插值实验报告
插值法实验报告

实验二插值法1、实验目的:1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。
2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。
2、实验要求:1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;2)编写上机实验程序,作好上机前的准备工作;3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);4)分析和解释计算结果;5)按照要求书写实验报告;3、实验内容:1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。
已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。
2) 求满足插值条件的插值多项式及余项1)4、题目:插值法5、原理:拉格郎日插值原理:n次拉格朗日插值多项式为:Ln (x)=yl(x)+y1l1(x)+y2l2(x)+…+ynln(x)n=1时,称为线性插值,L 1(x)=y(x-x1)/(x-x1)+y1(x-x)/(x1-x)=y+(y1-x)(x-x)/(x1-x)n=2时,称为二次插值或抛物线插值,L 2(x)=y(x-x1)(x-x2)/(x-x1)/(x-x2)+y1(x-x)(x-x2)/(x1-x)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x)/(x2-x1)n=i时,Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)(X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)6、设计思想:拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。
插值法实验报告

插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。
它在科学计算、图像处理、工程设计等领域有广泛的应用。
本实验旨在通过实际操作,深入理解插值法的原理和应用。
二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。
三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。
四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。
五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。
六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。
实验结果表明,插值法在科学计算和工程设计中具有重要的作用。
在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。
样条插值实验报告

四、三次样条插值1. 样条函数插值的原理给定区间[a,b]上划分A:a=x<x<<x<x=b,若分段函数S(x)满足:01n-1n1.S(x)在各个子区间[x,x],i=0,1,,n-1上均为x的三次多项式;ii+12.S(x)在整个区间[a,b]上有直至二阶的连续导数。
则称S(x)为[a,b]上依次划分的三次样条函数,简称样条函数。
具体地有分段表达式:ax3+bx2+cx+d,x G[x,x]000001ax3+bx2+cx+d,x G[x,x]111112S(x)=\ax3+bx2+cx+d,x G[x,x](1)222223ax3+bx2+cx+d,x G[x,x]、°*n-1n—T•••n-1n-1n-1n共有4n个参数a,b,c,d,i=0,1,,n,它们在内节点处满足iiii'S(x)=S(x),…i-0i+0<S'(x)=S'(x),i=1,2,,n-1.(2)i-0i-0S''(x)=S''(x),Ji-0i+0满足样条函数定义的函数集合称为分划A上的三次样条函数空间,记为S(3,A),可以证明S(3,A)为线性空间。
若S(x)G S(3,A),且进一步满足插值条件S(x)=y=f(x),i=0,1,,n(3)iii其中y为节点x处的给定函数值(若被插函数了(x)已知;••则用了(x)代替之),iii则称S(x)为以x,x,,x,x为节点的三次样条函数。
01n-1n其中式(3)插值节点提供了n+1个约束条件;加上式(2)的3n-3个,合起来共有4n-2个;欲求4n个待定参数的唯一解;尚缺两个条件。
这两个条件一般由样条函数的边界条件提供。
常用三类边界条件;他们分别与三次样条函数;构成不同边界条件的样条函数插值问题。
2. 三类样条函数插值问题2.1第二类边界条件给定边界条件两端的一阶导数值:S'(x)=y'=m,S'(x)=y'=m000nnn这相当于样条两短处的方向给定(压铁在两端点的压力方向确定),对应的插值问题如下:对于分划A:a=x<x<<x<x=b,给定节点对应的函数值01n—1ny,y,y,,y,以及两端点处的一阶导数值y'=m,y'=m,求三次样条函数012n00nnS(x),使…f S(x)=y,i=0,1,,n2iiI S'(x)=m,S'(x)=mJ00n…n2.2第一类边界条件给定边界两端的二阶导数值:S''(x)=y''=M,S''(x)=y''=M000nnn这相当于在样条两端处外加一个力矩,使梁两端点处有相应的曲率。
插值运算实验报告

#### 一、实验目的1. 理解插值运算的基本概念和原理。
2. 掌握几种常见的插值方法,如拉格朗日插值、牛顿插值等。
3. 通过实验,验证插值方法在数值计算中的应用效果。
4. 培养动手能力和分析问题的能力。
#### 二、实验原理插值运算是指根据已知数据点,构造一个近似函数来描述这些数据点之间的变化规律。
常见的插值方法有拉格朗日插值、牛顿插值、分段线性插值等。
#### 三、实验内容1. 数据准备准备一组数据点,例如:```x: [1, 2, 3, 4, 5]y: [2, 4, 6, 8, 10]```2. 拉格朗日插值根据给定的数据点,构造拉格朗日插值多项式。
以三次拉格朗日插值为例,其公式如下:```L(x) = y0 ((x - x1) (x - x2) (x - x3)) / ((x0 - x1) (x0 - x2) (x0 - x3))+ y1 ((x - x0) (x - x2) (x - x3)) / ((x1 - x0) (x1 - x2) (x1 - x3))+ y2 ((x - x0) (x - x1) (x - x3)) / ((x2 - x0) (x2 - x1) (x2 - x3))+ y3 ((x - x0) (x - x1) (x - x2)) / ((x3 - x0) (x3 - x1)(x3 - x2))```将数据点代入上述公式,得到拉格朗日插值多项式。
3. 牛顿插值根据给定的数据点,构造牛顿插值多项式。
以三次牛顿插值为例,其公式如下:```N(x) = y0 + (x - x0) (y1 - y0) / (x1 - x0) + (x - x0) (x - x1) (y2 - y1) / ((x1 - x0) (x2 - x1)) + (x - x0) (x - x1) (x - x2) (y3 - y2) / ((x1 - x0) (x2 - x1) (x3 - x2))```将数据点代入上述公式,得到牛顿插值多项式。
插值运算实验报告

插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。
实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。
插值方法可以分为多种,如拉格朗日插值、牛顿插值等。
本次实验主要涉及的是拉格朗日插值和牛顿插值。
实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。
2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。
3. 利用Matlab软件进行编程,实现所选择的插值方法。
4. 运行程序,得到插值结果。
5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。
实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。
2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。
实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。
2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。
3. 插值运算的精度也会受到数据点分布和插值方法的影响。
实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。
插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。
插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。
不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。
插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
插值方法_实验报告

肖建 计科三班 20095420开课学院、实验室: 数统学院实验时间 :2011年 5 月 8 日实验项目类型课程名称数学实验实验项目名 称插值方法验证演示综合设计其他指导教师李东成 绩实验5 插值方法一、实验目的及意义[1] 了解插值的基本原理[2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想;[4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法;[5] 通过范例展现求解实际问题的初步建模过程;通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。
通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。
提高写作、文字处理、排版等方面的能力。
二、实验内容1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。
三、实验步骤1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件3.保存文件并运行;4.观察运行结果(数值或图形);5.写出实验报告,并浅谈学习心得体会。
四、实验要求与任务根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)基础实验1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。
1),x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10x , x ∈[0,2π].211x+M 文件:(1)clcx=linspace(-5,5,11);y=1./(1+x.^2);x0=linspace(-5,5,101);y0=1./(1+x.^2);y1=interp1(x,y,x0,'spline')y2=interp1(x,y,x0);A=[ones(11,1) x' (x.^2)' (x.^3)' (x.^4)' (x.^5)' (x.^6)' (x.^7)' (x.^8)' (x.^9)' (x.^10)']a=A\y';y3=a(1)+a(2).*x0+a(3).*x0.^2+a(4).*x0.^3+a(5).*x0.^4+a(6).*x0.^5+a(7).*x0.^6+a(8).*x0.^7+a(9).*x0.^8+a(10).*x0.^9+a(11).*x0.^10;plot(x0,y3,'r'),gtext('Lagr.'),hold on ,plot(x0,y2,'b'),gtext('Pies.Lin.'),hold on ,plot(x0,y1,'m'),gtext('Spline')hold off(2)x=linspace(0,2*pi,11); y=cos(x);x0=linspace(0,pi,101);y0=cos(x0);剩余代码和(1)中相同(3)x=linspace(0,pi,11);y=cos(x).^10;x0=linspace(0,pi,101);y0=cos(x0).^10;剩余代码和(1)中相同注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的差异,或采用两个函数之间的某种距离。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
1
2.分段线性插值:
Ln ( x) y j l j ( x)
j 0
n
x x j 1 , x j 1 x x j x j x j 1 x x j 1 l j ( x) , x j x x j 1 x j x j 1 0, 其他
8
1.2
1
0.8
0.6
0.4
0.2
0
-0.2 -6
-4
-2
0
2
4
6
(2)n=11;
lb=-3;ub=3;step=0.01;
x=lb:step:ub; y=1./(1+25*x.^2); plot(x,y,'r-'); hold on for i=1:n xi(i)=lb+(ub-lb)*(i-1)/n; yi(i)=1/(1+25*xi(i)^2); end count=1; for x=lb:step:ub fl=0; for k=1:n up=1;dn=1;
其中 Li(x) 为 n 次多项式:
Li ( x)
( x x0 )( x x1 )( x xi 1 )( x xi 1 )( x xn ) ( xi x0 )( xi x1 )( xi xi 1 )( xi xi 1 )( xi xn )
特别地: 两点一次(线性)插值多项式:
2
x0、y0 为插值节点 x、y 为被插值点 method 为插值方法,其中包括 nearest(最邻近插值) 、linear(双线性插值) 、cubic (双三次插值) 【实验环境】 Matlab 7.0 Microsoft Windows7 Professional 版本 2002 Service Pack 3 二、实验内容: 【实验方案】 用不同的方法对已知函数进行插值,用 matlab 画出相应的图形。 【实验过程】 (实验步骤、记录、数据、分析) 1 山区地貌:在某山区测得一些地点的高程如下表: (平面区域 1200≤x ≤ 4000,1200≤y ≤3600),试作出该山区的地貌图和等高线图,并对几种插值方法进行 比较.
计算量与 n 无关;
n 越大,误差越小.
lim Ln ( x) g ( x), x0 x xn
n
3.一维插值函数: yi=interp1(x,y,xi,’method’) yi 为 xi 处得插值结果 x、y 为插值节点 xi 为被插值点 method 为插值方法,其中包括 nearest(最邻近插值) 、linear(线条插值) 、spline (三次样条插值) 、cubic(立方插值) 4.二维插值函数: z=interp2(x0,y0,z0,x,y,’method’) z 为被插值点函数值
3600 3200 2800 2400 2000 1600 1200
1480 1500 1500 1550 1500 1200 1500 1200 1390 1500 1320 1450 1130 1250
1550 1510 1430 1600 1550 1600 1100 1550 1600 1100 1350 1450 1500 1400 1420 1400
10
1.2
1
0.8
0.6
0.4
0.2
0
-0.2 -6
-4
-2
0
2
4
6
【实验结论】 (结果) (1)用 Matlab 对同一函数可以用不同方法进行插值,得到图形不同。 (2)不同插值方法用不同命令,利用 Matlab 可以对山高画出图形和等高线,方便 简单 【实验小结】 (收获体会) Matlab 使不同数值间的关系简单化,不同的插值方法使用不同的命令做出相应 的图形,对山高、地形或函数一目了然。
4
1600 1400 1200 1000 800 600 400 4000 3000 3000 2000 1000 1000 2000 4000
双线性插值: x=1200:400:4000; y=1200:400:3600; z=[1130 1320 1390 1500 1500 1500 1480 mesh(x,y,z) xi=1200:20:4000; yi=1200:20:3600; zi=interp2(x,y,z,xi',yi,'linear'); meshc(xi,yi,zi) 1250 1280 1450 1420 1500 1500 1200 1100 1200 1100 1550 1600 1500 1550 1230 1400 1400 1350 1550 1550 1510 1040 1300 900 1450 1600 1600 1430 900 700 1100 1200 1550 1600 1300 500 900 1060 1150 1380 1600 1200 700; 850; 950; 1010; 1070; 1550; 980];
7
lb=-3;ub=3;step=0.01;
for x=lb:step:ub fl=0; for k=1:n up=1;dn=1; for i=1:n if k~=i up=up*(x-xi(i)); dn=dn*(xi(k)-xi(i)); end end fl=fl+yi(k)*up/dn; end pn(count)=fl; fi(count)=1/(1+x^2); count=count+1; end x=lb:step:ub; plot(x,pn,'b-') num=(ub-lb)/step+1; for i=1:num p_f(i)=pn(i)-fi(i); end
新乡学院数学与信息科学系
实验报告
实验项目名称 所属课程名称 实 验 类 型 实 验 日 期 插值实验 数学实验 综合性实验 2013-6-6 数学与应用数学一班 11111011013
班 学 姓 成
级 号 名 绩
高亚丹
一、实验概述: 【实验目的】 了解插值的基本内容以及插值方法,如:一维插值(拉格朗日插值、分段线性 插值、三次样条插值) ,二维插值(最临近插值、分段线性插值、双线性插值) 。 【实验原理】
9
for i=1:n if k~=i up=up*(x-xi(i)); dn=dn*(xi(k)-xi(i)); end end fl=fl+yi(k)*up/dn; end pn(count)=fl; fi(count)=1/(1+25*x^2); count=count+1; end x=lb:step:ub; plot(x,pn,'b-') num=(ub-lb)/step+1; for i=1:num p_f(i)=pn(i)-fi(i); end
1.拉格朗日(Lagrange)插值:
已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn .求一 n 次多项式 函数 Pn(x),使其满足:
Pn(xi)=yi,i=0,1,…,n.
n 解决此问题的拉格朗日插值多项式公式如下 Pn ( x) Li ( x) yi i 0
1300 1200 980 1600 1600 1550 1550 1380 1070 1200 1150 1010 1060 900 500 950 850 700
900 1100 1300 700 900
1280 1230 1040
3
y/x
1200 1600 2000 2400 2800 3200 3600 4000
6
meshc(xi,yi,zi)
2000
1500
1000பைடு நூலகம்
500
0 4000 3000 3000 2000 1000 1000 2000 4000
2.
1 , 6 x 6和 1 x2 1 g ( x) , 6 x 6 1 25 x 2 针对这两个函数,分别用Lagrange插值选取11个基点计算插值(ych),并把插值函数 g ( x)
L1 x
x x0 x x1 y0 y1 x0 x1 x1 x0
三点二次(抛物)插值多项式:
L2 x
x x1 x x2 y x x0 x x2 y x x0 x x1 y x0 x1 x0 x2 0 x1 x0 x1 x2 1 x2 x0 x2 x1 2
5
1600 1400 1200 1000 800 600 400 4000 3000 3000 2000 1000 1000 2000 4000
双三次插值: x=1200:400:4000; y=1200:400:3600; z=[1130 1320 1390 1500 1500 1500 1480 mesh(x,y,z) xi=1200:20:4000; yi=1200:20:3600; zi=interp2(x,y,z,xi',yi,'cubic'); 1250 1280 1450 1420 1500 1500 1200 1100 1200 1100 1550 1600 1500 1550 1230 1400 1400 1350 1550 1550 1510 1040 1300 900 1450 1600 1600 1430 900 700 1100 1200 1550 1600 1300 500 900 1060 1150 1380 1600 1200 700; 850; 950; 1010; 1070; 1550; 980];
和原函数都画在一个坐标系内(注意是否有龙格震荡现象)。 解:(1)n=11; x=lb:step:ub; y=1./(1+x.^2); plot(x,y,'r-'); hold on for i=1:n xi(i)=lb+(ub-lb)*(i-1)/n; yi(i)=1/(1+xi(i)^2); end count=1;