最全最详的画法几何及工程制图之直线的投影2
合集下载
第二节直线的投影-精品.ppt

又因 BC∥bc 故 bc ⊥ABba平面
因此 bc⊥ab 即 ∠abc为直角
.b
a
c
直线在H面上的
投影互相垂直
30
例:过C点作直线与AB垂直相交。
Ⅰ、Ⅱ是V面的重影点, 用其可帮助判断两直线 Ⅲ、Ⅳ是H面的重影点。 的空间位置。
26
例题 判断两直线的相对位置
c
b
1
a
d
X a
d
1
cb
1d 1c 27
判断两直线重影点的可见性
a
X
c 1 (3)4
2
d
b
B
C 13
2 4D O
A
c
3
b
a
4
1(2)
d
判断重影点的可见 性时,需要看重影点 在另一投影面上的投 影,坐标值大的点投 影可见,反之不可见, 不可见点的投影加括 号表示。
例:过C点作水平线CD与AB相交。
b
c●
k
d
a
a
d
k c●
b
先作正面投影
25
⒊ 两直线交叉
a c’
1(2)
3 ●
●
●4
c 2
●
d
两直投为线什影相么特交?性吗:?
b ★ 同名投影可能相交, 但 “交点”不符合空间
b 一个点的投影规律。
●
a
●
1
Байду номын сангаас3(4 )
d
★ “交点”是两直线上 的一 对重影点的投影,
1 从属性 若点在直线上,则点的各个投影必在直线的各同面投 影上。利用这一特性可以在直线上找点,或判断已知点是否在直 线上。
2 定比性 属于线段上的点分割线段之比等于其投影之比。即
因此 bc⊥ab 即 ∠abc为直角
.b
a
c
直线在H面上的
投影互相垂直
30
例:过C点作直线与AB垂直相交。
Ⅰ、Ⅱ是V面的重影点, 用其可帮助判断两直线 Ⅲ、Ⅳ是H面的重影点。 的空间位置。
26
例题 判断两直线的相对位置
c
b
1
a
d
X a
d
1
cb
1d 1c 27
判断两直线重影点的可见性
a
X
c 1 (3)4
2
d
b
B
C 13
2 4D O
A
c
3
b
a
4
1(2)
d
判断重影点的可见 性时,需要看重影点 在另一投影面上的投 影,坐标值大的点投 影可见,反之不可见, 不可见点的投影加括 号表示。
例:过C点作水平线CD与AB相交。
b
c●
k
d
a
a
d
k c●
b
先作正面投影
25
⒊ 两直线交叉
a c’
1(2)
3 ●
●
●4
c 2
●
d
两直投为线什影相么特交?性吗:?
b ★ 同名投影可能相交, 但 “交点”不符合空间
b 一个点的投影规律。
●
a
●
1
Байду номын сангаас3(4 )
d
★ “交点”是两直线上 的一 对重影点的投影,
1 从属性 若点在直线上,则点的各个投影必在直线的各同面投 影上。利用这一特性可以在直线上找点,或判断已知点是否在直 线上。
2 定比性 属于线段上的点分割线段之比等于其投影之比。即
【精品】2-2直线的投影@PPT课件

垂直于V 面 (正垂线)
垂直于W 面 (侧垂线)
Z
V a'
(b') B
b"
X Hb
A O
a"
W
a
Y
Z
Va' b' B a"
X
A O (b")
aH
W bY
a' (b')
Z b" a"
a' b' Z a"
(b")
X
b a
O YW X
O YW
ab
YH
YH
1. a'b'积聚为一点. 1. a"b"积聚为一点.
ad
YH
AB与CD不相交
两直线交叉
两直线交叉 既不平行、也不相交的两直线称为交叉两直线。
交叉二直线的同面投影可能平行,但不可能所有同面投 影都平行;其同面投影可能相交,但交点连线不垂直于 投影轴。
V
b'
g'(j') c'
B E
a'
d'
X
AJ
DO
C
a
GF d
c e(f)
b
H
两直线交叉
重影点 重影点:分属两直线的两个点在某投影面上的重合投影叫重影点。
c
b
k'
a' c' X
c
O b
反之,若两直线的同面投 a A k d H a
kd
影均相交,且交点的连线 垂直于投影轴,则两直线 相交。
Z
a'
c' l'
《画法几何及土木工程制图》(第3版)2.2 直线的投影

d c 分析: D a b C 因为ABBC,且 ABH 根据直角投影定理 有ab bc A b d c
水平线
Z
a’ A
a
b’ B b” b
β
a’ X
b’ Z
b”
a’ YW
X
a”
γ Y a
β
b
γ
水平线的投影特性:
反映真长TL YH
1.水平线的H投影反映真长,真长投影与OX夹角为β;与 OY轴的夹角为γ;α= 0°。
2.水平线的V投影 a’b’∥OX;W投影 a”b”∥OY;
正平线
b′ Z B α γ A
【例题1】判定下题中,点K是否在直线AB上?
b′ k′
Z
b″
a′
a″
X O
k″
YW
a
k b YH
K 点 在 直 线 AB 上
【例题2】判断点K是否在直线AB上。 a′
Z a″
k′ b′ X O
k″ b″ YW
a
k b
K 点 不 在 直 线 AB 上
YH
【例题3】已知点C在线段AB上,求点C 的正面投影。 V b c a X A a B C O X b c cb
2.2 直线的投影
• 直线的投影
• 直线上的点
a′ V b′ β A b aH Y γ
Z B b″
W a″
• 直线的真长及其倾角
• 两直线间的相对位置 X • 一边平行于投影面的直 角投影规律
α
1、直线的投影
直线的投影特性: 一般来说,直线的投影 仍然为直线。当直线垂直于 投影面时,直线的投影则积 聚为一点。
a
如何判断?
求出侧面投影后可知:
水平线
Z
a’ A
a
b’ B b” b
β
a’ X
b’ Z
b”
a’ YW
X
a”
γ Y a
β
b
γ
水平线的投影特性:
反映真长TL YH
1.水平线的H投影反映真长,真长投影与OX夹角为β;与 OY轴的夹角为γ;α= 0°。
2.水平线的V投影 a’b’∥OX;W投影 a”b”∥OY;
正平线
b′ Z B α γ A
【例题1】判定下题中,点K是否在直线AB上?
b′ k′
Z
b″
a′
a″
X O
k″
YW
a
k b YH
K 点 在 直 线 AB 上
【例题2】判断点K是否在直线AB上。 a′
Z a″
k′ b′ X O
k″ b″ YW
a
k b
K 点 不 在 直 线 AB 上
YH
【例题3】已知点C在线段AB上,求点C 的正面投影。 V b c a X A a B C O X b c cb
2.2 直线的投影
• 直线的投影
• 直线上的点
a′ V b′ β A b aH Y γ
Z B b″
W a″
• 直线的真长及其倾角
• 两直线间的相对位置 X • 一边平行于投影面的直 角投影规律
α
1、直线的投影
直线的投影特性: 一般来说,直线的投影 仍然为直线。当直线垂直于 投影面时,直线的投影则积 聚为一点。
a
如何判断?
求出侧面投影后可知:
画法几何与工程制图 第四章 直线的投影

[例2]已知侧平线CD上一点E的正面投影e′,求e。
第五节 两直线的相对位置
一、平行两直线 二、相交两直线 三、交叉两直线
[例4-5] [例4-6] [例4-7]
一、平行两直线
如果空间两直线互相平行,则此两直线的各同面投影 必互相平行。 若两直线的各同面投影互相平行,则此两直线在空间 一定互相平行。
第四章 直线的投影
第一节 直线的投影
第二节 直线与投影面的相对位置
第三节 线段的实长及其对投影面的倾角 第四节 直线上的点 第五节 两直线的相对位置直线的投影
第六节 垂直两直线的投影
第一节 直线的投影
一、直线的投影一般仍为直线 二、直线的投影可由直线上两点的同面 投 投影确定
一.直线的投影一般仍为直线
W
H
三、投影面垂直线
铅垂线 正垂线
侧垂线
垂直于W 面的线
小结:
⑴.
投影面垂直线的投影面上的投影集聚成一点;
W
⑵ .投影面垂直线在其它两个投影面上的投影分别垂直于
相应的投影轴,且反映该直线段的实长。
H
第三节
线段的实长及对投影面的倾角
一、线段的实长及其对H面的倾角α
二、线段的实长及其V面的倾角
C
D
c( d )
直线的投影一般仍为直线
特殊情况下积聚为一点
二.直线的投影可由直线上两点的同面投影确定
第二节 直线与投影面的相对位置
一、一般位置直线 二、投影面平行线 三、投影面垂直线
平行于某一投影面而 与其余两投影面倾斜
正平线(平行于V面)
投影面平行线 侧平线(平行于W面)
水平线(平行于H面) 正垂线(垂直于V面) 投影面垂直线 侧垂线(垂直于W面) 铅垂线(垂直于H面)
画法几何及机械制图 第二章 点、直线和平面的投影

a
定比作图方法
c
b
§2-2 直线的投影
例2 已知点C在线段AB上,求点C的正面投影。
b Z
b
V
b
c a C B
X
A
O
a
X
a
a
O
a
c YW
a
c Hb
c b
YH
§2-2 直线的投影
例3. 在直线AB上取一点C, 使AC = L,求点C的两投影。
b c
a
L
b c
a
a
X
a
b
L
c
ZAB
O
b
c
ZAB
b0
L
c0
平面对 投影面的倾 角、、
二、各种位置平面的投影特性
§2-3 平面的投影
投影面垂直面: 垂直于一个、倾斜 于另两个投影面的 平面
V面—正垂面 H面—铅垂面 W面—侧垂面
特殊位 置平面
投影面平行面: 平行于一个、同时 垂直于另两个投影 面的平面
V面—正平面 H面—水平面 W面—侧平面
投影面倾斜面: 对三个投影面都倾 斜的平面
c b
X
b O c
YW
当两直线均为
b
一般位置直线时, c
若有两个同面投影 满足上述条件,则 空间两直线相交。
d
a
YH
§2-2 直线的投影
3. 交叉两直线
既不平行又不相交的两直线
b
1(2 )
d
c
a
Ⅱ
2 Ⅰd
c
b
a1
b d
1(2 )
c
X a
O
d
c
a
制图讲解—直线的投影

b
c
B
C A
ac
b H
定比定理
直线上的点具有两个特性:
从属性 若点在直线上,则点的各个投影必在直线的各同面投影 上。利用这一特性可以在直线上找点,或判断已知点是 否在直线上。
定比性 属于线段上的点分割线段之比等于其投影之比。即
A C: C B = a c : c b= ac : cb = ac : c b
投影特性:
b a
A
a
V d
B c
C
D
c
b
dH
空间两直线平 行,则其各同名投 影必相互平行,反 之亦然。
例1:判断图中两条直线是否平行。
① b
d a
c
a
c
bd
AB//CD
对于一般位置直 线,只要有两个同名 投影互相平行,空间 两直线就平行。
例2:判断图中两条直线是否平行。
② c
a
d b
c b
c a
⒉ 两直线中有一条平行于某一投影面时, 在该投影面上的投影反映直角。
⒊ 两直线均为一般位置直线时, 在三个投影面上的投影都不 直角定理 反映直角。
●b a●
直线倾斜于投影面 投影比空间线段短
ab=ABcosα
二、 直线在三个投影面中的投影特性
投影面 平行线
正平线(平行于V面) 侧平线(平行于W面) 水平线(平行于H面)
平行于某一投影面而 与其余两投影面倾斜
统称特殊位置直线
投影面 垂直线
正垂线(垂直于V面) 侧垂线(垂直于W面) 垂直于某一投影面
d b
对于特殊位置直 线,只有两个同名投 影互相平行,空间直 线不一定平行。
da 如何判断?
工程制图4(直线的投影)

本节回顾
• 直线的投影
– 直线投影的定义,直线实长及其与各投影面夹 角的求法
– 直线投影和点投影的关系 – 各种位置直线的投影 – 两直线的相对位置
• 作业
– 习题集17-20页
3-2 直线的投影
一、直线的投影图 二、各种位置直线的投影 三、直线上点的投影 四、两直线的相对位置
一、直线的投影图 z
b’ b”
a’
a”
X
o
YW
b
a
YH
两点决定一条直线。因此,直线直线的的投投影影图可以由直 线上任意两个点的投影来决定。
1. 直线对一个投影面的投影特性
A
B
B
M
A
B
α
A
b
b
a(b)(m) H
b’
c’
Z坐标差
a’
a c
C0
b
三、直线上点的投影
1. 从属性。若点在直线上,则点的各个投影必定在该直线的 同面投影上,并且符合空间一点的投影特性。
2. 定比性。若点在直线上,则点分线段之比等于其投影之比。
AC:CB= ac:cb = a’c’:c’b’ = a”c”:c”b”
b’
z
b”
c’
c”
例6 已知AB∥V面,试过点C作一直线CD与AB垂 直相交。
b’
d’
a’
X
a
d
直线CD与正平线AB所成的 直角正面投影上反映直角。
c’ b
c
例7 求两直线AB、CD的公垂线。
公垂线MN是水平
D N
线 c’
A
n’ d’
a’ m’
M
C
BX
画法几何及土木工程制图02-直线

有三种情况:平行、相交、交错(交叉)。
相交 平行
交错
第二章 直线
21
§2-5 两直线的相对位置
一、两直线平行
空间平行的两直线,其所有的同面投影都各自保持平行关 系。 反之,若三面体系中两直线的所有同面投影都各自保持平行 关系,则空间两直线平行。
第二章 直线
22
§2-5 两直线的相对位置
只要有一组同面投影不平行,空间两直线就不平行。 注意:一般情况下,只要检查两组同面投影就能判断出两直线 是否平行。对于平行于同一投影面的两直线,则需要求出它们在该 投影面上的投影,或根据两直线共面、定比等关系作图进行判断。
第二章 直线
29
§2-6 一边平行于投影面的直角的投影
直角投影法则:
当构成直角的两条直线中,有一直线是投影面平行 线,则此两直线在该投影面上的投影仍相交成直角。 逆定理也成立 。
第二章 直线
30
§2-6 一边平行于投影面的直角的投影
证明:AB⊥BC、AB⊥Bb , ∴ AB⊥BbcC 又 ab∥AB ∴ ab⊥BbcC , ∴ ab⊥bc 即 ∠abc=90°
迹点是直线穿越相邻两分角或卦角间的投影面上的点;
直线在其两相邻迹点之间的部分,必处在同一分角或卦角 中,这部分直线段上所有点的同名坐标值的正、负号相同。
第二章 直线
8
§2-3 直线的倾角和直线段的实长
一、倾角和实长
空间直线与某投影面的夹角,称为 直线对该投影面的倾角。 对H 面的倾角记为α
对V 面的倾角记为β 对W 面的倾角记为γ
第二章 直线
31
§2-6 一边平行于投影面的直角的投影
直角投影法则不仅适用于相交垂直的两直线, 也适用于交错垂直的两直线。下面都是符合直角 投影法则的投影图。
相交 平行
交错
第二章 直线
21
§2-5 两直线的相对位置
一、两直线平行
空间平行的两直线,其所有的同面投影都各自保持平行关 系。 反之,若三面体系中两直线的所有同面投影都各自保持平行 关系,则空间两直线平行。
第二章 直线
22
§2-5 两直线的相对位置
只要有一组同面投影不平行,空间两直线就不平行。 注意:一般情况下,只要检查两组同面投影就能判断出两直线 是否平行。对于平行于同一投影面的两直线,则需要求出它们在该 投影面上的投影,或根据两直线共面、定比等关系作图进行判断。
第二章 直线
29
§2-6 一边平行于投影面的直角的投影
直角投影法则:
当构成直角的两条直线中,有一直线是投影面平行 线,则此两直线在该投影面上的投影仍相交成直角。 逆定理也成立 。
第二章 直线
30
§2-6 一边平行于投影面的直角的投影
证明:AB⊥BC、AB⊥Bb , ∴ AB⊥BbcC 又 ab∥AB ∴ ab⊥BbcC , ∴ ab⊥bc 即 ∠abc=90°
迹点是直线穿越相邻两分角或卦角间的投影面上的点;
直线在其两相邻迹点之间的部分,必处在同一分角或卦角 中,这部分直线段上所有点的同名坐标值的正、负号相同。
第二章 直线
8
§2-3 直线的倾角和直线段的实长
一、倾角和实长
空间直线与某投影面的夹角,称为 直线对该投影面的倾角。 对H 面的倾角记为α
对V 面的倾角记为β 对W 面的倾角记为γ
第二章 直线
31
§2-6 一边平行于投影面的直角的投影
直角投影法则不仅适用于相交垂直的两直线, 也适用于交错垂直的两直线。下面都是符合直角 投影法则的投影图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平线 正平线
正平线
平行于V 面 倾斜于H 面和W 面
γ
γ γ
线的正面投影反映线的实长及α、γ
水平线
正平线
侧平线
侧平线
平行于W 面 倾斜于H 面和V 面
β
小结: β β α ⑴ . 直线在它所平行的投影面上的投影,反映该线的实长
和其它两投影面的倾角; W ⑵ . 直线在其它两个投影面上的投影分别平行于相应的投 影轴,长度小于实长。
α
H
α
侧平线的正面投影反映线的实长及α、β
三、投影面垂直线
铅锤线 垂直于某一投影面,同时平行于其它两个投影面的直线称 为投影面垂直线。 铅垂线 垂直于H 面的线
W
H
铅锤线
正垂线
正垂线
垂直于V 面的线
W
H
铅垂线
正垂线
侧垂线
侧垂线
垂直于W 面的线
小结: ⑴ . 投影面垂直线的投影面上的投影集聚成一点; ⑵ . 投影面垂直线在其它两个投影面上的投影分别垂 W 直于相应的投影轴,且反映该直线段的实长。
第四章 直线的投影
直线与投影面的相对位置
一、一般位置直线
β
γ
α
W
H
一般位置一直在三个投影面都倾斜
二、投影面平行线
平行于某一投影面而与其它两个投影面倾斜的直线 称为投影面平行线。 平行于H 面 水平线 倾斜于V面和W 面
β
γ
x
β
W
β
x y
γ
y H
γ
水平线的水平投影反映线段实长及β、γ。
H