《计算方法》实验报告
计算方法实验报告

计算方法实验报告计算方法实验报告概述:计算方法是一门研究如何用计算机解决数学问题的学科。
在本次实验中,我们将学习和应用几种常见的计算方法,包括数值逼近、插值、数值积分和常微分方程求解。
通过实验,我们将深入了解这些方法的原理、应用场景以及其在计算机科学和工程领域的重要性。
数值逼近:数值逼近是一种通过使用近似值来计算复杂函数的方法。
在实验中,我们通过使用泰勒级数展开和牛顿迭代法等数值逼近技术,来计算函数的近似值。
这些方法在科学计算和工程领域中广泛应用,例如在信号处理、图像处理和优化问题中。
插值:插值是一种通过已知数据点来估算未知数据点的方法。
在实验中,我们将学习和应用拉格朗日插值和牛顿插值等方法,以及使用这些方法来构造函数的近似曲线。
插值技术在数据分析、图像处理和计算机图形学等领域中具有重要的应用价值。
数值积分:数值积分是一种通过将函数曲线划分为小矩形或梯形来估算函数的积分值的方法。
在实验中,我们将学习和应用矩形法和梯形法等数值积分技术,以及使用这些方法来计算函数的近似积分值。
数值积分在物理学、金融学和统计学等领域中被广泛使用。
常微分方程求解:常微分方程求解是一种通过数值方法来求解微分方程的方法。
在实验中,我们将学习和应用欧拉法和龙格-库塔法等常微分方程求解技术,以及使用这些方法来求解一些常见的微分方程。
常微分方程求解在物理学、生物学和工程学等领域中具有广泛的应用。
实验结果:通过实验,我们成功地应用了数值逼近、插值、数值积分和常微分方程求解等计算方法。
我们得到了准确的结果,并且在不同的应用场景中验证了这些方法的有效性和可靠性。
这些实验结果将对我们进一步理解和应用计算方法提供重要的指导和支持。
结论:计算方法是计算机科学和工程领域中的重要学科,它提供了解决复杂数学问题的有效工具和方法。
通过本次实验,我们深入了解了数值逼近、插值、数值积分和常微分方程求解等计算方法的原理和应用。
这些方法在科学研究、工程设计和数据分析等领域中具有广泛的应用价值。
计算方法_实验报告

一、实验目的1. 理解并掌握计算方法的基本概念和原理;2. 学会使用计算方法解决实际问题;3. 提高编程能力和算法设计能力。
二、实验内容本次实验主要涉及以下内容:1. 线性方程组的求解;2. 多项式插值;3. 牛顿法求函数零点;4. 矩阵的特征值和特征向量求解。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 科学计算库:NumPy、SciPy四、实验步骤及结果分析1. 线性方程组的求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A和增广矩阵b;c. 使用NumPy的linalg.solve()函数求解线性方程组。
(2)实验结果设系数矩阵A和增广矩阵b如下:A = [[2, 1], [1, 2]]b = [3, 2]解得:x = [1, 1]2. 多项式插值(1)实验步骤a. 导入NumPy库;b. 定义插值点x和对应的函数值y;c. 使用NumPy的polyfit()函数进行多项式拟合;d. 使用poly1d()函数创建多项式对象;e. 使用多项式对象计算插值点对应的函数值。
(2)实验结果设插值点x和对应的函数值y如下:x = [1, 2, 3, 4, 5]y = [1, 4, 9, 16, 25]拟合得到的二次多项式为:f(x) = x^2 + 1在x = 3时,插值得到的函数值为f(3) = 10。
3. 牛顿法求函数零点(1)实验步骤a. 导入NumPy库;b. 定义函数f(x)和导数f'(x);c. 设置初始值x0;d. 使用牛顿迭代公式进行迭代计算;e. 判断迭代结果是否满足精度要求。
(2)实验结果设函数f(x) = x^2 - 2x - 3,初始值x0 = 1。
经过6次迭代,得到函数零点x ≈ 3。
4. 矩阵的特征值和特征向量求解(1)实验步骤a. 导入NumPy库;b. 定义系数矩阵A;c. 使用NumPy的linalg.eig()函数求解特征值和特征向量。
计算方法实验报告

班级:地信11102班序号: 20姓名:任亮目录计算方法实验报告(一) (3)计算方法实验报告(二) (6)计算方法实验报告(三) (9)计算方法实验报告(四) (13)计算方法实验报告(五) (18)计算方法实验报告(六) (22)计算方法实验报告(七) (26)计算方法实验报告(八) (28)计算方法实验报告(一)一、实验题目:Gauss消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯消去法基础原理2、掌握高斯消去法法解方程组的步骤3、能用程序语言对Gauss消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、建立工程,建立Gauss.h头文件,在头文件中建类,如下:class CGauss{public:CGauss();virtual ~CGauss();public:float **a; //二元数组float *x;int n;public:void OutPutX();void OutputA();void Init();void Input();void CalcuA();void CalcuX();void Calcu();};(2)、建立Gauss.cpp文件,在其中对个函数模块进行设计2-1:构造函数和析构函数设计CGauss::CGauss()//构造函数{a=NULL;x=NULL;cout<<"CGauss类的建立"<<endl;}CGauss::~CGauss()//析构函数{cout<<"CGauss类撤销"<<endl;if(a){for(int i=1;i<=n;i++)delete a[i];delete []a;}delete []x;}2-2:函数变量初始化模块void CGauss::Init()//变量的初始化{cout<<"请输入方程组的阶数n=";cin>>n;a=new float*[n+1];//二元数组初始化,表示行数for(int i=1;i<=n;i++){a[i]=new float[n+2];//表示列数}x=new float[n+1];}2-3:数据输入及输出验证函数模块void CGauss::Input()//数据的输入{cout<<"--------------start A--------------"<<endl;cout<<"A="<<endl;for(int i=1;i<=n;i++)//i表示行,j表示列{for(int j=1;j<=n+1;j++){cin>>a[i][j];}}cout<<"--------------- end --------------"<<endl;}void CGauss::OutputA()//对输入的输出验证{cout<<"-----------输出A的验证-----------"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n+1;j++){cout<<a[i][j]<<" ";}cout<<endl;}cout<<"---------------END--------------"<<endl;}2-4:消元算法设计及实现void CGauss::CalcuA()//消元函数for(int k=1 ;k<n;k++){for(int i=k+1;i<=n;i++){double lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}a[i][k]=0; //显示消元的效果}}}2-5:回代计算算法设计及函数实现void CGauss::CalcuX()//回带函数{for(int i=n;i>=1;i--){double s=0;for(int j=i+1;j<=n;j++){s+=a[i][j]*x[j];}x[i]=(a[i][n+1]-s)/a[i][i];}}2-6:结果输出函数模块void CGauss::OutPutX()//结果输出函数{cout<<"----------------X---------------"<<endl;for(int i=1 ;i<=n;i++){cout<<"x["<<i<<"]="<<x[i]<<endl;}}(3)、“GAUSS消元法”主函数设计int main(int argc, char* argv[]){CGauss obj;obj.Init();obj.Input();obj.OutputA();obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();//obj.Calcu();return 0;2、实验运行结果计算方法实验报告(二)一、实验题目:Gauss列主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯列主元消去法基础原理(1)、主元素的选取(2)、代码对主元素的寻找及交换2、掌握高斯列主元消去法解方程组的步骤3、能用程序语言对Gauss列主元消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、新建头文件CGuassCol.h,在实验一的基础上建立类CGauss的派生类CGuassCol公有继承类CGauss,如下:#include "Gauss.h"//包含类CGauss的头文件class CGaussCol:public CGauss{public:CGaussCol();//构造函数virtual ~CGaussCol();//析构函数public:void CalcuA();//列主元的消元函数int FindMaxIk(int k);//寻找列主元函数void Exchange(int k,int ik);//交换函数void Calcu();};(2)、建立CGaussCol.cpp文件,在其中对个函数模块进行设计2-1:头文件的声明#include "stdafx.h"#include "CGuassCol.h"#include "math.h"#include "iostream.h"2-2:派生类CGaussCol的构造函数和析构函数CGaussCol::CGaussCol()//CGaussCol类构造函数{cout<<"CGaussCol类被建立"<<endl;}CGaussCol::~CGaussCol()//CGaussCol类析构函数{cout<<"~CGaussCol类被撤销"<<endl;}2-3:高斯列主元消元函数设计及代码实现void CGaussCol::CalcuA()//{for(int k=1 ;k<n;k++){int ik=this->FindMaxIk(k);if(ik!=k)this->Exchange(k,ik);for(int i=k+1;i<=n;i++){float lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}}}}2-4:列主元寻找的代码实现int CGaussCol::FindMaxIk(int k)//寻找列主元{float max=fabs(a[k][k]);int ik=k;for(int i=k+1;i<=n;i++){if(max<fabs(a[i][k])){ik=i;max=fabs(a[i][k]);}}return ik;}2-5:主元交换的函数模块代码实现void CGaussCol::Exchange(int k,int ik)//做交换{for(int j=k;j<=n+1;j++){float t=a[k][j];a[k][j]=a[ik][j];a[ik][j]=t;}}(3)、建立主函数main.cpp文件,设计“Gauss列主元消去法”主函数模块3-1:所包含头文件声明#include "stdafx.h"#include "Gauss.h"#include "CGuassCol.h"3-2:主函数设计int main(int argc, char* argv[]){CGaussCol obj;obj.Init();//调用类Gauss的成员函数obj.Input();//调用类Gauss的成员函数obj.OutputA();//调用类Gauss的成员函数obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();return 0;}2、实验结果计算方法实验报告(三)一、实验题目:Gauss完全主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯完全主元消去法基础原理;2、掌握高斯完全主元消去法法解方程组的步骤;3、能用程序语言对Gauss完全主元消去法进行编程(C++)实现。
计算方法实验报告册

实验一——插值方法实验学时:4实验类型:设计 实验要求:必修一 实验目的通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。
并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。
二 实验内容通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。
取点越密集,所得折线就越逼近理论上的插值曲线。
本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放于动态数组[]Y n 中。
以Visual C++.Net 2005为例。
本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。
CInterpolation 类为 class CInterpolation { public :CInterpolation();//构造函数CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… …………int n, N;//结点下标上限,采样点下标上限float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放i h ,i α,i β,i a ,i b ,i c ,i d 和i m};其中,有参数的构造函数为CInterpolation(float *x1, float *y1, int n1) {//动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1;N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];for (int i=0;i<=n;i++) {x[i]=x1[i]; y[i]=y1[i]; }for (int i=0;i<=N;i++) X[i]=x[0]+i; }2.1 Lagrange 插值()()nn i i i P x y l x ==∑,其中0,()nj i j j ni jx x l x x x =≠-=-∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算对应的Lagrange 插值基函数值()i l x float l(float xv,int i) //求插值基函数()i l x 的值 {float t=1;for (int j=0;j<=n;j++) if (j!=i)t=t*(xv-x[j])/(x[i]-x[j]); return t; }调用函数l(float x,int i),可求出()n P xfloat p_l(float x) //求()n P x 在一个点的插值结果 {float t=0;for (int i=0;i<=n;i++) t+=y[i]*l(x,i); return t; }调用p_l(float x)可实现整个区间的插值float *Lagrange() //求整个插值区间上所有采样点的插值结果 {float *Y=new float [N+1]; for (int k=0;k<=N;k++) Y[k]=p_l(x[0]+k*h); return Y; } 2.2Newton 插值010()(,,)()nn i i i P x f x x x x ω==∑,其中101,0()(),0i i j j i x x x i ω-==⎧⎪=⎨-≠⎪⎩∏,0100,()(,,)()ik i nk k j j j kf x f x x x x x ==≠=-∑∏对于一个自变量x ,要求插值函数值()n P x ,首先需要计算出01(,,)i f x x x 和()i x ωfloat *f() {//该函数的返回值是一个长度为n +1的动态数组,存放各阶差商 }float w(float x, int i) {//该函数计算()i x ω }在求()n P x 的函数中调用*f()得到各阶差商,然后在循环中调用w(float x)可得出插值结果 float p_n(float x) {//该函数计算()n P x 在一点的值 }调用p_n(float x)可实现整个区间的插值 float *Newton() {//该函数计算出插值区间内所有点的值 }2.3 三次样条插值三次样条插值程序可分为以下四步编写: (1) 计算结点间的步长i hi 、i α、i β;(2) 利用i hi 、i α、i β产生三对角方程组的系数矩阵和常数向量; (3) 通过求解三对角方程组,得出中间结点的导数i m ; (4) 对自变量x ,在对应区间1[,]i i x x +上,使用Hermite 插值; (5)调用上述函数,实现样条插值。
东南大学计算方法实验报告

计算方法与实习实验报告学院:电气工程学院指导老师:***班级:160093******学号:********实习题一实验1 拉格朗日插值法一、方法原理n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x)n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0)n=2时,称为二次插值或抛物线插值,精度相对高些L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1)二、主要思路使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。
对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。
可求得l k三.计算方法及过程:1.输入节点的个数n2.输入各个节点的横纵坐标3.输入插值点4.调用函数,返回z函数语句与形参说明程序源代码如下:#include<iostream>#include<math.h>using namespace std;#define N 100double fun(double *x,double *y, int n,double p);void main(){int i,n;cout<<"输入节点的个数n:";cin>>n;double x[N], y[N],p;cout<<"please input xiangliang x= "<<endl;for(i=0;i<n;i++)cin>>x[i];cout<<"please input xiangliang y= "<<endl;for(i=0;i<n;i++)cin>>y[i];cout<<"please input LagelangrichazhiJieDian p= "<<endl;cin>>p;cout<<"The Answer= "<<fun(x,y,n,p)<<endl;system("pause") ;}double fun(double x[],double y[], int n,double p){double z=0,s=1.0;int k=0,i=0;double L[N];while(k<n){ if(k==0){ for(i=1;i<n;i++)s=s*(p-x[i])/(x[0]-x[i]);L[0]=s*y[0];k=k+1;}else{s=1.0;for(i=0;i<=k-1;i++)s=s*((p-x[i])/(x[k]-x[i]));for(i=k+1;i<n;i++) s=s*((p-x[i])/(x[k]-x[i]));L[k]=s*y[k];k++;}}for(i=0;i<n;i++)z=z+L[i];return z;}五.实验分析n=2时,为一次插值,即线性插值n=3时,为二次插值,即抛物线插值n=1,此时只有一个节点,插值点的值就是该节点的函数值n<1时,结果都是返回0的;这里做了n=0和n=-7两种情况3<n<100时,也都有相应的答案常用的是线性插值和抛物线插值,显然,抛物线精度相对高些n次插值多项式Ln(x)通常是次数为n的多项式,特殊情况可能次数小于n.例如:通过三点的二次插值多项式L2(x),如果三点共线,则y=L2(x)就是一条直线,而不是抛物线,这时L2(x)是一次式。
东南大学计算方法上机报告实验报告完整版

实习题11. 用两种不同的顺序计算644834.11000012≈∑=-n n,试分析其误差的变化解:从n=1开始累加,n 逐步增大,直到n=10000;从n=10000开始累加,n 逐步减小,直至1。
算法1的C 语言程序如下: #include<stdio.h> #include<math.h> void main() { float n=0.0; int i; for(i=1;i<=10000;i++) { n=n+1.0/(i*i); } printf("%-100f",n); printf("\n"); float m=0.0; int j; for(j=10000;j>=1;j--) { m=m+1.0/(j*j); } printf("%-7f",m); printf("\n"); }运行后结果如下:结论: 4.设∑=-=Nj N j S 2211,已知其精确值为)11123(21+--N N 。
1)编制按从大到小的顺序计算N S 的程序; 2)编制按从小到大的顺序计算N S 的程序;3)按2种顺序分别计算30000100001000,,S S S ,并指出有效位数。
解:1)从大到小的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=N;i>1;i--){n=n+1.0/(i*i-1);N=N-1;}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:2)从小到大的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=2;i<=N;i++){n=n+1.0/(i*i-1);}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:结论:通过比较可知:N 的值较小时两种算法的运算结果相差不大,但随着N 的逐渐增大,两种算法的运行结果相差越来越大。
计算方法实验报告习题2(浙大版)

计算方法实验报告实验名称: 实验2 列主元素消去法解方程组 1 引言工程实际问题中,线型方程的系数矩阵一般为低阶稠密矩阵和大型稀疏矩阵。
用高斯消去法解Ax =b 时,可能出现)(k kk a 很小,用作除数会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使结果不可靠;采用选主元素的三角分解法可以避免此类问题。
高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A =LU ,并求解Ly =b 的过程。
回带过程就是求解上三角方程组Ux =y 。
所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法。
采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度。
2 实验目的和要求通过列主元素消去法求解线性方程组,实现P A =LU 。
要求计算解x ,L ,U ,整形数组IP (i ),(i =1,2,…,)(记录主行信息)。
3 算法原理与流程图(1)原理将A 分解为两个三角矩阵的乘积A =LU 。
对方程组的增广矩阵[]b A A ,=经过k-1步分解后,可变成如下形式:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡→-------------n nnnjnkk n n n i in ij ik k i i i k kn kj kk k k k k k n k j k k k k k k k n j k k n j k k b a a a l l l b a a a l l l b a a a l l l y u u u u l l y u u u u u l y u u u u u u A1,211,211,211,1,1,11,12,11,122221,2222111,1,11,11211第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kk m u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mkm s a l u i k k n -==-=+∑,于是有kk u =ks 。
计算方法-解线性方程组的直接法实验报告

cout<<endl;
for(k=i+1;k<m;k++)
{
l[k][i]=a[k][i]/a[i][i];
for(r=i;r<m+1;r++) /*化成三角阵*/
a[k][r]=a[k][r]-l[k][i]*a[i][r];
}
}
x[m-1]=a[m-1][m]/a[m-1][m-1];
{
int i,j;
float t,s1,s2;
float y[100];
for(i=1;i<=n;i++) /*第一次回代过程开始*/
{
s1=0;
for(j=1;j<i;j++)
{
t=-l[i][j];
s1=s1+t*y[j];
}
y[i]=(b[i]+s1)/l[i][i];
}
for(i=n;i>=1;i--) /*第二次回代过程开始*/
s2=s2+l[i][k]*u[k][r];
l[i][r]=(a[i][r]-s2)/u[r][r];
}
}
printf("array L:\n");/*输出矩阵L*/ for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%7.3f ",l[i][j]);
printf("\n");
{
s2=0;
for(j=n;j>i;j--)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计算方法》实验报告 学号
姓名 班级
实验项目名称
计算方法实验 一、实验名称 实验一 插值与拟合
二、实验目的:
(1)明确插值多项式和分段插值多项式各自的优缺点;
(2)编程实现拉格朗日插值算法,分析实验结果体会高次插值产生的龙格现象;
(3)运用牛顿插值方法解决数学问题。
三、实验内容及要求
(1) 对于55,11)(2≤≤-+=x x
x f 要求选取11个等距插值节点,分别采用拉格朗日插值和分段线性插值,计算x 为0.5, 4.5处的函数值并将结果与精确值进行比较。
输入:区间长度,n(即n+1个节点),预测点
输出:预测点的近似函数值,精确值,及误差
(2)已知,,,392411===用牛顿插值公式求5的近似值。
输入:数据点集,预测点。
输出:预测点的近似函数值
四、实验原理及算法描述
算法基本原理:
(1)拉格朗日插值法
(2)牛顿插值法
算法流程
五、程序代码及实验结果
(1)输出:
A.拉格朗日插值法
B.分段线性插值
X y(精确) y(拉格朗日) y(分段线性) 误差(拉) 误差(分)
0.500000 0.800000 0.843407 0.750000 -0.054259 0.050000
4.500000 0.047059 1.578720 0.0486425 -32.547674 -0.033649
(2)输出:
X y(精确) y(牛顿插值) 误差(牛顿插值)
5.00000 2.236068 2.266670 -0.013686
源码:
(1)A.拉格朗日插值法
#include<iostream>
#include<string>
#include<vector>
using namespace std;
double Lagrange(int N,vector<double>&X,vector<double>&Y,double x); int main(){
double p,b,c;
char a='n';
do{
cout<<"请输入差值次数n的值:"<<endl;
int N;
cin>>N;
vector<double>X(N,0);
vector<double>Y(N,0);
cout<<"请输入区间长度(a,b):"<<endl;
cin>>p;
cin>>b;
c=b-p;
c=c/(N-1);
for(int i=0;i<N;i++){
X[i]=p;
Y[i]=1/(1+p*p);
p=p+c;
}
cout<<"请输入要求值x的值:"<<endl;
double x;
cin>>x;。