数字信号处理实验五

合集下载

数字信号处理实验实验五汇总

数字信号处理实验实验五汇总

数字信号处理实验报告实验名称:应用FFT实现信号频谱分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、 实验目的(1) 能够熟练掌握快速离散傅里叶变换的原理及应用FFT 进行频谱分析的基本方法。

(2) 对离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用有进一步的了解。

二、 实验原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称性、虚实特性等。

通过实验可以加深理解。

实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义,可得X(k)=∑-=1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=-ππX(N-k)=∑-=-10)()(N n n k N NWn x =∑-=-1)(N n kn nNnWWn x =∑-=-1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=+ππ所以,X(k)=X *(N-k)实序列DFT 的这个特性,在本实验中可以通过实指数序列及三角序列看出来。

对于单一频率的三角序列来说,它的DFT 谱线也是单一的,这个物理意义可以从实验中得到验证,在理论上可以推导如下: 设)()2s i n ()(n R n Nn x N π= 其DFT 为 X(k)=∑-=-102)(N n kn Nen x π=kn Nj N n e n N ππ21)2sin(--=∑=kn N j n N j N n N j e e e j πππ22102)(21---=-∑=)(21)1(210)1(2+--=---∑k n N j N n k n N j e e j ππ从而,X(0)=0)(212102=---=∑n N j N n Nj e e j ππX(1)=22)1(21104Nj j N e j N n n N j -==-∑-=-πX(2)=0 …… X(N-2)=0X(N-1)=22)(21210)2(2Nj j N e e j n j N n n N N j =-=-∑-=--ππ以上这串式中X(0)反映了x(n)的直流分量,X(1)是x(n)的一次谐波,又根据虚实特性X *(N-1)=X(1),而其他分量均为零。

数字信号处理实验报告 (5)

数字信号处理实验报告 (5)

实验一信号、系统及系统响应一、实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定的理解。

2、熟悉时域离散系统的时域特性。

3、利用卷积方法观察分析系统的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理采样的的过程既是连续信号离散化的过程。

采用单位冲击串进行采样,为使采样信号能不失真的还原为采样前的信号,根据奈奎斯特采样率,采样频率应该大于信号最高频率的2倍。

因为时域的采样既是对时域的离散化处理,时域离散频域会进行周期延拓,为了防止频域频谱混叠,必须满足奈奎斯特采样定律。

线性卷积的过程为:反褶,移位,相乘,相加。

设一个N1点的序列与一个N2的序列进行卷积则得到N1+N2-1点的序列。

时域卷积,对应频域的相乘。

序列的傅里叶变换即DTFT 。

具有的性质有: 线性,移位性,对偶性,等等。

三、实验内容及步骤1)分析采样序列的特性。

产生采样序列()a x n ,A 444.128=,a =,0Ω=。

a 、 取采样频率s f 1kHz =,即T 1ms =。

观察所采样()a x n 的幅频特性()j X e ω和)(t x a 的幅频特性()X j Ω在折叠频率处有无明显差别。

应当注意,实验中所得频谱是用序列的傅立叶变换公式求得的,所以在频率量度上存在关系:T ω=Ω。

b 、改变采样频率,s f 300Hz =,观察()j X eω的变化并做记录。

c 、 进一步降低采样频率,s f 200Hz =,观察频谱混叠是否明显存在,说明原因,并记录()j X e ω的幅频曲线。

上图是采用不同采样频率时所得到的序列及其对应的傅里叶变换,从图中可以看到,当采样频率比较低时,频谱会发生混叠,且频率越低,混叠现象越明显。

增大采样频率可以有效地防止混叠。

2) 离散信号、系统和系统响应分析。

a 、观察信号()b x n 和系统h ()b n 的时域和频域持性;利用线形卷积求信号()b x n 通过系统h ()b n 的响应y(n),比较所求响应y(n)和h ()b n 的时域及频域特性,注意它们之间有无差异,绘图说明,并用所学结论解释所得结果。

数字信号处理实验五.FIR数字滤波器设计与软件实现

数字信号处理实验五.FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现一、实验指导1.实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。

(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。

(3)掌握FIR滤波器的快速卷积实现原理。

(4)学会调用MATLAB函数设计与实现FIR滤波器。

2.实验内容及步骤(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示;图1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。

先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。

并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。

绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。

(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。

并比较两种设计方法设计的滤波器阶数。

提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材;○2采样频率Fs=1000Hz,采样周期T=1/Fs;○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率p 20.24pfωπ=T=π,通带最大衰为0.1dB,阻带截至频率s 20.3sfωπ=T=π,阻带最小衰为60dB。

○4实验程序框图如图2所示,供读者参考。

图2 实验程序框图4.思考题(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。

数字信号处理实验五

数字信号处理实验五

实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。

(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。

数字信号处理实验(1-7)原始实验内容文档(含代码)

数字信号处理实验(1-7)原始实验内容文档(含代码)

实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。

实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。

实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。

实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。

(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。

(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。

3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

数字信号管理方案计划实验报告实验五

数字信号管理方案计划实验报告实验五

物理与电子信息工程学院实验报告实验课程名称:数字信号处理实验名称:FIR数字滤波器设计与软件实现班级:1012341姓名:严娅学号:101234153成绩:_______实验时间:2012年12月20 日一、实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。

(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。

(3)掌握FIR 滤波器的快速卷积实现原理。

(4)学会调用MATLAB 函数设计与实现FIR 滤波器。

二、实验原理1、用窗函数法设计FIR 数字滤波器的原理和方法。

如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰- (2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。

由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为:)(ωj d e H =∑-=-1)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。

由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。

设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。

这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。

)(ωj e H 是否满足要求,要进行验算。

一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。

数字信号处理上机实验 作业结果与说明 实验三、四、五

数字信号处理上机实验 作业结果与说明 实验三、四、五

上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。

2、观察对实际正弦组合信号的滤波作用。

二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。

要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。

抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。

(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。

frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。

数字信号处理实验五谱分析

数字信号处理实验五谱分析

用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos 4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b)采样频率 必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的
频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号 和模拟信号 之间的关系为:
对上式进行傅立叶变换,得到:
在上式的积分号内只有当 时,才有非零值,因此:
上式中,在数值上 = ,再将 代入,得到:
上式的右边就是序列的傅立叶变换 ,即
上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用 代替即可。
频域采样定理的要点是:
a)对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到
则N点IDFT[ ]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:
(4)学会调用MATLAB函数设计与实现FIR滤波器
实验要求
(1)对两种设计FIR滤波器的方法(窗函数法和等波纹最佳逼近法)进行分析比较,简述其优缺点。
(2)附程序清单、打印实验内容要求绘图显示的曲线图。
(3)分析总结实验结果。
(4)简要回答思考题。
实验原理
a)对模拟信号 以间隔T进行时域等间隔理想采样,形成的采样信号的频谱 是原模拟信号频谱 以采样角频率 ( )为周期进行周期延拓。公式为:
③用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等指标均匀分布,没有资源浪费,所以期阶数低得多。
指导教师意见
签名:
年月日
[Ne,fo,mo,W]=remezord(fb,m,dev,Fs);% 确定remez函数所需参数
hn=remez(Ne,fo,mo,W);% 调用remez函数进行设计
Hw=abs(fft(hn,1024));% 求设计的滤波器频率特性
yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波
①用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;
②几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。如本实验所选的blackman窗函数,其阻带最小衰减为74dB,而指标仅为60dB。
(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。
在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。
对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。
实验仪器
PC机,MATLAB软件
实验步骤
(1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理;
%以下为用等波纹设计法的绘图部分(滤波器损耗函数,滤波器输出信号yw(nT)波形)
%省略
实验数据
实验内容1:
实验内容2:
实验总结
用窗函数法设计滤波器,滤波器长度 Nb=184。滤波器损耗函数和滤波器输出yw(nT)分别如图(a)和(b)所示。
用等波纹最佳逼近法设计滤波器,滤波器长度 Ne=83。滤波器损耗函数和滤波器输出ye(nT)分别如图(c)和(d)所示。
图10.5.2实验程序框图
实验内容
%《数字信号处理(第三版)学习指导》第10章实验5程序
% FIR数字滤波器设计及软件实现
clear all;close all;
%==调用xtg产生信号xt, xt长度N=1000,并显示xt及其频谱,=========
N=1000;xt=xtg(N);
fp=120; fs=150;Rp=;As=60;Fs=1000;% 输入给定指标
(2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示;
图10.5.1具有加性噪声的信号x(t)及其频谱如图
(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。
b)由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[ ]得到的序列 就是原序列x(n),即 =x(n)。如果N>M, 比原序列尾部多N-M个零点;如果N<M,z则 =IDFT[ ]发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。 与x(n)不相同。
附录1:
贵州大学实验报告
学院: 电气工程学院 专业: 测控技术与仪器 班级:测仪131
姓名
杨凯
学号
实验组
实验时间
指导教师
成绩
实验项目名称
FIR数字滤波器设计与软件实现
实验目的
(1)掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
采样频率Fs=1000Hz,采样周期T=1/Fs;
根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率 ,通带最大衰为,阻带截至频率 ,阻带最小衰为60dB。]
实验程序框图如图10.5.2所示,供读者参考。
% (1) 用窗函数法设计滤波器
wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)
B=2*pi*(fs-fp)/Fs; %过渡带宽度指标
Nb=ceil(11*pi/B); %blackman窗的长度N
hn=fir1(Nb-1,wc,blackman(Nb));
Hw=abs(fft(hn,1024));% 求设计的滤波器频率特性
ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波
%以下为用窗函数法设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形)
%省略
% (2) 用等波纹最佳逼近法设计滤波器
fb=[fp,fs];m=[1,0];% 确定remezord函数所需参数f,m,dev
dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];
两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图(b)和(d)可以直观地看出时延差别。
(1)用窗函数法设计线性相位低通滤波器的设计步骤教材中有详细的介绍.
(2)希望逼近的理想带通滤波器的截止频率 分别为:
(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?
相关文档
最新文档