正确性.
跟踪训练1 设A={1,4,x},B={1,x2},且A∩B=B,则x的可能取值组成 的集合为__{_0_,__2_,__-__2_}__.
∵A∩B=B,∴B⊆A, ∴x2=4或x2=x,解得x=-2,0,1,2, 当x=1时,A,B均不符合互异性, ∴x≠1,故x=±2,0.
高中数学必修一集合知识点总结大全

高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1、1】集合得含义与表示(1)集合得概念把某些特定得对象集在一起就叫做集合。
高中数学必修1-第一章-集合与函数概念-知识点

第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集 Z有理数集 Q实数集 R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的A⊆(或B⊇A)子集。
记作:BA⊆有两种可能(1)A是B的一部分;注意:B(2)A与B是同一集合。
⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(2).“包含”关系(2)—真子集A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果集合B如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B “元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中高一数学必修1集合学习知识点总结复习学习资料

高一数学必修 1 集合知识点复习资料高一数学必修一集合知识点复习资料一. 知识归纳:1.集合的有关概念。
1)集合( 集) :某些指定的对象集在一起就成为一个集合 ( 集). 其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A 和 a?A,二者必居其一 ) 、互异性(假设 a?A,b?A,那么 a≠b) 和无序性 ({a,b} 与{b,a} 表示同一个集合 ) 。
③集合具有两方面的意义,即:但凡符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集: N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:假设对 x∈A都有 x∈B,那么 AB(或 AB);2)真子集: AB且存在 x0∈B但 x0A; 记为 AB(或,且 )3)交集: A∩B={x|x ∈A且 x∈B}4)并集: A∪B={x|x ∈A或 x∈B}5)补集: CUA={x|xA但 x∈U}注意:①?A,假设 A≠?,那么 ?A;②假设,, ;③假设且, A=B(等集 )3.弄清集合与元素、集合与集合的关系,掌握有关的和符号,特要注意以下的符号: (1) 与、 ?的区 ;(2) 与的区 ;(3) 与的区。
4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集 CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性①A∩A=A,A∩?=?,A∩B=B∩A; ②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:集合 A 的元素个数是 n, A有 2n 个子集,2n-1 个非空子集, 2n-2 个非空真子集。
苏教版高中数学必修一知识讲解_子集、全集、补集_基础

子集、全集、补集: :【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集;了解空集和全集的含义;2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【要点梳理】要点一、集合间的“包含”关系1.子集集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B ,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释:(1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈.(2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”). 2.真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集.3.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二、全集、补集1.全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.2.补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U ,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U ”也必须换成相应的集合(即R A ð).【典型例题】类型一、集合间的“包含”关系例1. 请判断①0{0} ;②{}R R ∈;③{}∅∈∅;④∅{}∅;⑤{}0∅=;⑥{}0∈∅;⑦{}0∅∈;⑧∅{}0,正确的有哪些?【答案】②③④⑧【解析】①错误,因为0是集合{}0中的元素,应是{}00∈;②③中都是元素与集合的关系,正确;④⑧正确,因为∅是任何集合的子集,是任何非空集合的真子集,而④中的{}∅为非空集合;⑤⑥⑦错误,∅是没有任何元素的集合.【总结升华】集合的符号语言十分简洁,因而被广泛用于现代数学之中,但往往容易混淆,其障碍在于这些符号与具体意义之间没有直接的联系,突破方法是熟练地掌握这些符号的具体含义. 举一反三:【变式1】用适当的符号填空:(1) {x||x|≤1} {x|x 2≤1};(2){y|y=2x 2} {y|y=3x 2-1}; (3){x||x|>1} {x|x>1};(4){(x ,y)|-2≤x ≤2} {(x ,y)|-1<x ≤2}.【答案】 (1)= (2) (3) (4)【总结升华】区分元素与集合间的关系 ,集合与集合间的关系.例2. 写出集合{a ,b ,c}的所有不同的子集.【解析】不含任何元素子集为∅,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a ,b},{a ,c},{b ,c},含有3个元素的子集为{a ,b ,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d ,则以上8个子集仍是新集合的子集,再将第4个元素d 放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n 个元素的集合共有2n 个不同的子集.【总结升华】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a 起,a 与每个元素搭配有{a ,b},{a ,c},然后不看a ,再看b 可与哪些元素搭配即可.同时还要注意两个特殊的子集:∅和它本身.举一反三:【变式1】(2014 广西桂林开学测)满足{1}⊆M ⊆{1,2,3,4,5}的集合M 的个数为()A . 4B .6C . 8D . 16【答案】D【解析】∵{1}⊆M ⊆{1,2,3,4,5},∴ 2,3,4,5共4个元素可以选择,即满足{1}⊆M ⊆{1,2,3,4,5}的集合M 的个数可化为{2,3,4,5}的子集个数;故其有16个子集,故选D .【总结升华】本题考查了集合间的包含关系及集合的子集个数,若一个集合中有n 个元素,则它有2n个子集,有(21)n -个真子集.【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有( )A. 16个B. 15个C. 7个D. 6个【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.【变式3】已知集合A={1,3,a}, B={a 2},并且B 是A 的真子集,求实数a 的取值.【答案】 a=-1, a=3±或a=0【解析】∵, ∴a 2∈A , 则有:(1)a 2=1⇒a=±1,当a=1时与元素的互异性不符,∴a=-1; (2)a 2=3⇒a=3± (3)a 2=a ⇒a=0, a=1,舍去a=1,则a=0 综上:a=-1, a=3±或a=0.注意:根据集合元素的互异性,需分类讨论.【集合的概念、表示及关系377430 例2】例3. 设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足( ) A. M=N B. M N C. N M D. M ∩N=∅【答案】B【解析】当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N ,故选B.例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ = .A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性.【答案】D【解析】由M=N ,知M ,N 所含元素相同.由0∈{0,|x|,y}可知0∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x ≠0.若x ·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy ≠00,则x=y ,M ,N 可写为M={x ,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x|∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故 x ≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1 ∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a ,b ∈R ,集合b {1,a+b,a}={0,,b}a,则b-a=( ) 【答案】2【解析】由元素的三要素及两集合相等的特征: b 1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+,又, ∴当b=1时,a=-1,b {0,b}={0,-1,1}a∴, 当b =1a时,∴b=a 且a+b=0,∴a=b=0(舍) ∴综上:a=-1,b=1,∴b-a=2.类型二、全集、补集【集合的运算 377474 例6】例5. 设全集U={x ∈N +|x ≤8},若A ∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A ,B.【答案】A={1,3,5,8},B={2,3,5,6}【解析】全集U={1,2,3,4,5,6,7,8}由A ∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A ∩B中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}.例6.已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S C A ={a +3},求a 的值.【思路点拨】求a 的值,需要充分挖掘补集的含义, ,S A S C A S ⊆⊆.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.【解析】由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.【总结升华】含参数问题要分类讨论,分类时要做到不重不漏.类型三、子集、全集、补集综合应用例7.(2014 福建南安期中)已知集合{}{}{}48,210,A x x B x x C x x a =≤<=<<=<. (Ⅰ)求A B ;()R C A B ; (Ⅱ)若A C ≠∅,求a 的取值范围.【思路点拨】(1)画数轴;(2)注意是否包含端点.【答案】(Ⅰ){}210x x <<,(Ⅱ)()4,+∞【解析】(Ⅰ)∵ {}{}48,210,A x x B x x =≤<=<<∴ 如图,{}210A B x x =<<;{4R C A x x =<或}8x ≥∴ ()R C A B {24x x =<<或}810x ≤<(Ⅱ)画数轴同理可得:()4,a ∈+∞.【总结升华】此问题从表面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式】集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},(1)若B ⊆A ,求实数m 的取值范围. (2)当x ∈Z 时,求A 的非空真子集个数.(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m +1>2m -1即m <2时,B =∅满足B ⊆A .当m +1≤2m -1即m ≥2时,要使B ≤A 成立,需⎩⎨⎧m +1≥-22m -1≤5 ,可得2≤m ≤3 综上m ≤3时有B ⊆A(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}所以,A 的非空真子集个数为:28-2=254(3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =∅即m +1>2m -1,得m <2时满足条件.②若B =∅,则要满足条件有:⎩⎨⎧m +1≤2m -1m +1>5 或⎩⎨⎧m +1≤2m -12m -1<2解之m >4 综上有m <2或m >4。
高中数学必修一第一章知识点

偶与偶
+加
奇
偶
—减
奇
偶
乘
偶
奇
偶
除
偶
奇
偶
注:“性质法”中的结论只有在两个函数的公共定义域内才成立。
第一章集合与函数概念重要知识点
一、集合有关概念
1.集合的含义:把一些元素组成的总体叫做集合。
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
注意:常用数集及其记法:
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)判断函数奇偶性的步骤
首先确定函数的定义域,并判断其是否关于原点对称;
确定f(-x)与f(x)的关系;
作出相应结论:;若f(-x) =-f(x),则f(x)是奇函数;
若f(-x) = f(x),则f(x)是偶函数.
②对应法则
③值域: 的取值范围
如果两个函数的定义域相同,并且对应关系完全一致,
那么这两个函数相等
3.区间的概念
区间的分类:
开区间: ,
闭区间: ,
半开半闭区间: ,或 ,分别表示为 ,
五.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
第1章-1.2-子集、全集、补集高中数学必修第一册苏教版

537
424
= {⋯ , , ,1, , , ,⋯ },易知集合A中任一元素均为B中的元素,但B中的有些元素不在
集合A中,故 ⫋ .
2
1
4
(特征法) 集合A中的元素为 = + =
=
4
1
+
2
=
+2
4
2+1
(
4
∈ ),集合B中的元素为
∈ ,而2 + 1 ∈ 为奇数, + 2 ∈ 为整数,故 ⫋ .
知识点4 有限集合的子集、真子集个数
例4-10 (2024·广东省深圳中学月考)若集合满足 ⫋ {1,2},则的个数为( B
A.2
B.3
C.4
D.5
【解析】集合满足 ⫋ {1,2},集合{1,2}的元素个数为2,则的个数为
22 − 1 = 3.
)
例4-11 (2024·河南模拟)已知集合 = { ∈ | − 2 < < 3},则集合的所有非空真
第1章 集合
1.2 子集、全集、补集
教材帮丨必备知识解读
知识点1 子集、真子集
例1-1 能正确表示集合 = { ∈ |0 ≤ ≤ 2}和集合 = { ∈ | 2 − = 0}关系的
Venn图为( B
A.
)
B.
C.
D.
பைடு நூலகம்
【解析】由2 − = 0得 = 1或 = 0,所以 = {0,1},故 ⫋ .结合选项可知,B正确.
【解析】因为 2 − 5 + 6 = 0的两根为2,3,故A正确;
因为⌀ 是任何集合的子集,故B正确;
苏教版高中数学必修一知识点总会

高中数学必修一一、集合1.1集合的含义及其表示1.定义:一般的,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素。
2.特别的,自然数集记作N,正整数集记作N*或N+,,整数集记作Z,有理数集记作Q,实数集记作R.3.集合的元素常用小写拉丁字母表示.如果α是集合A 的元素,那么就记作α∈A,读作“α属于A”,例如2∈R;如果α不是集合A的元素,那么就记作α∉A,读作:α不属于A,例如2∉Q.4.集合中的元素具有确定性(a∈A和a不属于A,二者必居其一)、互异性(若a∈A,b∉A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
5.集合的表示方法:常用的有列举法、描述法和图文法。
6.一般的含有有限个元素的集合称为有限集,含有无限个元素的集合称为无限集。
7.我们把不含任何元素的集合称为空集,记作Ø,例如,集合{x|x2+x+1=0,x∈R}就是空集。
1.2子集、全集、补集1.子集定义:如果集合A的任何一个元素都是集合B的元素(若α∈A则a∈B),那么集合A称为集合B的子集,记为A⊆B或B⊇A,读作“集合A包含于集合B”或“集合B 包含集合A”.2.如果A⊆B并且A≠B,那么集合A称为集合B的真子集,记为A B,读作“A真包含于B”,如{α}{α,b}.3.根据子集的定义,我们知道A⊆A,也就是说,任何一个集合是它本身的子集.对于空集Ø,我们规定Ø⊆A,即空集是任何集合的子集.4.设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为C sA(读作“A在S中的补集”),即C sA={x|x∈S,且x∉A}.5.如果集合S包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常可以记作U.例如,在实数范围内讨论集合时,R便可以看做一个全集U.1.3交集、并集1.一般的,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记作A∩B(读作:“A交B”),即A∩B={x|x∈A,且x∈B}.2.一般的,由所有属于集合A,或者属于集合B的元素构成的集合,称为A与B的并集,记作A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.3.为了叙述方便,在以后的学习中,我们常常会用到区间的概念.设a,b∈R,且a<b,规定[a,b]={x|a≤x≤b},(a,b)={x|a<x<b},[a,b)={x|a≤x<b},(a,b]={x|a<x≤b},(a,+∞)={x|x>a},(-∞,b)={x|x<b},(-∞,+∞)=R.[a,b],(a,b)分别叫做闭区间、开区间:[a,b),(a,b]叫做半开半闭区间:a,b叫做相应区间的端点.读法:∞读作:无穷大;+∞读作:正无穷大(简读:正无穷);-∞读作负无穷大(简读:负无穷).[a,b]读作:闭区间a到b;(a,b)读作:开区间a到b;[a,b)读作:左闭右开a到b;(a,b]读作:左开右闭a到b;(a,+∞)读作:开区间a到正无穷;(-∞,b)读作:开区间负无穷到b;(-∞,+∞)读作:负无穷到正无穷;[a,+∞)读作:闭区间a到正无穷;(-∞,b]读作:开区间负无穷到b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合§1.1集合基础知识点:⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.常用的数集及记法:非负整数集(或自然数集),记作N;*正整数集,记作N或N;N内排除0的集. +整数集,记作Z;有理数集,记作Q;实数集,记作R;5.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现如:方程(x-2)(x-1)=0的解集表示为1, 2,而不是1, 的。
. 21, 2 ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;2⑶非负奇数;⑷方程x+1=0的解;⑸徐州艺校校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作aA; ⑵若a不是集合A的元素,则称a不属于集合A,记作aA。
例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4A,等等。
(2)A={2,4,8,16},则4A,8A,32A. 典型例题 例1.用“∈”或“”符号填空:2⑴8 N;⑵0 N;⑶-3 Z;⑷ Q; 1⑸设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国A。
2例2.已知集合P的元素为, 若2∈P且-1P,求实数m的值。
1,m,m m 3 第二课时基础知识点一、集合的表示方法 ⒈列举法:把集合中的元素一一列举出来, 并用花括号“”括起来表示集合的方法2322叫列举法。
如:{1,2,3,4,5},{x,3x+2,5y-x,x+y},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。
当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。
⑹对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方 能用省略号,象自然数集N用列举法表示为1,2,3,4,5,......例1.用列举法表示下列集合: (1)小于5的正奇数组成的集合;(2)能被3整除而且大于4小于15的自然数组成的集合; (3)从51到100的所有整数的集合; (4)小于10的所有自然数组成的集合;2(5)方程的所有实数根组成的集合;x x⑹由1~20以内的所有质数组成的集合。
⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。
方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:x Ap(x)2如:{x|x-3>2},{(x,y)|y=x+1},{x|直角三角形},…;22说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x+3x+2}与 {y|y= x+3x+2}是 2不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
写法{实数集},{R}也是错误的。
用符号描述法表示集合时应注意:1、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?2、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。
例2.用描述法表示下列集合:2(1) 由适合x-x-2>0的所有解组成的集合; 2(2)方程的所有实数根组成的集合x 2 0(3)由大于10小于20的所有整数组成的集合。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
练习:21.由方程x-2x-3=0的所有实数根组成的集合; 2.大于2且小于6的有理数;23.已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x+1,x∈A},则集合B用列举法表示是 3、文氏图集合的表示除了上述两种方法以外,还有文氏图法,即画一条封闭的曲线,用它的内部来表示一个集合,如下图所示: 3,9,27 表示{3,9,27} A表示任意一个集合A 二、集合的分类观察下列三个集合的元素个数 1. {4.8, 7.3, 3.1, -9}; 2. {xR∣0<x<3}; 23.{xR∣x+1=0} 由此可以得到有限集:含有有限个元素的集合 集合的分类无限集:含有无限个元素的集合 空集:不含有任何元素的集合 (empty set) 3典型例题【题型一】元素与集合的关系21、设集合A={1,},B={1,a},且A=B,求实数a的值。
2a 32,2、已知集合A={a+2(a+1)}若1∈A,求实数a的值。
【题型二】元素的特征61、已知集合M={x∈N∣∈Z},求M 1 x巩固练习:一选择题: 1.给出下列四个关系式:①∈R;②πQ;③0∈N;④0其中正确的个数是( ) 3 A.1B.2C.3D.4 x y 3 2.方程组的解组成的集合是A.{2,1}B.{-1,2}C.(2,1)D.{(2,1)}( ) x y 13.把集合{-3≤x≤3,x∈N}用列举法表示,正确的是( ) A.{3,2,1} B.{3,2,1,0} C.{-2,-1,0,1,2}D.{-3,-2,-1,0,1,2,3}已知A={x|3-3x>0},则下列各式正确的是( ) 4.A.3∈A B.1∈AC.0∈A D.-1∉A 二填空题:25.已知集合A={1,a},实数a不能取的值的集合是________.6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________. 87. 集合M={y∈Z∣y=,x∈Z},用列举法表示是M=。
3 x2 8. 已知集合A={2a,a-a},则a的取值范围是。
三、解答题:29.已知集合A={x|ax-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围. 41.1.2 集合间的基本关系基础知识点比较下面几个例子,试发现两个集合之间的关系:(1),;A {1,2,3}B {1,2,3,4,5}(2),;C {北京一中高一一班全体女生}D {北京一中高一一班全体学生}观察可得:⒈子集:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:读作:A包含于B,或B包含A A B(或B A)当集合A不包含于集合B时,记作A⊈B(或B⊉A) 用Venn图表示两个集合间的“包含”关系: A 表示: A B B ⒉集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B 中的元素是一样的,因此集合A与集合B相等,即若,则。
A B且B AA B 如:A={x|x=2m+1,mZ},B={x|x=2n-1,nZ},此时有A=B。
⒊真子集定义:若集合,但存在元素,则称集合A是集合B 的真子集。
A Bx B,且x A 记作:A B(或B A)读作:A真包含于B(或B真包含A) 4.几个重要的结论:⑴空集是任何集合的子集;对于任意一个集合A都有A。
⑵空集是任何非空集合的真子集;⑶任何一个集合是它本身的子集;⑷对于集合A,B,C,如果,且,那练习:填空:⑴2 N; N; A; {2}么。
A BB CA C2⑵已知集合A={x|x-3x+2=0},B={1,2},C={x|x<8,x∈N},则 A B; A C; {2} C; 2 C 说明:⑴注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;⑵在分析有关集合问题时,要注意空集的地位。
典型例题【题型1】集合的子集问题 1.写出集合{a,b,c}的所有子集,并指出其中哪些是真子集,哪些是非空的真子集。
2.已知集合M满足{2,3}M{1,2,3,4,5}求满足条件的集合M。
2xx3.已知集合A={|x-2x-3=0},B={|ax=1},若BA,则实数a的值构成的集合是()111A.{-1,0,} B.{-1,0} C.{-1,} D.{,0}333 4.已知集合且,求实数m的取值范围。
5A BA x 2 x 5,B x m 1 x 2m 1巩固练习1、判断下列集合的关系. (1) N_____Z; (2) N_____Q; (3)R_____Z; (4) R_____Q; 22 (5) A={x| (x-1)=0},B={y|y-3y+2=0}; 2 (6)A={1,3},B={x|x-3x+2=0}; 2 (7) A={-1,1},B={x|x-1=0}; 2、设A={0,1},B={-1,0,1,2,3},问A与B什么关系?3、已知集合,≥,且满足,求实数24、的取值范围。
a A B2}A {x|a x 5}B {x|xa M NM xx x 6 0,N 若集合,且,求实数的值. x(x 2)(x a) 061.1.3 集合间的基本运算基础知识点考察下列集合,说出集合C与集合A,B之间的关系: (1),;B {2,4,6},C 1,2,3,4,5,6A {1,3,5} (2),; B {xx是无理数},C xx是实数A {xx是有理数}1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合 B 的并集,即A与B的所有部分,记作A∪B,读作:A并B 即A∪B={x|x∈A或x∈B}。
Venn图表示:说明:定义中要注意“所有”和“或”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系? A∪A= , A∪Ф= , A∪BB∪A A∪B=A , A∪B=B . 巩固练习(口答):①.A={3,5,6,8},B={4,5,7,8},则A∪B=; ②.设A={锐角三角形},B={钝角三角形},则A∪B= ; ③.A={x|x>3},B={x|x<6},则A∪B=。