高考数学一轮复习学案:2.8 函数与方程(含答案)

合集下载

高考数学一轮复习教学案函数及其表示(含解析)

高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

高考数学一轮复习函数与方程

高考数学一轮复习函数与方程
3.二分法的定义
对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零

点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录

(多选)有如下说法,其中正确的有


A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (

A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

高考数学一轮复习第二章函数概念及基本初等函数Ⅰ第8节函数与方程课件新人教A版

D.[1,2)
解析 依题意直线y=a与y=f(x)的图象有两个交点. 作出y=a,y=f(x)的图象,如图所示. 又当 x≤1 时,f(x)=12|x|∈(0,1]; 当x>1时,f(x)=-x2+4x-2=-(x-2)2+2, ∴当x=2时,f(x)有最大值f(2)=2. 结合图象,当 a∈0,12∪[1,2)时,两图象有 2 个交点. 此时,方程a=f(x)有两个不同实根. 答案 B
【训练3】 (1)(角度1)(202X·全国Ⅲ卷)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零
点,则a=( )
A.-12
1 B.3
1
C.2
D.1
(2)(角度2)若函数y=x+log2(a-2x)+2在R上有零点,则实数a的最小值为________.
解析 (1)f(x)=(x-1)2-1+a(ex-1+e1-x),则f(2-x)=(2-x-1)2-1+a[e2-x-1+ e1-(2-x)]=(1-x)2-1+a(ex-1+e1-x)=f(x),即f(x)的图象关于直线x=1对称. 若 f(x)有唯一的零点,则只有 f(1)=0,∴a=12. 或:作出y=a(ex-1+e-x+1)与y=-x2+2x的图象.
x0 所在的区间是________.
解析 (1)由函数 f(x)=x-1 a为奇函数,可得 a=0, 则 g(x)=ln x-2f(x)=ln x-2x. 又 g(2)=ln 2-1<0,g(3)=ln 3-23>0,
所以g(2)·g(3)<0. 故函数g(x)的零点所在区间为(2,3).
(2)设 f(x)=x3-12x-2,则 x0 是函数 f(x)的零点,在同一坐 标系下画出函数 y=x3 与 y=12x-2的图象如图所示. 因为 f(1)=1-12-1=-1<0,f(2)=8-120=7>0, 所以f(1)·f(2)<0,所以x0∈(1,2). 答案 (1)C (2)(1,2)

高考数学一轮复习:函数与方程(Word版,含解析)

高考数学一轮复习:函数与方程(Word版,含解析)

函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。

高考数学复习第2章函数导数及其应用2.8函数与方程习题文市赛课公开课一等奖省优质课获奖课件

高考数学复习第2章函数导数及其应用2.8函数与方程习题文市赛课公开课一等奖省优质课获奖课件

A.5
B.6
C.8
D.9
14/34
解析 由f(x2-2x+3)=g(x)及y=x2-2x+3的图象关于
直线x=1对称知g(x)的图象关于直线x=1对称,由g(x)+
sin
π 2
x=0,知g(x)=-sin
π 2
x,因为y=-sin
π 2
x的图象也关于
直线x=1对称,g(x)+sin
π 2
x=0有5个根,故必有一个根为
A.(-1,1) B.[1,+∞) C.(1,+∞) D.(2,+∞)
解析 当a=0时,函数的零点是x=-1,不合题 意.当a≠0时,若Δ>0,f(0)·f(1)<0,则a>1.
若Δ=0,即a=-
1 8
,函数的零点是x=-2,不合题
意.故选C.
6/34
4.(2017·浙江嘉兴测试)已知函数f(x)=
-1,又
1 3

1 a
-1≤2,故由图可知,直线y=2-x与y=|f(x)|的图象在
x>0时有一个交点;当直线y=2-x与y=x2+(4a-3)x+
3a(x<0)的图象相切时,设切点为(x0,y0),则
2-x0=x20+4a-3x0+3a, -1=2x0+4a-3,
整理可得4a2-7a+3=0,
21/34
24/34
13.已知a是实数,函数f(x)=2a|x|+2x-a,若函数y =f(x)有且仅有两个零点,则实数a的取值范围是 _(_-__∞__,__-__1_)_∪__(1_,__+__∞__)__.
解析 由题意易知a≠0,令f(x)=0,即2a|x|+2x-a= 0,变形得|x|-12=-1ax,

2018年高考数学(人教A版)一轮复习课时分层提升练十一2-8函数与方程Word版含解析

2018年高考数学(人教A版)一轮复习课时分层提升练十一2-8函数与方程Word版含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时分层提升练十一函数与方程(25分钟50分)一、选择题(每小题5分,共20分)1.若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是( )A.0,2B.0,C.0,-D.2,-【解析】选C.由题意知2a+b=0,即b=-2a.令g(x)=bx2-ax=0得x=0或x==-.2.(2017·成都模拟)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是( )A.f(x)=8x-2B.f(x)=(x+1)2C.f(x)=e x-1D.f(x)=ln【解析】选A.因为g(0)=-1<0,g=1>0,所以g(0)·g<0,所以g(x)的零点在内,因为f(x)=8x-2的零点为,故选A.3.(2017·定州模拟)函数f(x)=e x+3x的零点个数是( )A.0B.1C.2D.3【解析】选B.由已知得f′(x)=e x+3>0,所以f(x)在R上单调递增,又f(-1)=e-1-3<0,f(1)=e+3>0,所以f(x)的零点个数是1.【加固训练】函数f(x)=2x|log0.5x|-1的零点个数为( )A.1B.2C.3D.4【解析】选B.当0<x<1时,f(x)=2x log0.5x-1,令f(x)=0,则log0.5x=.由y=log0.5x,y=的图象知,在(0,1)内有一个交点,即f(x)在(0,1)上有一个零点.当x>1时,f(x)=-2x log0.5x-1=2x log2x-1,令f(x)=0得log2x=,由y=log2x,y=的图象知在(1,+∞)上有一个交点,即f(x)在(1,+∞)上有一个零点.4.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则( )A.a<b<cB.a<c<bC.b<a<cD.c<a<b【解析】选B.由于f(-1)=-1=-<0,f(0)=1>0,且f(x)为R上的增函数.故f(x)=2x+x的零点a∈(-1,0).因为g(2)=0,所以g(x)的零点b=2;因为h=-1+=-<0,h(1)=1>0,且h(x)为(0,+∞)上的增函数,所以h(x)的零点c∈,因此a<c<b.【一题多解】本题还可以采用如下方法:选B.由f(x)=0得2x=-x;由h(x)=0得log2x=-x,作出函数y=2x,y=log2x和y=-x的图象(如图).由图象易知a<0,0<c<1,而b=2,故a<c<b.二、填空题(每小题5分,共10分)5.(2017·九江模拟)函数f(x)对一切x∈R都有f=f,并且方程f(x)=0有三个实根,则这三个实根的和为.【解析】因为函数f(x)的图象关于直线x=对称,所以方程f(x)=0有三个实根时,一定有一个根是,另外两个根关于直线x=对称,且和为1,故方程f(x)=0的三个实根的和为.答案:【加固训练】(2017·漳州模拟)已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.【解析】画出f(x)=的图象,如图.由于函数g(x)=f(x)-m有3个零点,结合图象得:0<m<1,即m∈(0,1). 答案:(0,1)6.若函数f(x)=lnx+2x-6的零点x0∈(k,k+1),则整数k的值为.【解析】因为f(2)=ln2-2<0,f(3)=ln3>0,所以f(x)=lnx+2x-6存在零点x0∈(2,3).因为f(x)=lnx+2x-6在定义域(0,+∞)上单调递增,所以f(x)=lnx+2x-6存在唯一的零点x0∈(2,3),则整数k=2.答案:2三、解答题(每小题10分,共20分)7.(2017·石家庄模拟)已知函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x 的定义域为区间.(1)求g(x)的解析式.(2)判断g(x)的单调性.(3)若方程g(x)=m有解,求m的取值范围.【解析】(1)因为f(a+2)=18,即3a+2=18,所以3a=2,所以g(x)=2x-4x.(2)g′(x)=2x ln2-4x ln4=2x ln2(1-2x+1).因为x∈,所以2x+1∈,所以1-2x+1≤0,又2x>0,ln2>0,所以g′(x)≤0(仅当x=-1时取“=”),所以g(x)在上是减函数.(3)由m=g(x)=2x-4x,得g(1)≤m≤g(-1),所以-2≤m≤.【加固训练】已知函数f(x)=4x+m·2x+1有且仅有一个零点,(1)求m的取值范围.(2)求函数的零点.【解析】(1)因为f(x)=4x+m·2x+1有且仅有一个零点,即方程(2x)2+m·2x+1=0仅有一个实根.设2x=t(t>0),则t2+mt+1=0.当Δ=0时,即m2-4=0,所以m=-2时,t=1;m=2时,t=-1(不合题意,舍去). 所以2x=1,x=0符合题意.当Δ>0时,即m>2或m<-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点.所以这种情况不符合题意.综上可知:当m=-2时,f(x)有唯一零点.(2)由(1)可知,该函数的零点为x=0.8.(2017·徐州模拟)已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.(1)写出函数y=f(x)的解析式.(2)若方程f(x)=a恰有3个不同的解,求a的取值范围.【解析】(1)当x∈(-∞,0)时,-x∈(0,+∞).因为y=f(x)是奇函数,所以f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x,所以f(x)=(2)当x∈[0,+∞)时,f(x)=x2-2x=(x-1)2-1,最小值为-1;当x∈(-∞,0)时,f(x)=-x2-2x=1-(x+1)2,最大值为1.所以据此可作出函数y=f(x)的图象(如图所示),根据图象,若方程f(x)=a 恰有3个不同的解,则a的取值范围是(-1,1).(20分钟40分)1.(5分)(2017·荆州模拟)f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2016x+log2016x,则函数f(x)的零点的个数是( ) A.1 B.2 C.3 D.4【解析】选C.因为f(x)是定义在R上的奇函数,所以f(0)=0.结合函数的图象,可知函数y=2016x和函数y=-log2016x的图象在第一象限有一个交点,所以函数f(x)有一个正的零点,根据奇函数图象的对称性,有一个负的零点,所以函数有三个零点.2.(5分)已知a是函数f(x)=2x-lo x的零点,若0<x 0<a,则f(x0)的值满足( )A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定【解析】选B.函数f(x)=2x+log2x在(0,+∞)上是增函数,故零点是唯一的,又0<x0<a,则f(x0)<f(a)=0.3.(5分)(2017·邯郸模拟)已知f(x)=且函数y=f(x)+ax恰有3个不同的零点,则实数a的取值范围是. 【解析】当x<0时,f(x)=(x+1)2-,把函数f(x)在[-1,0)上的图象向右平移一个单位即得函数y=f(x)在[0,1)上的图象,继续右移可得函数f(x)在[0,+∞)上的图象.如果函数y=f(x)+ax恰有3个不同的零点,即函数y=f(x),y=-ax的图象有三个不同的公共点,实数a应满足-a<-或≤a<,即a>或-<a≤. 故实数a的取值范围是∪.答案:∪4.(12分)已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值.(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【解析】(1)由函数f(x)是偶函数可知:f(x)=f(-x),所以log4(4x+1)+kx=log4(4-x+1)-kx,log4=-2kx,即x=-2kx对一切x∈R恒成立,所以k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得:方程2x+=a·2x-a有且只有一个实根,令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1⇒t=-,不合题意;②a≠1,Δ=0⇒a=或-3,若a=⇒t=-2,不合题意;若a=-3⇒t=;③一个正根与一个负根,Δ>0且<0⇒a>1.综上:实数a的取值范围是{-3}∪(1,+∞).5.(13分)(2017·石家庄模拟)已知函数f(x)=-x2+2ex+m-1,g(x)=x+(x>0).(1)若y=g(x)-m有零点,求m的取值范围.(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.【解析】(1)因为g(x)=x+≥2=2e,等号成立的条件是x=e,故g(x)的值域是[2e,+∞),因而只需m≥2e,则y=g(x)-m就有零点.【一题多解】本题还可以采用以下方法:作出g(x)=x+(x>0)的大致图象如图.可知若使y=g(x)-m有零点,则只需m≥2e.(2)若g(x)-f(x)=0有两个相异实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)=x+(x>0)的大致图象如图.因为f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2.所以其图象的对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.所以m的取值范围是(-e2+2e+1,+∞).关闭Word文档返回原板块。

2015届高考数学(浙江文)一轮复习课件:2.8函数与方程

闯关四:及时演练,强化提升解题技能
2 1. 函数 f(x)= 2x- -a 的一个零点在区间 (1,2)内,则实数 x a 的取值范围是( A.(1,3) ) C. (0,3) D.(0,2)
B.(1,2)
解析:选 C
由条件可知 f(1)f(2)<0,即 (2-2-a)(4-1-a)<0,
即 a(a-3)<0,解得 0<a<3.
点击此处可返回目录
高频考点全通关——函数零点的应用 闯关四:及时演练,强化提升解题技能
3. 已知 f(x)=x3-6x2+9x-abc,a<b<c,且 f(a)=f(b)=f(c)=0. 现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)·f(3)<0.其中正确结论的序号是( A.①③
解析:选 C
) D.②④
B.①④
C.②③
由题设知 f(x)=0 有 3 个不同零点. 设 g(x)=x3-6x2+9x,∴g(x)=x(x2-6x+9)=x(x-3)2, 令 g(x)=0,得 x=0 或 x=3,g′(x)=3x2-12x+9, 令 g′(x)>0,得 x<1 或 x>3;令 g′(x)<0,得 1<x<3, 所以 g(x)在(-∞,1),(3,+∞)上是单调递增的;在(1,3) 上是单调递减的.g(1)=4,作出 g(x)的图象,如图所示. ∴f(x)=g(x)-abc,f(x)有 3 个零点,需将 g(x)的图象向下 平移至如图所示位置.由图象观察可知,f(0)f(1)<0 且 f(0)f(3)>0.
分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满 足的不等式;③解不等式,即得参数的取值范围. (2)已知函数零点的个数求参数.常利用数形结合法. (3)借助函数零点比较大小.要比较 f (a)与 f (b)的大小,通常先比较 f (a)、 f (b)与0的大小.

高三数学人教版a版数学(理)高考一轮复习教案:2.8 函数与方程 word版含答案

第八节函数与方程函数的零点与方程的根(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图象,能够用二分法求相应方程的近似解.知识点一函数的零点1.函数的零点(1)定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫作函数y=f(x)(x∈D)的零点.(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0)无交点零点个数210 易误提醒1.函数y=f(x)的零点即方程f(x)=0的实根,易误为函数点.2.由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示.所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件. 必记结论 有关函数零点的结论(1)若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.[自测练习]1.函数y =|log 2x |-⎝⎛⎭⎫12x 的零点个数是( ) A .0 B .1 C .2D .4解析:令y =|log 2x |-⎝⎛⎭⎫12x=0,即|log 2x |=⎝⎛⎭⎫12x ,在同一坐标系下作出y =|log 2x |和y =⎝⎛⎭⎫12x的图象(图略),易知两图象有2个交点,即函数有2个零点.答案:C2.(2016·东城期末)函数f (x )=e x +12x -2的零点所在的区间是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,2)D .(2,3)解析:∵f ′(x )=e x +12>0,∴f (x )在R 上单调递增,又f ⎝⎛⎭⎫12=e -74<3-74<0,f (1)=e -32>0,∴零点在区间⎝⎛⎭⎫12,1上. 答案:B知识点二 二分法 二分法的定义对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫作二分法.必备方法 用二分法求函数零点的方法用二分法求零点近似值的口诀为:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.[自测练习]3.根据下面表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )x -1 0 1 2 3 e x 0.37 1 2.72 7.39 20.09 x +212345A.(1,2) C .(-1,0)D .(2,3)解析:本题考查二分法的应用.令f (x )=e x -x -2,则由表中数据可得f (1)=2.72-3<0,f (2)=7.39-4>0,所以函数f (x )的一个零点在(1,2)上,即原方程的一个根在区间(1,2)上.答案:A 、考点一 判定函数零点所在区间|1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).答案 C2.(2015·上海二模)若函数f (x )=ax +1在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,1)C .(-∞,-1)∪(1,+∞)D .(-1,1)解析:由题意知f (-1)f (1)<0,即(1-a )(1+a )<0,解得a <-1或a >1. 答案:C3.(2015·温州十校联考)设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0, ∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的, ∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2). 答案:B确定函数f (x )的零点所在区间的两种常用方法(1)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.考点二 判断函数零点个数|(1)(2015·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5[解析] 分别画出函数f (x ),g (x )的草图,观察发现有2个交点,故选A.[答案] A(2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1, x >0,0, x =0,-1, x <0,则函数f (x )=sgn(ln x )-ln 2x 的零点个数为( )A .1B .2C .3D .4[解析] 本题考查新定义创新能力、函数零点的个数.①当ln x >0,即x >1时,f (x )=1-ln 2 x ,令1-ln 2 x =0,得x =e ,即此时有一个零点;②当ln x =0,即x =1时,f (x )=-ln 2 x ,令-ln 2 x =0,得x =1,此时也有一个零点;③当ln x <0,即0<x <1时,f (x )=-1-ln 2 x ,令-1-ln 2 x =0,无解,即当0<x <1时,函数f (x )=sgn(ln x )-ln 2 x 没有零点.综上,函数f (x )=sgn(ln x )-ln 2 x 的零点个数为2.故选B.[答案] B函数零点个数的三种判断方法(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.(2015·辽宁三校联考)已知函数f (x )=2x +x ,g (x )=log 3x +x ,h (x )=x -1x的零点依次为a ,b ,c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:在同一坐标系下分别画出函数y =2x ,y =log 3x ,y =-1x的图象,如图,观察它们与直线y =-x 的交点情况可知a <b <c .答案:A考点三 函数零点的应用|(2015·高考北京卷)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.[解析] (1)若a =1,则f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1.作出函数f (x )的图象如图所示.由图可得f (x )的最小值为-1. (2)当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2;当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a 21-a >0,解得12≤a <1.综上,实数a 的取值范围为⎣⎡⎭⎫12,1∪[2,+∞). [答案] (1)-1 (2)[12,1)∪[2,+∞)已知函数有零点(方程有根)求参数取值范围的三种常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2.已知f (x )=|x 2-1|+x 2+kx ,若关于x 的方程f (x )=0在(0,2)上有两个不相等的实根,则k 的取值范围是( )A .(-1,0) B.⎝⎛⎭⎫-72,+∞ C.⎝⎛⎭⎫-∞,-72∪(-1,+∞) D.⎝⎛⎭⎫-72,-1 解析:本题考查函数零点及函数与方程的关系.当x ∈(0,1]时,f (x )=1-x 2+x 2+kx =kx +1,此时方程f (x )=0有一个零点-1k ;当x ∈(1,2)时,f (x )=g (x )=x 2-1+x 2+kx =2x 2+kx-1.∵g (x )=2x 2+kx -1=0必有一正根、一负根,∴正根一定位于区间(1,2)上,即⎩⎪⎨⎪⎧g (1)<0,g (2)>0,0<-1k ≤1,解得-72<k <-1,故选D.答案: D7.转化法求解二次方程根的分布问题【典例】 (2015·烟台莱州一中月考)若方程x 2-2mx +4=0的两根满足一根大于2,一根小于1,则m 的取值范围是________.[思路点拨] 由条件知,构造f (x )=x 2-2mx +4问题转化为二次函数f (x )的零点问题,数形结合写出条件可求解.[解析] 令函数f (x )=x 2-2mx +4,由题意可知⎩⎪⎨⎪⎧ f (1)<0,f (2)<0,即⎩⎪⎨⎪⎧1-2m +4<0,4-4m +4<0,所以⎩⎪⎨⎪⎧m>52,m>2,即m >52.[答案] (52,+∞)[方法点评] 二次方程实数根的分布问题主要是构造二次函数之后,数形结合,从判别式Δ,对称轴与区间关系及区间端点值符号三个方面得出条件,解决时要注意逐一方面进行验证.[跟踪练习] 方程x 2-2ax +4=0的一根在(0,1)内,另一个根在(6,8)内,则实数a 的取值范围是________.解析:设f (x )=x 2-2ax +4,则⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (6)<0,f (8)>0.解得103<a <174.答案:⎝⎛⎭⎫103,174A 组 考点能力演练1.f (x )是R 上的偶函数,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2,则函数y =f (x )-|log 5 x |的零点个数为( )A .4B .5C .8D .10解析:由零点的定义可得f (x )=|log 5x |,两个函数图象如图,总共有5个交点,所以共有5个零点.答案:B2.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析:本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内,故选A.答案:A3.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析:依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0,g (a )<0<f (b ).选A.答案:A4.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是( ) A .(2,+∞) B.⎝⎛⎭⎫0,12 C .(1,+∞)D .(0,1)解析:函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)与函数y =x +a (a >0且a ≠1)的图象有两个交点,由图1知,当0<a <1时,两函数的图象只有一个交点,不符合题意;由图2知,当a >1时,因为函数y =a x (a >1)的图象与y 轴交于点(0,1),而直线y =x +a 与y 轴的交点一定在点(0,1)的上方,所以两函数的图象一定有两个交点,所以实数a 的取值范围是a >1.答案:C5.(2015·武汉调研)设a 1,a 2,a 3均为正数,λ1<λ2<λ3,则函数f (x )=a 1x -λ1+a 2x -λ2+a 3x -λ3的两个零点分别位于区间( )A .(-∞,λ1)和(λ1,λ2)内B .(λ1,λ2)和(λ2,λ3)内C .(λ2,λ3)和(λ3,+∞)内D .(-∞,λ1)和(λ3,+∞)内解析:本题考查函数与方程.利用零点存在定理求解.当x ∈(λ1,λ2)时,函数图象连续,且x →λ1,f (x )→+∞,x →λ2,f (x )→-∞,所以函数f (x )在(λ1,λ2)上一定存在零点;同理当x ∈(λ2,λ3)时,函数图象连续,且x →λ2,f (x )→+∞,x →λ3,f (x )→-∞,所以函数f (x )在(λ2,λ3)上一定存在零点,故选B.答案:B6.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1, -1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根,∴⎩⎪⎨⎪⎧ x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1. ∴g (x )的零点为1+2,1. 答案:1+2,17.用二分法求方程x 3-2x -5=0在区间[2,3]内的实根,取区间中点为x 0=2.5,那么下一个有根的区间为________.解析:令f (x )=x 3-2x -5,则f (2)=-1<0, f (2.5)=2.53-10>0.从而下一个有根的区间为(2,2.5). 答案:(2,2.5)8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =________.解析:∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为增函数, ∴x 0∈[2,3],即a =2,b =3. ∴a +b =5. 答案:59.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求实数m 的取值范围.解:令f (x )=mx 2+2(m +3)x +2m +14,依题意得⎩⎪⎨⎪⎧m >0,f (4)<0,或⎩⎪⎨⎪⎧m <0,f (4)>0,即⎩⎪⎨⎪⎧m >0,26m +38<0,或⎩⎪⎨⎪⎧m <0,26m +38>0.解得-1913<m <0,即实数m 的取值范围是⎝⎛⎭⎫-1913,0. 10.设函数f (x )=x 2+2bx +c (c <b <1)的一个零点是1,且函数g (x )=f (x )+1也有零点. (1)证明:-3<c ≤-1,且b ≥0;(2)若m 是函数g (x )的一个零点,试判断f (m -4)的正负并加以证明.解:(1)证明:由f (1)=0,得b =-c +12.又c <b <1,故c <-c +12<1,∴-3<c <-13.方程f (x )+1=0有实根,即方程x 2+2bx +c +1=0有实根, 故Δ=4b 2-4(c +1)≥0,即c 2-2c -3≥0. ∴c ≥3,或c ≤-1,又-3<c <-13,所以-3<c ≤-1. 又b =-c +12,∴b ≥0.(2)∵f (x )=x 2+2bx +c =(x -c )(x -1),且m 是函数g (x )=f (x )+1的一个零点, ∴f (m )=-1<0,故c <m <1. ∴c -4<m -4<-3<c .∴f (m -4)=(m -4-c )(m -4-1)>0, 所以f (m -4)的符号为正.B 组 高考题型专练1.(2015·高考安徽卷)下列函数中,既是偶函数又存在零点的是( )A .y =cos xB .y =sin xC .y =ln xD .y =x 2+1解析:y =cos x 是偶函数,且存在零点;y =sin x 是奇函数;y =ln x 既不是奇函数又不是偶函数;y =x 2+1是偶函数,但不存在零点.故选A.答案:A2.(2015·高考天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝⎛⎭⎫74,+∞B.⎝⎛⎭⎫-∞,74C.⎝⎛⎭⎫0,74D.⎝⎛⎭⎫74,2解析:函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧ x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )有4个交点,故选D.答案:D3.(2015·高考湖北卷)函数f (x )=4cos 2 x 2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.解析:因为f (x )=4cos 2 x 2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin 2x -|ln(x +1)|,所以函数f (x )的零点个数为函数y =sin 2x 与y =|ln(x +1)|图象的交点的个数.函数y =sin 2x与y =|ln(x +1)|的图象如图所示,由图知,两函数图象有2个交点,所以函数f (x )有2个零点.答案:24.(2015·高考湖南卷)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b有两个零点,则a 的取值范围是________.解析:令 φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象(图略)可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).答案:(-∞,0)∪(1,+∞)5.(2014·高考江苏卷)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解析:当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12=⎪⎪⎪⎪(x -1)2-12,由f (x )是周期为3的函数,作出f (x )在[-3,4]上的图象,如图.由题意知方程a =f (x )在[-3,4]上有10个不同的根.由图可知a ∈⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫0,12。

2022高考数学文人教A版一轮复习学案:2.8 函数与方程 【含解析】

2.8函数与方程必备知识预案自诊知识梳理1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)与函数零点有关的等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与有交点⇔函数y=f(x)有.(3)函数零点的判定(零点存在性定理)2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系图象3.二分法函数y=f(x)的图象在区间[a,b]上连续不断,且,通过不断地把它的零点所在区间,使所得区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.1.若y=f(x)在闭区间[a,b]上的图象连续不断,且有f(a)f(b)<0,则函数y=f(x)一定有零点.2.f(a)f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.3.若函数f(x)在[a,b]上是单调函数,且f(x)的图象连续不断,则f(a)f(b)<0⇒函数f(x)在区间[a,b]上有且只有一个零点.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)函数f(x)=x2-1的零点是(-1,0)和(1,0).()(2)二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点.()(3)只要函数有零点,我们就可以用二分法求出零点的近似值.()(4)已知函数f(x)在(a,b)内图象连续且单调,若f(a)f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()(5)函数y=2sin x-1的零点有无数多个.()2.(2020云南玉溪一中二模)函数f(x)=2x+3x的零点所在的一个区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)3.(2020山东济南二模,2)函数f(x)=x3+x-4的零点所在的区间为()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)4.若函数f(x)=2x-a2-a在(-∞,1]上存在零点,则正实数a的取值范围是()A.(0,1)B.(0,1]C.(0,2)D.(0,2]5.(2020天津和平区一模)已知[x]表示不超过实数x的最大整数,g(x)=[x]为取整函数,x0是函数f(x)=ln x+x-4的零点,则g(x0)=.关键能力学案突破考点判断函数零点所在的区间【例1】(1)(2020陕西西安中学八模,理4)根据表格中的数据,可以判定方程e x-x-2=0的一个根所在的区间为(k,k+1)(k∈N),则k的值为()A.-1B.0C.1D.2(2)设定义域为(0,+∞)内的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-ln x]=e+1,若x0是方程f(x)-f'(x)=e的一个解,则x0可能存在的区间是()A.(0,1)B.(e-1,1)C.(0,e-1)D.(1,e)解题心得判断函数y=f(x)在某个区间上是否存在零点,常用以下方法:(1)解方程:当对应方程易解时,可通过解方程,观察方程是否有根落在给定区间上.(2)利用函数零点存在定理进行判断:首先看函数y=f(x)在区间[a,b]上的图象是否连续,然后看是否有f(a)f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点,若没有,则不一定有零点.(3)通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.对点训练1(1)(2020辽宁沈阳二中五模,文6)函数f(x)=ln(x+1)-2x的一个零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)(2)如图是二次函数f(x)=x2-bx+a的部分图象,则g(x)=e x+f'(x)的零点所在的大致区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)考点判断函数零点的个数【例2】(1)函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4(2)(2020广东肇庆二模,理11)已知函数f(x)为定义域为R的偶函数,且满足f(1+x)=f(1-x),当x∈[-1,0]时,f(x)=-x,则函数F(x)=f(x)+x+4在区间[-9,10]上零点的个数为()A.10B.12C.18D.20解题心得判断函数零点个数的方法(1)解方程法:若对应方程f(x)=0可解时,通过解方程,有几个解就有几个零点.(2)零点存在定理法:利用定理不仅要判断函数的图象在区间[a,b]上是连续不断的曲线,且f(a)f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,再看其交点的个数,其中交点的个数就是函数零点的个数.对点训练2(1)(2020山东青岛二模,8)已知图象连续不断的函数f(x)的定义域为R,且f(x)是周期为2的奇函数,y=|f(x)|在区间[-1,1]上恰有5个零点,则f(x)在区间[0,2 020]上的零点个数为()A.5 050B.4 041C.4 040D.2 020(2)已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为.考点函数零点的应用(多考向探究)考向1已知函数零点所在区间求参数【例3】(1)(2020山东烟台模拟,6)函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)(2)(2020湖南湘潭三模,理16)已知函数f(x)={2x(x2+m),0≤x≤1,2x+1-x2-m,-1≤x<0,若在区间[-1,1]上方程f(x)=1只有一个解,则实数m的取值范围为.解题心得对于已知函数零点所在区间求参数的问题:若已知函数在所给区间上连续且单调,则由零点存在定理列出含参数的不等式,求出参数的范围;若已知函数在所给区间上不单调,则要作出函数的图象利用数形结合法求参数的范围.对点训练3(1)已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),f(x0)=0,则实数a的取值范围是()A.(-∞,-3)∪(1,+∞)B.(-∞,-3)C.(-3,1)D.(1,+∞)(2)若函数f(x)=4x-2x-a,x∈[-1,1]有零点,则实数a的取值范围是.考向2已知函数零点个数求参数问题【例4】(1)(2020东北三省四市模拟,理11)已知函数f(x)={2x+1+2,x≤0,|log2x|,x>0,若关于x的方程[f(x)]2-2af(x)+3a=0有6个不相等的实数根,则实数a的取值范围为()A.3,165B.3,165C.(3,4)D.(3,4](2)(2020四川成都七中三模,文16)若指数函数y=a x(a>0,且a≠1)与一次函数y=x的图象恰好有两个不同的交点,则实数a的取值范围是.解题心得已知函数有零点(方程有根),求参数的取值范围常用的方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,再转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,再数形结合求解.对点训练4(1)(2020天津河北区一模,9)已知函数f (x )={x 3-2x ,x ≤0,-lnx ,x >0,若函数g (x )=f (x )-x-a有3个零点,则实数a 的取值范围是( )A.[0,2)B.[0,1)C.(-∞,2]D.(-∞,1](2)(2020山东济宁5月模拟,16)设f (x )是定义在R 上的偶函数,∀x ∈R 都有f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=2x -2.若函数g (x )=f (x )-log a (x+1)(a>0,a ≠1)在区间(-1,9]内恰有三个不同零点,则实数a 的取值范围是 .1.函数零点的常用判定方法:(1)零点存在性定理;(2)数形结合;(3)解方程f (x )=0.2.研究方程f (x )=g (x )的解,实质就是研究G (x )=f (x )-g (x )的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.1.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y=f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象等综合考虑.2.8 函数与方程必备知识·预案自诊知识梳理1.(1)f (x )=0 (2)x 轴 零点 (3)连续不断的 f (a )·f (b )<0 f (x 0)=02.(x 1,0),(x 2,0) (x 1,0) 2 1 03.f (a )f (b )<0 一分为二 零点考点自诊1.(1)× (2)√ (3)× (4)√ (5)√2.B 易知f (x )=2x +3x 在R 上单调递增,且f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B .3.C 易知函数f (x )=x 3+x-4在R 上单调递增,因f (0)=-4<0,f (1)=-2<0,f (2)=6>0,故函数在(1,2)上有唯一零点.故选C .4.B 由f (x )=2x -a 2-a=0,得2x =a 2+a ,由x ∈(-∞,1],得2x ∈(0,2],可得0<a 2+a ≤2,解得0<a ≤1,故选B .5.2 ∵函数f (x )=ln x+x-4在定义域(0,+∞)上单调递增,且其图象是连续不断的,f (e)=1+e -4<0,f (3)=ln3-1>0,∴函数的零点所在的区间为(e,3),g (x 0)=[x 0]=2.关键能力·学案突破例1(1)C (2)D (1)令f (x )=e x -x-2,由表格知f (1)<0,f (2)>0,所以方程e x -x-2=0的一个零点所在的区间是(1,2),所以k=1,故选C .(2)令f (x )-ln x=k ,则f (x )=ln x+k.由f [f (x )-ln x ]=e +1,得f (k )=e +1.又f (k )=ln k+k=e +1,可知k=e .故f (x )=ln x+e,所以f'(x )=1x ,x>0. 所以f (x )-f'(x )=ln x-1x+e .令g (x )=ln x-1x+e -e =ln x-1x,x ∈(0,+∞).因为g (x )=ln x-1x 在(0,+∞)内的图象是连续的,且g (1)=-1<0,g (e)=1-1e >0,所以存在x 0∈(1,e),使g (x 0)=0.故选D .对点训练1(1)B (2)B (1)∵f (1)=ln2-2<0,f (2)=ln3-1>lne -1=0,即f (1)f (2)<0,∴函数f (x )的零点在区间(1,2)上.故选B .(2)由图象知12<b 2<1,得1<b<2,f'(x )=2x-b ,所以g (x )=e x +f'(x )=e x +2x-b ,由g (0)=1-b<0,g (1)=e +2-b>0,所以g (0)g (1)<0,则g (x )的零点在区间(0,1)上,故选B . 例2(1)B (2)A (1)函数f (x )=2x |log 0.5x|-1的零点也就是方程2x |log 0.5x|-1=0的根,即2x |log 0.5x|=1,整理得|log 0.5x|=(12)x .令g (x )=|log 0.5x|,h (x )=(12)x,画出g (x ),h (x )的图象如图所示.因为两个函数的图象有两个交点,所以f (x )有两个零点.(2)求F (x )在[-9,10]上零点的个数,等价于f (x )与g (x )=-x+41-2x 的图象在[-9,10]上交点的个数,∵f (x )为偶函数,且当x ∈[-1,0]时,f (x )=-x ,∴当x ∈[0,1]时,f (x )=x , 又f (1+x )=f (1-x ),∴f (x+2)=f [(x+1)+1]=f (1-1-x )=f (-x )=f (x ),即f (x )的周期为2,g (x )=-x+41-2x =x+42x -1=12+94(x -12), ∴g (x )的图象关于点12,12对称,作出f (x )与g (x )在12,10上的函数图象如图所示,由图象可知f (x )与g (x )在12,10上有5个交点,根据对称性可知在-9,12上也有5个交点,故选A .对点训练2(1)B (2)7 (1)由f (x )是定义域为R 的奇函数,得f (0)=0,由f (x )的周期为2,得f (0)=f (2)=…=f (2020)=0,由y=|f (x )|是偶函数,得其图象关于y 轴对称,由y=|f (x )|在[-1,1]上恰有5个零点,则y=|f (x )|在[-1,0)和(0,1]上各有两个零点,因f (x )的周期为2,所以y=|f (x )|的周期为1,所以y=|f (x )|在(1,2]上也有两个零点,同理在(2,3],…,(2019,2020]上各有两个零点.因为函数|f (x )|的图象是由f (x )的图象关于x 轴对称到x 轴上面,故两个函数的零点个数相等,则f (x )在区间[0,2020]上的零点个数为1+2020×2=4041.(2)由题意作出y=f (x )在区间[-2,4]上的图象,如图所示,可知与直线y=1的交点共有7个,故函数y=f (x )-1在区间[-2,4]上的零点个数为7.例3(1)C (2)m |-1≤m <-12,或m=1 (1)函数f (x )=2x -2x -a 在区间(1,2)内连续,因为f (x )的一个零点在区间(1,2)内,所以f (1)f (2)<0,即(2-2-a )(4-1-a )<0,解得0<a<3,故选C .(2)当0≤x ≤1时,由f (x )=1,得2x (x 2+m )=1,即12x =x 2+m ; 当-1≤x ≤0时,由f (x )=1,得2x+1-x 2-m=1,即2x+1-1=x 2+m. 设g (x )={(12) x ,0≤x ≤1,2x+1-1,-1≤x <0,h (x )=x 2+m ,则问题转化为g (x )与h (x )=x 2+m 的图象在[-1,1]上只有一个交点.画出g (x )与h (x )在[-1,1]上的图象如图所示,结合图象可知,当h (0)=1,即m=1时,两个函数的图象只有一个交点;当{ℎ(1)<g (1),ℎ(-1)≥g (-1),解得-1≤m<-12时,两个函数的图象只有一个交点,故所求实数m 的取值范围是m -1≤m<-12,或m=1.对点训练3(1)A (2)-14,2 (1)由f (x )=2ax-a+3,若∃x 0∈(-1,1),f (x 0)=0,可得f (-1)f (1)<0,即(-3a+3)(a+3)<0,可得a ∈(-∞,-3)∪(1,+∞).(2)因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a=0在[-1,1]上有解,即方程a=4x -2x 在[-1,1]上有解.方程a=4x -2x 可变形为a=2x -122-14,因为x ∈[-1,1],所以2x ∈12,2,所以2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.例4(1)B (2)1,e 1e (1)令f (x )=t ,则t 2-2at+3a=0,作出函数f (x )和直线y=t 的图象如图所示,由图象可知y=t 与y=f (x )最多有3个不同交点,又当x ≤0时,2x+1+2>2,要使关于x 的方程[f (x )]2-2af (x )+3a=0有6个不相等的实数根,则t 2-2at+3a=0有两个不同的根t 1,t 2∈(2,4],设g (t )=t 2-2at+3a 由根的分布可知,{Δ=4a 2-12a >0,2<a <4,g (2)>0,g (4)≥0,解得3<a ≤165.故选B .(2)由题意,a x =x ,两边取对数得,x ln a=ln x ,所以ln a=lnx x,设y=lnx x,则y'=1-lnxx 2,故y=lnxx在(0,e)上单调递增,在(e,+∞)上单调递减, 所以当x=e 时,得y max =1e ,所以当0<ln a<1e ,方程ln a=lnxx 有两个实数根,所以a ∈1,e 1e.对点训练4(1)A (2)19,15∪(√3,√7) (1)函数g (x )=f (x )-x-a 有3个零点,等价于方程f (x )-x-a=0有3个实数根,即方程a=f (x )-x 有3个实数根,设h (x )=f (x )-x ,当x ≤0时,h (x )=x 3-3x ,h'(x )=3x 2-3,由h'(x )>0得x<-1或x>1(舍去),此时h (x )单调递增.由h'(x )<0得-1<x<1,∵x ≤0,∴-1<x<0,此时h (x )单调递减,即当x=-1时,函数取得极大值为h (-1)=-1+3=2.当x>0时,h (x )=f (x )-x=-ln x-x 单调递减,作出函数h (x )的图象如图所示,要使a=h (x )有3个根,则0≤a<2,即实数a 的取值范围为[0,2),故选A .(2)∵f (x )是定义在R 上的偶函数,且f (2-x )=f (2+x ),∴f (x-2)=f (2+x ),令x-2=t ,则f (t )=f (4+t ),∴f (x )的周期为4.由g (x )=f (x )-log a (x+1)=0得f (x )=log a (x+1)(a>0,且a ≠1).函数y=f (x )和y=log a (x+1)的图象在区间(-1,9]内有3个不同的公共点. 作函数f (x )与y=log a (x+1)在(-1,9]上的图象如下,当a>1时,{log a (2+1)<2,log a (6+1)>2,解得√3<a<√7.当0<a<1时,{log a (4+1)>-1,log a (8+1)<-1,解得19<a<15.故实数a 的取值范围为19,15∪(√3,√7).。

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第8节 函数与方程(含答案)

第8节函数与方程课时训练练题感提知能【选题明细表】A组一、选择题1.(2013惠阳一中实验学校模拟)函数f(x)=-log2x的零点所在的区间为( C )(A)(,) (B)(,1)(C)(1,2) (D)(2,3)解析:f(x)在(0,+∞)上是减函数,且f(1)=1>0,f(2)=-1=-<0,则f(x)的零点在区间(1,2)内.故选C.2.(2013山东莱州一中月考)函数f(x)=ln x+e x的零点所在的区间是( A )(A)(0,) (B)(,1) (C)(1,e) (D)(e,+∞)解析:函数f(x)=ln x+e x在(0,+∞)上单调递增,F()=ln +=-1+>0,结合选项知应选A.3.(2013山东临沂市模拟)函数f(x)=x-2-x的零点个数为( B )(A)0 (B)1 (C)2 (D)3解析:由f(x)=x-2-x=0得x=()x,在同一坐标系中作出函数y=x,y=()x 的图象,由图象可知两函数的交点有1个,即函数f(x)=x-2-x的零点个数为1.故选B.4.函数f(x)=的零点个数为( C )(A)0 (B)1 (C)2 (D)3解析:当x≤0时,令x2+2x-3=0,解得x=-3或x=1(舍去),当x>0时,令-2+ln x=0,解得x=e2,所以函数f(x)有2个零点,故选C.5.(2013年高考重庆卷)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间( A )(A)(a,b)和(b,c)内(B)(-∞,a)和(a,b)内(C)(b,c)和(c,+∞)内(D)(-∞,a)和(c,+∞)内解析:∵a<b<c,∴f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,∴f(a)f(b)<0,f(b)f(c)<0,故选A.6.(2013年高考湖南卷)函数f(x)=ln x的图象与函数g(x)=x2-4x+4的图象的交点个数为( C )(A)0 (B)1 (C)2 (D)3解析:g(x)=x2-4x+4=(x-2)2,在同一平面直角坐标系内画出函数f(x)=ln x与g(x)=(x-2)2的图象(如图).由图可得两个函数的图象有2个交点.故选C.7.(2013湛江市高考测试)函数f(x)=(x-1)cos x2在区间[0,4]上的零点个数是( C )(A)4 (B)5 (C)6 (D)7解析:由f(x)=0得x=1或cos x2=0,由cos x2=0,得x2=kπ+(k∈Z);又x∈[0,4],因此0≤x2=kπ+≤16,-≤k≤-,因此整数k可取0,1,2,3,4,因此f(x)在[0,4]上的零点个数是6,故选C.二、填空题8.(2013山东枣庄一模)函数f(x)=的零点的个数为.解析:当x≥0时,由f(x)=0得x+1=0,此时x=-1不成立.当x<0时,由f(x)=0得x2+x=0,此时x=-1或x=0(不成立舍去).所以函数的零点为x=-1.答案:19.(2013惠州市高三第一次模拟)已知函数f(x)=3x+x-9的零点为x0,则x0所在区间为.解析:f()=+-9<0,F()=+-9<0,f()=+-9>0.答案:[,]10.(2013惠州市二调)若函数f(x)=|4x-x2|-a有3个零点,则a= .解析:作出函数y=|4x-x2|的图象如图所示,若f(x)有3个零点,则函数y=|4x-x2|与函数y=a的图象有3个交点,由图知a=4.答案:411.(2013山东即墨市期末)已知函数f(x)=且关于x的方程f(x)-a=0有两个实根,则实数a的取值范围是.解析:f(x)的图象如图,要使方程f(x)-a=0有两个实根,即y=f(x)与y=a的图象有两个交点,0<a≤1.答案:(0,1]三、解答题12.判断函数f(x)=1+4x+x2-x3在区间(-1,1)内零点的个数,并说明理由.解:∵f(-1)=1-4+1+=-<0,f(1)=1+4+1-=>0,∴f(x)在区间(-1,1)内有零点.又f'(x)=4+2x-2x2=-2(x+1)(x-2),当-1<x<1时,f'(x)>0,∴f(x)在(-1,1)内单调递增,因此,f(x)在(-1,1)内有且仅有一个零点.13.已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.解:f(x)=4x+m·2x+1有且仅有一个零点,即方程(2x)2+m·2x+1=0仅有一个实根,设2x=t(t>0),则t2+mt+1=0仅有一个正实根.当Δ=0时,m2-4=0,解得m=2或m=-2,而m=-2时,t=1;m=2时,t=-1(不合题意,舍去),∴2x=1,x=0符合题意.当Δ>0,即m>2或m<-2时,t2+mt+1=0有两正根或两负根,即f(x)有两个零点或没有零点.∴这种情况不符合题意.综上可知,m=-2时,f(x)有唯一零点,该零点为0.B组14.(2013广东广州一模)已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则下列不等式成立的是( A )(A)f(a)<f(1)<f(b) (B)f(a)<f(b)<f(1)(C)f(1)<f(a)<f(b) (D)f(b)<f(1)<f(a)解析:函数f(x),g(x)均为定义域上的单调递增函数,且f(0)=-1<0,f(1)=e-1>0,g(1)=-1<0,g(e)=e-1>0,所以a∈(0,1),b∈(1,e),即a<1<b,所以f(a)<f(1)<f(b).故选A.15.(2013梅州市质检)设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为( C )(A)(-∞,-2] (B)[-1,0](C)(-,-2] (D)(-,+∞)解析:由题意可得x2-3x+4=2x+m在x∈[0,3]上有两个不同的根,即函数y=m,y=x2-5x+4,x∈[0,3]的图象有两个不同的交点,作出函数图象如图,由图可知,当-<m≤-2时满足要求,故选C.16.(1)已知f(x)=x2+2mx+3m+4,m为何值时.①函数有且仅有一个零点;②函数有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.解:(1)①f(x)=x2+2mx+3m+4有且仅有一个零点⇔方程f(x)=0有两个相等实根⇔Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.②法一设f(x)的两个零点分别为x1,x2,则x1+x2=-2m,x1·x2=3m+4. 由题意,知⇔⇔∴-5<m<-1.故m的取值范围为(-5,-1). 法二由题意,知即∴-5<m<-1.∴m的取值范围为(-5,-1).(2)令f(x)=0,得|4x-x2|+a=0,即|4x-x2|=-a.令g(x)=|4x-x2|,h(x)=-a. 作出g(x)、h(x)的图象.由图象可知,当0<-a<4,即-4<a<0时,g(x)与h(x)的图象有4个交点, 即f(x)有4个零点.故a的取值范围为(-4,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习学案:2.8 函数与方程(含
答案)
2.8函数与方程函数与方程最新考纲考情考向分析结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点方程实根的存在情况求相关参数的范围,是高考的热点,题型以选择.填空为主,也可和导数等知识交汇出现解答题,中高档难度.1函数的零点1函数零点的定义对于函数yfxxD,把使fx0的实数x叫做函数yfxxD 的零点2三个等价关系方程fx0有实数根函数yfx的图象与x轴有交点函数yfx有零点3函数零点的判定零点存在性定理如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有
fafb0的图象与零点的关系000的图象与x轴的交点x1,0,
x2,0x1,0无交点零点个数210知识拓展有关函数零点的结论1若连续不断的函数fx在定义域上是单调函数,则fx至多有一个零点2连续不断的函数,其相邻两个零点之间的所有函数值保持同号3连续不断的函数图象通过零点时,函数值可能变号,也可能不变号题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1函数的零点就是函数的图象与x轴的交点2函数yfx 在区间a,b内有零点函数图象连续不断,则fafb0,所以fx在R
上单调递增,又f11e30,因此函数fx有且只有一个零点4P92A组T4函数fx12x12x的零点个数为________答案1解析作函数y112x 和y212x的图象如图所示,由图象知函数fx有1个零点题组三易错自纠5已知函数fxxxx0,gxxex,hxxlnx的零点分别为x1,x2,x3,则Ax11时,由fx1log2x0,解得x12,又因为x1,所以此时方程无解综上函数fx只有1个零点7函数fxax12a在区间1,1上存在一个零点,则实数a的取值范围是________答案13,1解析函数fx的图象为直线,由题意可得f1f10的零点个数是________答案2解析当x0时,令x220,解得x2正根舍去,所以在,0上有一个零点;当x0时,fx21x0恒成立,所以fx在0,上是增函数又因为f22ln20,所以fx在0,上有一个零点,综上,函数fx的零点个数为
2.2函数fx4cos2x2cos2x2sinx|lnx1|的零点个数为________答案2解析fx21cosxsinx2sinx|lnx1|sin2x|lnx1|,x1,函数fx 的零点个数即为函数y1sin2xx1与y2|lnx1|x1的图象的交点个数分别作出两个函数的图象,如图,可知有两个交点,则fx有两个零点思维升华函数零点个数的判断方法1直接求零点;2利用零点存在性定理再结合函数的单调性确定零点个数;3利用函数图象的交点个数判断跟踪训练1已知函数fxx22x,x0,|lgx|,x0,则函数gxf1x1的零点个数为A1B2C3D4答案C解析gxf1x11x221x1,1x0,|lg1x|1,1x0x24x2,x1,|lg1x|1,x0,解得a
9.又由图象得a0,00的大致图象图略观察它与直线ym的交点,得知当m0或m1时,有交点,即函数gxfxxm有零点命题点3根据零点的范围求参数典例若函数fxm2x2mx2m1的两个零点分别在区间1,0和区间1,2内,则m的取值范围是__________答案14,12解析依题意,结合函数fx的图象分析可知m需满足m2,f1f01,由基本不等式,得t12t122,当且仅当t21时取等号,故a22
2.答案11,02,222。

相关文档
最新文档