实验一拉格朗日插值Maab实验报告
拉格朗日插值龙格现象的matlab实现

拉格朗日插值法在实践中的应 用
在数值分析中的应用
单击此处添加标题
插值法:拉格朗日插值法是数值分析中常用的插值方法之一,具有简单易 行、计算量小等优点。
单击此处添加标题
数据拟合:拉格朗日插值法可以用于数据拟合,通过对已知数据进行插值, 得到未知数据的近似值。
单击此处添加标题
数值微积分:拉格朗日插值法在数值微积分中也有广泛应用,例如在求解 函数的导数、积分等运算时,可以利用拉格朗日插值法进行近似计算。
龙格现象
龙格现象的定义
定义:当插值多项式的阶数过高时, 插值结果可能变得不可预测或出现 剧烈振荡
解决方法:在实际应用中,应避免 使用过高的插值多项式阶数,而应 选择合适的阶数以保证插值结果的 稳定性和准确性
添加标题
添加标题
添加标题
添加标题
原因:由于高阶插值多项式对数据 点的敏感性增强,导致插值结果不 稳定
拉格朗日插值龙格现象的 Matlab实现
汇报人:XX
单击输入目录标题 拉格朗日插值法 龙格现象 拉格朗日插值法在Matlab中的实现 拉格朗日插值法的龙格现象分析 拉格朗日插值法在实践中的应用
添加章节标题
拉格朗日插值法
插值法的定义
插值法是一种数学方法,通过已知的离散数据点,构造一个多项式函数,使得该函数在 数据点处的取值等于已知的数据点值。
算法收敛性:在某些情况下,龙格现象可能导致算法收敛速度减慢,增加计算时间和计算成本。
实际应用限制:由于龙格现象的存在,某些数值方法在实际应用中可能受到限制,无法处理某些 复杂问题。
算法改进需求:为了克服龙格现象的影响,需要研究和发展新的数值方法和算法,提高数值计算 的稳定性和精度。
拉格朗日插值法在Matlab中的 实现
插值法实验报告

插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。
二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。
5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。
6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值8()L x 。
(2)用三次样条(第一边界条件)程序求()S x 。
7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。
四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。
拉格朗日插值法C语言的实现(实验报告)

3.程序流程:
(1)输入已知点的个数; (2)分别输入已知点的 X 坐标; (3)分别输入已知点的 Y 坐标; (4)通过调用函数 lagrange 函数,来求某点所对应的函数值。
拉格朗日插值多项式如下:
L n ( x j ) yk lk ( x j ) y j j 0,1, ……n
1、进一步熟悉拉格朗日插值法。 2、掌握编程语言字符处理程序的设计和调试技术。
【实验内容】 (题目)作出插值点(-2.00,0.00) , (2.00,5.00) , (5.00,6.00)的二次 Lagrange 插值多项式 L2 (x) ,并计算 L2 (-1.2), L2 (1.2)。 解题思路:
k 0 n
其中 lk ( x )
( x x0 )……(x-x k-1 )(x-x k+1 )……(x-xn ) ( xk x0 )……(xk -xk-1 )(xk -xk+1 )……(xk -xn )
k 0,1, …… ,n
程序流程图:
开始
↓
输入已知点个数 n
↓
输入已知点的 X 坐标以及输 入已知点的 Y 坐标
第 9 页 共 9 页
第 5 页 共 9 页
韩山师范学院
C 语言程序设计
printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); }
数值分析实践报告-matlab

数值计算实践数值实验报告院(系、部):数理系姓名:夏赞勋081628学号:班级:科082指导教师: 徐红敏2011年01月14日北京科082 夏赞勋(081628) 北京石油化工学院数理系拉格朗日插值法拉格朗日插值法基本原理:通过平面上不同两点可以确定一条直线,这就是拉格朗日线性插值问题,对于不在同一条直线的三个点得到的插值多项式则为抛物线。
拉格朗日插值的基多项式(即基函数)为:n i x x ••x •x x l ij j ji i i ,,2,1,0,)(0 =--=∏≠=有了基函数以后就可以直接构造如下多项式:∑==ni i i n x l x f p 0)()(该多项式就是拉格朗日插值法所求得的插值多项式.拉格朗日插值法算法:1、根据所给点),(i i y x 的坐标依次写出其差值基函数(用for 循环可以轻易解决)n i x x ••x •x x l ij j ji i i ,,2,1,0,)(0 =--=∏≠=2、将差值基函数与其对应的点的函数值相乘得:n i x l x f i i ,,2,1,0),()( =3、将2中各项累加即得差值多项式:∑==ni i i n x l x f p 0)()(拉格朗日插值法程序:fu nct ion lag range (A)%A为一个只有两行的矩阵,第一行为插值点,第二行为插值点对应的函数值[m,n]=siz e(A); f=1;p=0;%两个用到的变量syms xfor i=1:nf=(x—A(1,i))*f;endfor j=1:ng(j)=f/(x-A(1,j));%求插值基函数的分母h(j)=subs(g(j),x,A(1,j));%求插值基函数的分子s(j)=g(j)/h(j)*A(2,j);%插值基函数endfor k=1:ns(j)=collect(s(j));%合并同类项endfor i=1:np=p+s(i);endfprintf(’拉格朗日插值法可得多项式:')collect(p)%可用lagrange([13 6 8;4 6 9 12])调试例:有如下表格中有四个插值点及其对应的函数值,用lagrange插值法写出其三次插值多项式:解:在matlab命令窗口输入:lagrange([1 3 6 8;4 6 9 12])可得运行结果:拉格朗日插值法可得多项式:ans =x^3/70 - x^2/7 + (97*x)/70 + 96/35ﻬ牛顿插值法牛顿插值法基本原理:拉格朗日插值多项式的理论在许多方面都有应用,是很不错的一种方法,但就插值问题而言,如果增加一个插值点,原先计算插值的多项式就没有用了,即拉格朗日插值法的继承性很差,牛顿插值法就很好地解决了这个问题,具有很好的继承性。
实验报告数值分析

《数值分析》实验报告姓 名: 学 号: 专 业:指导教师: 刘 建 生 教 授 日 期: 2015年12月25日实验一 Lagrange/newton 插值一:对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==L 。
试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。
数据如下: 求计算(0.596)f ,(0.99)f 的值(提示:结果为(0.596)0.625732f ≈,(0.99) 1.05423f ≈ )试构造Lagrange 多项式6L ()x ,计算的(1.8)f ,(6.15)f 值。
(提示:结果为(1.8)0.164762f ≈, (6.15)0.001266f ≈ )二:实验程序及注释MATLAB 程序:function f=lagrange(x0,y0,x )n=length(x0); m=length(y0); format long s=0.0; for k=1:n p=1.0; for j=1:n if j~=kp=p*(x-x0(j))/(x0(k)-x0(j));endends=s+y0(k)*p;Endf=s;end结果运行:结果与提示值完全吻合,说明Lagrange插值多项式的精度是很高的;同时,若采用三点插值和两点插值的方法,用三点插值的精度更高。
若同时采用两点插值,选取的节点距离x越近,精度越高。
三:采用newton插值进行计算算法程序如下:format long;x0=[0.4 0.55 0.65 0.80 0.95 1.05 ];y0=[0.41075 0.57815 0.69675 0.90 1.00 1.25382 ];x=0.596;n=max(size(x0));y=y0(1);%disp(y);s=1;dx=y0;for i=1:n-1dx0=dx; for j=1:n-idx(j)=(dx0(j+1)-dx0(j))/(x0(i+j)-x0(j)); end df=dx(1); s=s*(x-x0(i));y=y+s*df; %计算 %%disp(y); end disp(y)运行结果:绘制出曲线图:与结果相吻合。
插值运算实验报告

插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学珠海学院实验报告
ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY
班级2012电气2班学号xxxxxxxxx姓名陈冲指导教师张凯成绩
实验题目(实验一)拉格朗日插值实验地点及时间JD501 2013/12/26(6-7节)
一、实验目的
1.掌握用程序语言来编辑函数。
2.学会用MATLAB编写函数。
二、实验环境
Matlab软件
三、实验内容
1、以书中第55页题目13为例编辑程序来实现计算结果。
2、使用MATLAB进行编写:
第一步:编写函数,代码如下
第二步:利用这个函数来编辑命令:(可见实验结果中的截图)
x=[,,];
y=[sin,sin,sin];
x0=;
yt=Lagrange(x,y,x0)
得出抛物线插值为:
以及
x=[,];
y=[sin,sin];
x0=;
yt=Lagrange(x,y,x0)
得出线性插值为:
试用线性插值和抛物线插值分别计算sin0.3367的近似值并估计误差。
五、实验结果。
六、总结
通过这次实验我学会用MATLAB软件编辑口令进行计算,实验结果是正确的,我相信在以后的实验中,我可以做好每一步,练习好每一次的上机。
实验难度不是很大,主要要注意标点符号的正确性。
………。