插值法实验报告

合集下载

插值法实验报告

插值法实验报告

实验二插值法1、实验目的:1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。

2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。

2、实验要求:1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;2)编写上机实验程序,作好上机前的准备工作;3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);4)分析和解释计算结果;5)按照要求书写实验报告;3、实验内容:1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。

已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。

2) 求满足插值条件的插值多项式及余项1)4、题目:插值法5、原理:拉格郎日插值原理:n次拉格朗日插值多项式为:Ln (x)=yl(x)+y1l1(x)+y2l2(x)+…+ynln(x)n=1时,称为线性插值,L 1(x)=y(x-x1)/(x-x1)+y1(x-x)/(x1-x)=y+(y1-x)(x-x)/(x1-x)n=2时,称为二次插值或抛物线插值,L 2(x)=y(x-x1)(x-x2)/(x-x1)/(x-x2)+y1(x-x)(x-x2)/(x1-x)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x)/(x2-x1)n=i时,Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)(X-X0)……(X-X i-1)(x-x i+1) ……(x-x n)6、设计思想:拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。

插值法实验报告

插值法实验报告

插值法实验报告插值法实验报告一、引言插值法是一种常用的数值分析方法,用于通过已知数据点的函数值来估计在其他位置的函数值。

它在科学计算、图像处理、工程设计等领域有广泛的应用。

本实验旨在通过实际操作,深入理解插值法的原理和应用。

二、实验目的1. 掌握拉格朗日插值法和牛顿插值法的原理和计算方法;2. 通过实验比较不同插值方法的精度和效率;3. 分析插值法在实际问题中的应用。

三、实验步骤1. 收集实验数据:在实验室内设置几个测量点,记录它们的坐标和对应的函数值;2. 使用拉格朗日插值法计算其他位置的函数值:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;3. 使用牛顿插值法计算其他位置的函数值:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;4. 比较不同插值方法的精度和效率:通过计算误差和运行时间,比较拉格朗日插值法和牛顿插值法的性能差异;5. 分析插值法在实际问题中的应用:结合实验结果,探讨插值法在实际问题中的优势和局限性。

四、实验结果与分析1. 拉格朗日插值法的计算结果:根据已知数据点,利用拉格朗日插值公式计算其他位置的函数值;2. 牛顿插值法的计算结果:根据已知数据点,利用牛顿插值公式计算其他位置的函数值;3. 误差分析:比较插值结果与真实函数值之间的误差,分析误差的来源和影响因素;4. 运行时间分析:比较不同插值方法的运行时间,分析其效率和适用场景。

五、实验结论1. 拉格朗日插值法和牛顿插值法都是常用的插值方法,它们在不同场景下有各自的优势;2. 插值法在实际问题中的应用需要考虑数据的分布、函数的性质和计算效率等因素;3. 本实验结果表明,拉格朗日插值法和牛顿插值法在精度和效率上存在差异,具体选择哪种方法应根据实际需求进行权衡。

六、实验总结通过本次实验,我们深入了解了插值法的原理和应用。

实验结果表明,插值法在科学计算和工程设计中具有重要的作用。

在实际应用中,我们需要根据具体问题的要求和数据的特点选择合适的插值方法,以达到更好的效果。

数值分析实验报告--实验2--插值法

数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。

显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。

我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。

龙格(Runge )给出一个例子是极著名并富有启发性的。

设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。

实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。

(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。

(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。

1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。

1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。

Matlab 脚本文件为Experiment2_1_1fx.m 。

可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。

插值运算实验报告

插值运算实验报告

#### 一、实验目的1. 理解插值运算的基本概念和原理。

2. 掌握几种常见的插值方法,如拉格朗日插值、牛顿插值等。

3. 通过实验,验证插值方法在数值计算中的应用效果。

4. 培养动手能力和分析问题的能力。

#### 二、实验原理插值运算是指根据已知数据点,构造一个近似函数来描述这些数据点之间的变化规律。

常见的插值方法有拉格朗日插值、牛顿插值、分段线性插值等。

#### 三、实验内容1. 数据准备准备一组数据点,例如:```x: [1, 2, 3, 4, 5]y: [2, 4, 6, 8, 10]```2. 拉格朗日插值根据给定的数据点,构造拉格朗日插值多项式。

以三次拉格朗日插值为例,其公式如下:```L(x) = y0 ((x - x1) (x - x2) (x - x3)) / ((x0 - x1) (x0 - x2) (x0 - x3))+ y1 ((x - x0) (x - x2) (x - x3)) / ((x1 - x0) (x1 - x2) (x1 - x3))+ y2 ((x - x0) (x - x1) (x - x3)) / ((x2 - x0) (x2 - x1) (x2 - x3))+ y3 ((x - x0) (x - x1) (x - x2)) / ((x3 - x0) (x3 - x1)(x3 - x2))```将数据点代入上述公式,得到拉格朗日插值多项式。

3. 牛顿插值根据给定的数据点,构造牛顿插值多项式。

以三次牛顿插值为例,其公式如下:```N(x) = y0 + (x - x0) (y1 - y0) / (x1 - x0) + (x - x0) (x - x1) (y2 - y1) / ((x1 - x0) (x2 - x1)) + (x - x0) (x - x1) (x - x2) (y3 - y2) / ((x1 - x0) (x2 - x1) (x3 - x2))```将数据点代入上述公式,得到牛顿插值多项式。

插值运算实验报告

插值运算实验报告

插值运算实验报告通过实验掌握插值运算的原理和方法,并利用插值运算技术对离散数据进行插值和逼近。

实验设备:计算机、Matlab软件实验原理:插值是利用已知数据点之间的关系,使用某种函数表达式来逼近未知点的值。

插值方法可以分为多种,如拉格朗日插值、牛顿插值等。

本次实验主要涉及的是拉格朗日插值和牛顿插值。

实验步骤:1. 采集实验数据,得到需要进行插值运算的离散数据。

2. 根据所给的离散数据,选择合适的插值方法,如拉格朗日插值或牛顿插值。

3. 利用Matlab软件进行编程,实现所选择的插值方法。

4. 运行程序,得到插值结果。

5. 根据插值结果,可以确定对未知数据点的函数值,也可以进行曲线拟合和逼近。

实验结果:经过对实验数据的处理和插值运算,得到了以下结果:1. 插值函数的形式,可以通过该函数计算未知数据点的函数值。

2. 插值曲线的图像,可以通过该曲线来拟合和逼近实验数据。

实验分析:通过实验结果的分析,可以得出以下结论:1. 插值方法的选择对结果有重要影响,不同的插值方法适用于不同的数据类型。

2. 插值运算可以有效地处理离散数据,得到连续函数的逼近值。

3. 插值运算的精度也会受到数据点分布和插值方法的影响。

实验总结:通过本次实验,我对插值运算的原理和方法有了更深入的了解。

插值运算是一种常用的数值计算方法,可以在一定程度上解决离散数据的处理问题。

插值运算不仅可以用于求解未知数据点的函数值,还可以用于曲线拟合和逼近。

不同的插值方法适用于不同类型的数据,需要根据实际情况进行选择。

插值运算的精度也会受到数据点分布和插值方法的影响,需要注意选择合适的插值方法以及优化离散数据的分布。

插值方法_实验报告

插值方法_实验报告

肖建 计科三班 20095420开课学院、实验室: 数统学院实验时间 :2011年 5 月 8 日实验项目类型课程名称数学实验实验项目名 称插值方法验证演示综合设计其他指导教师李东成 绩实验5 插值方法一、实验目的及意义[1] 了解插值的基本原理[2] 了解拉格朗日插值、线性插值、样条插值的基本思想; [3] 了解三种网格节点数据的插值方法的基本思想;[4] 掌握用MATLAB 计算三种一维插值和两种二维插值的方法;[5] 通过范例展现求解实际问题的初步建模过程;通过自己动手作实验学习如何用插值方法解决实际问题,提高探索和解决问题的能力。

通过撰写实验报告,促使自己提炼思想,按逻辑顺序进行整理,并以他人能领会的方式表达自己思想形成的过程和理由。

提高写作、文字处理、排版等方面的能力。

二、实验内容1.编写拉格朗日插值方法的函数M 文件;2.用三种插值方法对已知函数进行插值计算,通过数值和图形输出,比较它们的效果;3.针对实际问题,试建立数学模型,并求解。

三、实验步骤1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据各种数值解法步骤编写M 文件3.保存文件并运行;4.观察运行结果(数值或图形);5.写出实验报告,并浅谈学习心得体会。

四、实验要求与任务根据实验内容和步骤,完成以下具体实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论→心得体会)基础实验1. 一维插值 利用以下一些具体函数,考察分段线性插值、三次样条插值和拉格朗日多项式插值等三种插值方法的差异。

1),x ∈[-5,5]; 2)sin x , x ∈[0,2π]; 3)cos 10x , x ∈[0,2π].211x+M 文件:(1)clcx=linspace(-5,5,11);y=1./(1+x.^2);x0=linspace(-5,5,101);y0=1./(1+x.^2);y1=interp1(x,y,x0,'spline')y2=interp1(x,y,x0);A=[ones(11,1) x' (x.^2)' (x.^3)' (x.^4)' (x.^5)' (x.^6)' (x.^7)' (x.^8)' (x.^9)' (x.^10)']a=A\y';y3=a(1)+a(2).*x0+a(3).*x0.^2+a(4).*x0.^3+a(5).*x0.^4+a(6).*x0.^5+a(7).*x0.^6+a(8).*x0.^7+a(9).*x0.^8+a(10).*x0.^9+a(11).*x0.^10;plot(x0,y3,'r'),gtext('Lagr.'),hold on ,plot(x0,y2,'b'),gtext('Pies.Lin.'),hold on ,plot(x0,y1,'m'),gtext('Spline')hold off(2)x=linspace(0,2*pi,11); y=cos(x);x0=linspace(0,pi,101);y0=cos(x0);剩余代码和(1)中相同(3)x=linspace(0,pi,11);y=cos(x).^10;x0=linspace(0,pi,101);y0=cos(x0).^10;剩余代码和(1)中相同注意:适当选取节点及插值点的个数;比较时可以采用插值点的函数值与真实函数值的差异,或采用两个函数之间的某种距离。

插值数值实验报告(3篇)

插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。

2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。

3. 分析不同插值方法的优缺点,并比较其精度和效率。

4. 通过实验加深对数值分析理论的理解和应用。

二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。

它广泛应用于科学计算、工程设计和数据分析等领域。

常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。

1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。

2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。

其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。

三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。

插值实验实验报告

插值实验实验报告

一、课题名称Malab 函数插值方法二、目的和意义1、学会拉格朗日插值、牛顿插值、亨密特插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。

三、计算公式拉格朗日插值的公式)())(()()()()()()()2,1,0,;,0)(;,1)(()()()(1010110n n i ni i ni n n i i i i ni i i n x x x x x x x w x f x w x x x w x L j i i j x l i j x l x f x l x L ---='-==≠====+=++=∑∑ 其中或者其中牛顿差值公式[][][])())(()()(],,[)()()()()(,))((,,)(,)()(1011,010,010*******n n n n n n n n n x x x x x x x w x w x x x f x N x f x R x x x x x x f x x x x x x x f x x x x f x f x N ---==-=--++--+-+=++- 其中亨密特插值公式∑=++=ni i x i i x i x n m b f a H 0)()()(12][五、结构程序设计拉格朗日插值的程序function[c,l]=lagan1(x,y) x=input('x=:'); y=input('y=:'); w=length(x); n=w-1;l=zeros(w,w); for k=1:n+1 v=1;for j=1:n+1 if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)); endendl(k,:)=vEndc=y*l;牛顿插值的程序function[c,l]=lagan(x,y)x=input('x=:');y=input('y=:');n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor k=j:nd(k,j)=(d(k,j-1)-d(k-1,j-1))/(x(k)-x(k-j+1)); endendc=d(n,n);for k=(n-1):-1:1c=conv(c,poly(x(k)));m=length(c);c(m)=c(m)+d(k,k);end六、结果讨论和分析拉格朗日插值运行的结果x=:[0.4 0.55 0.65 0.80 0.95 1.05]y=:[0.41075 0.57815 0.69675 0.9 1.00 1.25382]l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05320 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+003 *-0.1865 0.7459 -1.1776 0.9167 -0.3517 0.05321.3333 -5.1333 7.7300 -5.67122.0177 -0.27660 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.02540 0 0 0 0 00 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210 0 0 0 0 0 l =1.0e+004 *-0.0186 0.0746 -0.1178 0.0917 -0.0352 0.00530.1333 -0.5133 0.7730 -0.5671 0.2018 -0.0277-0.2222 0.8333 -1.2172 0.8626 -0.2955 0.03900.1778 -0.6400 0.8951 -0.6069 0.1994 -0.0254-0.1010 0.3485 -0.4684 0.3067 -0.0978 0.01210.0308 -0.1031 0.1353 -0.0869 0.0273 -0.0033 ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542牛顿插值的运行结果x=:[0.4,0.55,0.65,0.80,0.95,1.05]y=:[0.41075,0.57815,0.69675,0.90,1.00,1.25382]ans =121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845121.6264*0.596^5+(-422.7503)*0.596^4+572.5667*0.596^3+( -377.2549)*0.596^2+121.9718 *0.596-15.0845ans =0.6257121.6264*0.99^5+(-422.7503)*0.99^4+572.5667*0.99^3+( -377.2549)*0.99^2+121.9718 *0.99-15.0845ans =1.0542多项式插值的主要目的是用一个多项式拟合离散点上的函数值,使得可以用该多项式估计数据点之间的函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
void newton(int N, double X[], double Y[],double F[][M+1]){ int i,j; for (i=0;i<=N;i++) { F[i][0]=Y[i]; } for (j=1;j<=N;j++) { for (i=j;i<=N;i++) { F[i][j]=(F[i][j-1]-F[i-1][j-1])/(X[i]-X[i-j]); } } printf ("\n %12S%12S\n","XI","F(XI)"); for (j=1;j<=38;j++) printf("--"); printf ("\n"); for (i=0;i<=N;i++) { printf("%12f",X[i]); for (j=0;j<=i;j++) printf("%12f",F[i][j]); printf("\n"); } for (j=1;j<=38;j++)
printf("--"); printf("\n"); } int main(){ newton(M,X,Y,F); double x=0.596; int k; double p;
p=F[M][M]; for (k=3;k>=0;k--)
p=p*(x-X[k])+F[k][k]; /*计算牛顿均差值多项式*/ printf("%f\n",p); return 0; } 【实验结果】 1. 拉格朗日插值法截图:
分别用四次拉格朗日插值和牛顿插值,求 x=0.596 时的函数值。
【程序代码】
1. 拉格朗日插值法: #include <iostream.h> const int N=4; const double XX=0.596;
void main() {
double X[N+1]={0.4,0.55,0.65,0.8,0.9}; double Y[N+1]={0.41075,0.57815,0.69675,0.88811,1.02652}; double L=0,LI=1; for (int I=0;I<=N;I++) {
2. 牛顿插值法截图:
【实验心得】
通过这次实验,使我熟悉了拉格朗日插值和牛顿插值公式以及它们不同的特点
拉格朗日插值可用双重循环来实现;内循环为连乘;外循环为连加。
牛顿插值法在计算机上计算均差表时,可用一维数组 X 存放基点值,用二维数组 F 存放和 计算由个阶均差构成的下三角矩阵。计算公式如下:
FI0=F(XI)
计算方法实验报告
题目:插值法 院系:计算机科学与工程学院 班级:140402 班 姓名:李浩琛 学号:20141144
【实验时间】
2016.10.10 【实验内容】
已知函数表:
xi
0.4
0.55
0.65 0.8
0.9
yi 0.41075 0.57815 0.69675 0.88811 1.02652
,I=0,1,…N
FIJ=(FI,J-1-FI-1,J-1)/(XI-XI-J) ,J=1,2,=1; for (int J=0;J<=N;J++) {
if (J!=I) {
LI=LI*(XX-X[J])/(X[I]-X[J]); } } L+=LI*Y[I]; } cout<<"THE RESULT IS:"<<L<<endl; } 2. 牛顿插值法: #include<iostream> using namespace std;
const int M = 5;
double X[M] = {0.4, 0.55, 0.65, 0.8, 0.9}; double Y[M] = {0.41075, 0.57815, 0.69675, 0.88811, 1.02652}; double F[M+1][M+1];
double large(int N, double X[], double Y[]){ double XX = 0.596; double l=0,li=1; for(int i=0;i<=N;i++) { li=1; for (int j=0;j<=N;j++) { if(j!=i) { li=li*(XX-X[j])/(X[i]-X[j]); } } l+=li*Y[i]; } return l;
相关文档
最新文档