数值分析实验报告记录
数值分析实验报告

数值分析实验报告【引言】数值分析是一门研究利用计算机和数学方法解决实际问题的学科,它在工程、科学和经济领域中有着广泛的应用。
在这个实验报告中,我将分享我在数值分析实验中的一些发现和结果。
【实验目的】本次实验的目的是通过数值方法对给定的问题进行求解,并分析数值方法的精确性和稳定性。
我们选择了经典的插值和数值积分问题来进行实验。
【实验过程】在插值问题中,我使用了拉格朗日插值和样条插值两种方法。
通过使用已知的数据点,这些方法能够通过构造多项式函数来逼近原始函数,从而能够在未知点上进行预测。
通过比较两种插值方法的结果,我发现拉格朗日插值在低维数据上表现更好,而样条插值在高维数据上更能保持插值曲线的平滑性。
在数值积分问题中,我使用了复合梯形公式和复合辛普森公式来进行数值积分。
这两种方法可以将复杂的区间上的积分问题转化为对若干个小区间进行数值积分的问题。
实验结果表明,复合辛普森公式在使用相同的步长时,其数值积分结果更为精确。
【实验结果】我以一个实际问题作为例子来展示实验结果。
问题是计算半径为1的圆的面积。
通过离散化的方法,我将圆划分为多个小的扇形区域,并使用数值积分方法计算每个扇形的面积。
最后将每个扇形的面积相加,即可得到圆的近似面积。
通过调整离散化的精度,我发现随着扇形数量的增加,计算得到的圆的面积越接近真实的圆的面积。
在插值问题中,我选择了一段经典的函数进行插值研究。
通过选择不同的插值节点和插值方法,我发现当插值节点越密集时,插值结果越接近原函数。
同时,样条插值方法在高阶导数连续的情况下能够更好地逼近原始函数。
【实验总结】通过这次实验,我对数值分析中的插值和数值积分方法有了更深入的理解。
我了解到不同的数值方法在不同的问题中有着不同的适用性和精确度。
在实际应用中,我们需要根据具体问题选择合适的数值方法,并进行必要的数值计算和分析,以获得准确可靠的结果。
总的来说,数值分析作为一种重要的工具和方法,在科学研究和工程实践中具有广泛的应用,并且不断发展和创新。
数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
东北大学数值分析实验报告

数值分析实验班级 姓名 学号实验环境: MATLAB实验一 解线性方程组的迭代法(1)一、实验题目 对以下方程组分别采用Jacobi 迭代法, Gaaus-Seidel 迭代法求解和SOR 迭代法求解。
(2)线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------13682438141202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 (2)对称正定线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------1924336021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515221123660(3)三对角线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 二、实验要求(1)应用迭代法求线性方程组, 并与直接法作比较。
数值分析实验报告二

数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。
(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。
(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。
2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。
数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。
通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。
二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。
实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。
2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。
实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。
3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。
实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。
4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。
它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。
实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。
三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。
2. 选取几个不同的函数,对积分区间进行划分。
3. 使用不同方法计算积分近似值,并与实际积分值进行比较。
4. 分析不同方法的精度和效率。
四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。
2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。
3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。
4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。
数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析实验报告5篇

1.69376699767424 0.92310666706964 0.08471614569741 0.40804026409411
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
讨论:
利用这种方法进行这类实验,可以很精确的扰动敏感性的一般规律。即 当对扰动项的系数越来越小时,对其多项式扰动的结果也就越来越小, 即扰动敏感性与扰动项的系数成正比,扰动项的系数越大,对其根的扰 动敏感性就越明显,当扰动的系数一定时,扰动敏感性与扰动的项的幂 数成正比,扰动的项的幂数越高,对其根的扰动敏感性就越明显。
解线性方程组的直接方法
实验 (主元的选取与算法的稳定性) 问题提出:Gauss消去法是我们在线性代数中已经熟悉的。但由于计算 机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保 Gauss消去法作为数值算法的稳定性呢?Gauss消去法从理论算法到数值 算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它 却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的 Gauss消去过程。 实验要求: (1)取矩阵,则方程有解。取n=10计算矩阵的条件数。让程序自动选 取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最 小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去 过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析 不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析实验报告记录————————————————————————————————作者:————————————————————————————————日期:数值分析实验报告(第二章)实验题目:分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程的根,观察不同初始值下的收敛性,并给出结论。
问题分析:题目有以下几点要求:1.不同的迭代法计算根,并比较收敛性。
2.选定不同的初始值,比较收敛性。
实验原理:各个迭代法简述二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。
对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。
牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。
迭代格式为割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为史蒂芬森迭代法:采用不动点迭代进行预估校正。
至少是平方收敛的。
迭代格式为这里可采用牛顿迭代法的迭代函数。
实验内容:1.写出该问题的函数代码如下:function py= f(x) syms k;y=(k^2+1)*(k-1)^5;yy=diff(y,k);py(1)=subs(y,k,x);py(2)=subs(yy,k,x); end2.分别写出各个迭代法的迭代函数代码如下:二分法:function y=dichotomie(a,b,e) i=2;m(1)=a;while abs(a-b)>et=(a+b)/2;s1=f(a);s2=f(b);s3=f(t);if s1(1)*s3(1)<=0b=t;elsea=t;endm(i)=t;i=i+1;endy=[t,i+1,m];end牛顿迭代法:functiony=NewtonIterative(x,e)i=2;en=2*e;m(1)=x;while abs(en)>=es=f(x);t=x-s(1)/s(2);en=t-x;x=t;m(i)=t;i=i+1;endy=[x,i+1,m];end牛顿割线法:function y=Secant(x1,x2,e) i=3;m(1)=x1,m(2)=x2;while abs(x2-x1)>=es1=f(x1);s2=f(x2);t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1));x1=x2;x2=t;m(i)=t;i=i+1;endy=[x2,i+1,m];end史蒂芬森迭代法:Functionp=StephensonIterative(x,e) i=2;m(2)=x;en=2*e;while abs(en)>=ey=fai(x); z=fai(y);t=x-(y-x)^2/(z-2*y+x); en=t-x;x=t;m(i)=t;i=i+1;endp=[x,i+1,m];end3.因为经常被使用,故可以写一个函数。
代码如下:function y=fai(x)s=f(x);y=x-s(1)/s(2);end4.可以绘制不同的图形来比较不同迭代法的收敛性和不同初值下的收敛性。
代码如下:clear all;%相同初始值,不同迭代法下的收敛x1=dichotomie(0,3,1e-10);x2=NewtonIterative(0,1e-10);x3=Secant(0,2, 1e-10);x4=StephensonIterative(0,1e-10);[x1(2),x2(2),x3(2),x4(2)]figure,subplot(2,2,1),plot(x1(3:x1(2))),title('二分法');subplot(2,2,2),plot(x2(3:x2(2))),title('牛顿迭代法');subplot(2,2,3),plot(x3(3:x3(2))),title('牛顿割线法');subplot(2,2,4),plot(x4(3:x4(2))),title('史蒂芬森迭代法');figure,subplot(2,2,1),plot((x1(4:x1(2)-1)-x1(1))./(x1(3:x1(2)-2)-x1(1))),tit le('二分法');subplot(2,2,2),plot((x2(4:x2(2)-1)-x2(1))./(x2(3:x2(2)-2)-x2(1))),tit le('牛顿迭代法');subplot(2,2,3),plot((x3(4:x3(2)-1)-x3(1))./(x3(3:x3(2)-2)-x3(1))),title('牛顿割线法');subplot(2,2,4),plot((x4(4:x4(2)-1)-x4(1))./(x4(3:x4(2)-2)-x4(1))),tit le('史蒂芬森迭代法');%不同初始值,相同迭代法下的收敛性x5=dichotomie(-1,1,1e-10);x6=dichotomie(-2,3,1e-10);x7=dichotomie(0,4,1e-10);x8=dichotomie(-4,4,1e-10);x9=NewtonIterative(-2,1e-10);x10=NewtonIterative(-4,1e-10);x11=NewtonIterative(4,1e-10);x12=NewtonIterative(6,1e-10);figure,subplot(1,2,1),plot(1:x1(2)-2,x1(3:x1(2)),1:x5(2)-2,x5(3:x5(2)),1:x6(2)-2,x6(3:x6(2) ),1:x7(2)-2,x7(3:x7(2)),1:x8(2)-2,x8(3:x8(2))),title('二分法');subplot(1,2,2),plot(1:x2(2)-2,x2(3:x2(2)),1:x9(2)-2,x9(3:x9(2)),1:x10(2)-2,x10(3:x10 (2)),1:x11(2)-2,x11(3:x11(2)),1:x12(2)-2,x12(3:x12(2))),title('牛顿迭代法');x13=Secant(-1,1, 1e-10);x14=Secant(-4,5, 1e-10);x15=Secant(0,7, 1e-10);x16=Secant(-8,2, 1e-10);x17=StephensonIterative(-1,1e-10);x18=StephensonIterative(-4,1e-10);x19=StephensonIterative(4,1e-10);x20=StephensonIterative(6,1e-10);figure,subplot(1,2,1),plot(1:x3(2)-2,x3(3:x3(2)),1:x13(2)-2,x13(3:x13(2)),1:x14(2)-2,x14(3: x14(2)),1:x15(2)-2,x15(3:x15(2)),1:x16(2)-2,x16(3:x16(2))),title('牛顿割线法');subplot(1,2,2),plot(1:x4(2)-2,x4(3:x4(2)),1:x17(2)-2,x17(3:x17(2)),1:x18(2)-2,x18(3: x18(2)),1:x19(2)-2,x19(3:x19(2)),1:x20(2)-2,x20(3:x20(2))),title('史蒂芬森迭代法');实验结果:1. 各个迭代值分布图 1.1 不同迭代法下的得到的迭代值迭代值的情况如下:二分法 牛顿迭代法牛顿割线法史蒂芬森迭代法0 0 0 0 1.5000000000 0.2000000000 2.0000000000 1.3555555556 0.7500000000 0.3704918032 0.3333333333 0.9816165283 1.1250000000 0.5076442076 0.3807196801 0.9999460003 0.9375000000 0.6146189447 0.4982833419 0.99999999951.0312500000 0.6973869098 0.5704996333 0.9843750000 0.7615538091 0.6393806244 1.0078125000 0.8115411186 0.6942785879 0.9960937500 0.8506763857 0.7411692653 1.0019531250 0.8814482123 0.7802715997 0.99902343750.90572974000.8132927871当二分法的初始区间选为 ,误差限为 ,牛顿迭代法初值选为 ,0102030400.511.5二分法0501000.51牛顿迭代法5010015000.511.52牛顿割线法024680.511.5史蒂芬森迭代法误差限为 ,牛顿割线法初始点为 ,误差限为 ,史蒂芬森迭代法初始点选为 ,误差限为 ,迭代情况如图所示。
迭代次数分别为38次,100次,140次,9次。
故而,史蒂芬森迭代法速度最快,效果最好。
2. 收敛情况图 1.2 不同迭代法下迭代值得收敛情况二分法收敛效果较差,牛顿迭代法和牛顿割线法相近,史蒂芬森迭代法收敛次数高于1,效果最好 3. 不同初值的收敛情况10203040-10-505x 109二分法501000.40.50.60.70.8牛顿迭代法10203040-2-11牛顿割线法12345-0.4-0.20.20.4史蒂芬森迭代法图 1.3 二分法,牛顿迭代法下不同初值的收敛情况图 1.4 牛顿割线法,史蒂芬森迭代法下不同初值的收敛情况10203040-4-3-2-112二分法50100150-4-3-2-10123456牛顿迭代法020406080-8-6-4-202468牛顿割线法0246800.511.522.5史蒂芬森迭代法1.二分法的五个初始区间分别为;2.牛顿迭代法的五个初始值分别为;3.牛顿割线法的五个初始区间分别为;4.史蒂芬森迭代法的五个初始值分别为;由图可知,它们最终均达到收敛。
收敛性分析及结论:1.二分法收敛较慢且不能求解崇根,但算法简单;此处牛顿法具有了平方收敛;从迭代次数上看,牛顿割线法较牛顿法的多,所以收敛性较差,是超线性收敛;史蒂芬森迭代法收敛效果最好。