电力系统中变电站母线电压异常分析判断及故障处理
35kV接地系统电压异常分析和处理

35kV接地系统电压异常分析和处理浙江省浦江县供电局张琳阅读次数:355摘要:通过对110 kV变电站35 kV母线电压异常情况的分析和处理,总结了变电站35 kV电压异常的各类情况,分析了各种故障原因,提出了故障判断及处理的步骤和原则。
关键词:35 kV母线;电压异常2009年3月8日,浙江省浦江县110 kV城中变电站35kV母线电压发生异常现象,当时城中变电站为正常运行方式,两台主变并列运行。
110 kV变压器为两台三圈变压器,SZZ9-40000/110,容量为40 MVA,110 kV母线为内桥接线,110 kV母线分段运行,35 kV母线为单母线分段,正常接线运行时35 kV母线分段运行;10 kV母线为单母分段接线。
故障当天为雷雨天气,35 kVⅠ段电压A相为37 kV,B相为0 kV,C相为37 kV,35 kVⅡ段电压A相为37 kV,B 相为27 kV,C相为23 kV,光字牌显示35 kVⅠ段母线接地,35 kVⅡ段母线接地。
1 事故原因分析35 kV母线电压异常一般为系统谐振,线路单相接地或断相,消弧线圈档位不当等;还有可能测量回路故障导致35 kV 母线电压异常,如母线电压互感器高压熔丝熔断,低压熔丝熔断或二次回路异常,母线电压互感器异常等。
如35 kV系统故障引起电压异常,那么所有与之相连的电压互感器电压显示值都异常,必须快速处理;如仅是测量回路异常引起指示值不准确,则一般只是发生在变电站的电压互感器。
为了在系统发生电压波动时能够明确区分故障类型,及时处理故障,保障电网安全运行,现就分别以系统谐振、线路断线、单相接地、消弧线圈档位不当、熔丝熔断、二次回路异常等故障情况下系统的不同特征进行分析。
1.1 系统发生谐振谐振过电压引起的三相电压不平衡有两种。
一种是基频谐振,即一相电压降低,另两相电压升高,特征类似于单相接地;另一种是分频谐振或高频谐振,特征是三相电压同时升高。
变电站35kV-10kV母线电压异常原因分析及处理方法

变电站35kV\10kV母线电压异常原因分析及处理方法摘要:通过对220kV变电站35kV母线及110kV变电站10kV母线电压异常情况的分析和处理,总结了变电站35kV或10kV电压异常的各类情况,分析了各种故障原因,提出了故障判断及处理的方法,指导变电站值班员快速进行分析、判断和处理母线电压异常情况。
关键词:35kV母线;10kV母线;电压异常;处理Abstract: Based on the 220 kV 35 kV substation of 110 kV substations bus and 10 kV bus voltage of the abnormal situation analysis and processing, summarizes the 35 kV transformer substations or 10 kV voltage of all kinds of anomalies, analyses the reason of failure, and puts forward the method of fault diagnosis and treatment, guidance on the analysis, the substation attendant rapid judgment and processing of bursar voltage of anomalies.Key Words: 35 kV bus bar; 10 kV bus bar; abnormal voltage; processing中图分类号:TM89 文献标识码:A 文章编号:笔者所在电网的35kV系统和10kV系统是不接地系统。
35kV及10kV 系统电压异常情况非常普遍,原因很多,如何准确判断和处理,对变电运行及相应的调度部门至关重要。
2011年8月2日,某220kV变电站35kV母线电压发生异常现象,当时变电站为正常运行方式,两台主变并列运行。
浅谈10kV母线电压异常分析及处理

浅谈10kV母线电压异常分析及处理摘要:在小电流接地系统中,10kV PT电压异常时有发生,现结合220kV XX变电站发生的10kV PT电压异常分析和处理过程,对10kV PT电压异常的原因和预防措施进行了探究。
关键词:变电站;10kV PT;异常;故障辨析0事件现象220kV XX站值班人员在监盘时发现:监控机发出“220kV XX站10kV 2乙M母线电压异常”异常告警信号,经检查发现10kV 2乙M母线电压A相2.0kV,B相6.0kV,B相6.0kV,监盘人员立即将该情况报告当值值班长。
1.技术分析220kV XX站10kV 2乙M母线电压异常原因:10kV PT高压熔断器熔断、低压熔断器熔断、一次系统接地、断线故障、铁磁谐振、负载不对称、接线错误或松动、电压继电器辅助接点接触不良等。
1.110kV PT熔断器熔断1)当系统发生单相间歇电弧接地时,产生接地过电压。
电压可达正常相电压3—3.5 倍,可能使10kV PT铁芯饱和,激磁电流急剧增加,引起高压侧熔断器熔断,熔断相低压侧电压降低但不为零,此时低压侧非故障的两相电压保持正常相电压。
同时,由于高压侧发生熔断器熔断,低压侧伴随出现零序电压,此时的零序电压高于10kV母线接地信号告警定值,因此保护装置启动并发出母线接地信号。
2)当10kV PT低压熔断器熔断时,二次侧现象与高压侧相似,区别在于低压侧熔断器熔断,只会影响某一绕组电压,不会伴随出现零序电压,所以不会发出母线接地信号。
1.2一次系统接地、断线小电流接地系统单相接地故障可分为金属性接地与非金属性接地两类:1)当发生金属性接地时,接地电阻为零(或接近于零),中性点与故障相电压重合,故障相电压为零,非故障相电压上升为线电压(或接近于线电压)。
2)当发生非金属性接地时,由于接地电阻不确定性,造成二次电压异常,这就容易与10kV PT熔断器熔断故障混淆,但这种情况至少有一相电压超过正常时相电压,这就可以区分电压异常是系统非金属接地还是熔断器熔断所引起的。
变电站变电运行故障分析与处理

变电站变电运行故障分析与处理摘要:现阶段,我国经济发展对于能源的需求越来越大,因此电力的正常供应对于我国经济发展具有重要意义,在电力供应系统中,变电站的正常运行直接关系到电力供应的效率和质量,因此对于变电站运行故障的研究一直是电力部门工作人员的工作重点,在对变电站故障问题进行分析之后,需要制定有效措施排除供电故障,以保障供电系统的正常运行,同时为工农业生产和居民生活提供稳定的电力支持。
本文就针对变电站运行过程中常见的故障以及解决方式进行了研究,希望能给大家一些启发。
关键词:变电站;运行故障;分析;处理1变电站运行故障的主要类型1.1母线损毁故障变电站的母线在变电站正常运行过程中起到了至关重要的作用,因此变电站母线一旦发生故障,将会导致变电站无法正常运行,并且变电站母线极其容易受到环境因素的影响而出现损坏,导致母线出现损坏的主要原因是电路运行损耗、线路挤压碰撞、电压波动以及点变设备安装错误。
1.2开关损坏故障开关在变电站的线路中主要起到隔离作用,即使在没有负荷电流的状态下,一样可以进行线路的合分,因此对于变电站的运行有着重要作用,但是变电站线路中的开关则经常发生故障,主要是开关发热过高引起的,此类故障主要产生在开关接头和线桩的位置,主要是载流回路截面过窄导致,由于载流回路的截面较窄,因此热量无法有效散发到外界,导致开关出现短路等问题,进而引发开关损坏故障。
1.3线路损坏故障线路损坏故障是变电站变电系统在运行过程中常见的故障之一,线路是变电站进行变电工作的必要媒介之一,线路作为传输电力能源的媒介,线路运行的状况直接关系到电力输送的效率,但是在目前电力输送过程中,线路损坏现象较为严重,尤其是变电站的线路损坏更为严重,常表现为线路开裂、线路损坏、线芯外露,进而引发漏电、停电等现象,影响线路正常运行的同时也给整个供电线路的正常运行带来风险。
1.4变压器故障变压器结构复杂,功能繁多,并且各个结构之间具有较强的关联,因此一旦某一环节出现故障,可能导致整个变电系统出现运行故障,影响整个供电线路的正常运行。
变电站母线电压异常分类及解决措施

变电站母线电压异常分类及解决措施摘要:随着我国社会经济的快速发展,电力资源的需求也是日益增长。当前,电力行业第一要扩大电力能源的来源,其次是要加强电网运行的有效管理,特别是在变电站调度上,变电站母线电压异常问题是一个大问题,很可能引发整个变电站系统的故障,为了提高变电站系统的运行质量,则要加强变电站母线电压异常现象的剖析,根据电压异常现象的类型、成因等来采取针对性的预防措施,提高变电站母线电压的运行质量,从而维护我国社会用电的稳定和安全。关键词:变电站母线;电压异常;分类;解决措施引言变电站母线电压出现异常时,则可能引发多方面的故障和问题,从而干扰整个变电站的正常工作,必须做好变电站母线电压异常现象剖析工作,分析变电站母线电压异常的成因,从而有针对性地采取处理方法来解除问题。1单相接地的分析与对策当母线电压出线异常时,小编第一反应就是发生了单相接地。
单相接地是母线三相电压不平衡最常见的原因。
10kV城市电网中性点一般采用不接地或经消弧线圈接地的模式,就是我们俗称的中性点不接地系统或为小电流接地系统,当然发达的一二线城市电网若以电缆线路为主的话,也会采用中性点经小电阻接地的模式。
采用小电流接地系统的优点就是发生单相接地时,并不破坏线电压的对称性,系统仍可以保持稳定运行。
所以当10kV线路发生单相接地时,10kV母线电压就会出现如下变化1.1完全接地(金属性接地)接地相电压为零,非接地相电压升高为线电压,线电压不变。
如图1所示。
1.2不完全接地(非金属性接地)地相电压较低不为零,非接地相电压升高但不超过线电压,线电压仍不变。
图2所示。
造成接地的原因千千万,最主要的还是外力破坏、设备老化绝缘击穿和树障搭接裸导线。
2电压互感器高压侧保险熔断分析与对策电压互感器高压侧保险熔断也会造成母线三相电压异常,日常值班时偶尔也会碰到这种情况,但是它所造成的异常象征跟单相接地还是有明显区别的以电压互感器A相熔断举例:如图3所示。
10kV母线电压异常分析、判据及处置策略

10kV母线电压异常分析、判据及处置策略发表时间:2017-06-28T10:31:47.040Z 来源:《电力技术》2017年第2期作者:温景和[导读] 目前变电站10kV部分采用中性点不接地系统,10kV母线电压的监测,通过10kV电压互感器实现。
广东电网有限责任公司东莞供电局广东东莞 523000摘要:10kV母线电压的状态通过10kV电压互感器采取抽取至监控后台机,实现在线监视,由于设备运行工况变化,电压的数据有时会偏离正常的水平,造成电压异常现象,本文通过对10kV母线电压各种异常现象、数据、信号对比,结合运维经验和理论分析,验证不同电压异常现象对应的实际故障,用以区分出母线本身故障、电压互感器故障、外线路故障,为10kV电压异常事件提供可靠的处理依据,保证母线异常电压处置的及时性、准确性、快速性,提升变电运行应急处置的安全系数和效率。
关键词:电压互感器(PT);熔断器;判据;处置0 前言随着用户对电能质量、供电可靠性要求的提高,供电部门对10kV母线电压监控提出更高的标准。
目前变电站10kV部分采用中性点不接地系统,10kV母线电压的监测,通过10kV电压互感器实现。
电压互感器(简称PT):是一种将高电压变成低电压,供继电保护、自动装置和测量仪表获取一次侧电压信息的设备。
在运行中PT二次不得短路,因为PT本身阻抗很小,短路会使二次回路通过很大的电流,使二次熔断器熔断,影响表计的指示,甚至引起保护装置的误动作;为了防止一、二次绕组间的绝缘击穿时,高压窜入二次,危及人身和设备安全,二次侧必须有一端接地;PT一、二次侧一般应装设熔断器作为短路保护。
目前10kV母线电压合格范围定量为:一次线电压:10.0~10.7kV、一次相电压:5.7~6.1kV、二次相电压:57~61V。
由于10kV电压互感器的结构特性,若PT故障、母线故障、外线路故障都会影响10kV母线电压,准确区分引起电压异常的故障,对快速处理、恢复设备正常运行有重要意义。
变电站异常检查及处理

油泵启动频繁 (1) 故障现象:控制屏油泵启动光字亮,启动频繁。 (2) 原因分析: 1) 高压油路渗漏油。 2) 液压机构内部故障。 3) 油泵启动后不保持。 (3) 处理方法有: 1) 根据储压杆位置,判明油泵启动后是否不保持。 2) 检查1SM常开接点及接触器KM保持接点是否接触不良,或引 线断线,并处理更换。 3) 检查高压油路是否严重漏油。 4) 检查液压机构内部故障。 5) 通知专业班组进行检查处理。
开关拒合(Ⅲ)(机械部分故障) (1) 故障现象:①绿灯亮;②手动 (用SA) 合闸,合闸接触器 KMC动 作开关拒合。 (2) 原因分析: 1) 机构定位螺丝位置过高。 2) 合闸铁芯顶杆太短。 3) 合闸铁芯卡涩。 4) 分闸铁芯跳动;马鞍支架未返回。 5) 辅助开关常闭接点打开过早。 6) 合闸剩余行程不够。 (3) 处理方式: 1) 检查分闸连板中间轴位置过高,并调整定位螺丝。 2) 检查分闸铁芯是否跳动,马鞍支架未返回,用加力杠手动合开关 检查。 3) 检查合闸铁芯顶杆是否太短,并调整。 4) 检查合闸铁芯有无卡涩现象,并处理。 5) 检查合闸剩余行程是否合适,并调整。 6) 检查辅助开关常闭接点是否打开过早,并调整。
绿灯不亮 (1) 故障现象:控制屏绿灯熄灭。 (2) 原因分析: 1) 绿灯损坏。 2) 合闸回路断线。 3) 控制保险熔断或接触不良。 (3) 处理方法有: 1) 检查绿灯是否完好,并更换。 2) 检查串联电阻是否完好,并更换。 3) 检测绿灯回路是否断线。 4) 检测合闸控制回路是否完好。 5) 排除故障点,恢复正常。 6) 检查控制保险是否熔断或接触不良。
红灯不亮 (1) 故障现象:控制屏红灯熄灭。 (2) 原因分析: 1) 控制保险熔断或接触不良。 2) 灯泡损坏或串联电阻损坏。 3) 跳闸回路断线。 (3) 处理方法有: 1) 检查控制保险是否熔断或接触不良。 2) 检查灯泡是否完好,并更换。 3) 检查串联电阻是否完好。 4) 检测跳闸回路是否完好。 5) 检测直流电源是否完好。 6) 排除故障点,恢复正常。
分析变电站直流母线电压异常原因及处理步骤

分析变电站直流母线电压异常原因及处理步骤田莉莉;董学芹;刘佳【摘要】DC system as the most basic system control and protection of the substation,for a variety of devices(such as measurement andcontrol,automatic device)to provide a working power supply.To ensure the normal operation of the DC system is an important issue.Due to the upgrading of computer network and communicationtechnology,substation DC system is also required for automation and stability and reliable operation of the system itself.%直流系统作为变电站最基本的系统控制以及保护部分,为各种装置(如测控、自动装置)提供工作电源。
确保直流系统的正常运作是至关重要的问题。
由于计算机网络和通信技术的更新换代,变电站直流系统也对于自动化及系统本身的稳定和可靠运行提出要求。
【期刊名称】《电子测试》【年(卷),期】2016(000)001【总页数】2页(P101-102)【关键词】直流系统;直流故障;变电站【作者】田莉莉;董学芹;刘佳【作者单位】国网山东省电力公司东平县供电公司,山东泰安,271500;国网山东省电力公司东平县供电公司,山东泰安,271500;国网山东省电力公司东平县供电公司,山东泰安,271500【正文语种】中文由于直流电源系统的配置选择不恰当引起的设备损坏、故障及人员伤亡等事故的发生,给企业造成重大的经济损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统中变电站母线电压异常分析判断及故障处理
发表时间:2019-12-06T13:47:03.833Z 来源:《电力设备》2019年第16期作者:稂杰[导读] 摘要:电压互感器是电力系统的重要设备,其运行对于监控母线电压非常重要。
(国网江西省电力有限公司吉安市吉州区供电分公司 343000) 摘要:电压互感器是电力系统的重要设备,其运行对于监控母线电压非常重要。
本文主要研究了变电站母线电压的异常情况,详细分析了该现象产生的原因,并提出了相应的措施和处理建议,希望能为解决这一问题提供一定的参考。
关键词:变电站母线电压;分析判断;故障处理
引言
随着我们社会和经济的快速发展。
各行业对电力的需求也在增加。
电力的发展不仅需要逐步扩大自身的能源资源,还要逐步提高能源系统的管理质量。
特别是在配电网的调度工作中,往往需要对电力故障进行分析和管理,以保持我国用电的安全性和稳定性。
在此基础上,本文分析了案例,分析了电力系统总线运行中常见的异常现象,总结了常见故障的原因。
1异常情况原因分析
在实际工作中,经常发生母线电压异常。
母线电压异常的原因很多。
大多数母线电压异常故障发生在35kV及更少的电力系统中。
不接地系统常使母线电压的大部分出现异常,主要是由于四个方面:高低熔丝母线保险丝、电源接地故障或相故障异常引起的PT激励特性、铁磁共振。
1.1非系统设备故障所致的异常电压现象
为了确保变电站设备的安全和经济运行,运城电网每季度都有不同级别的母线电压曲线。
监测人员应验证电压曲线,以确保电压在合格范围内。
例如,根据峰值,高峰值、低峰值和平峰值,10V电压保持在0.1-10.7kV,并根据上限和下限合理地达到电压范围。
当电网实际运行时,由于有功功率,无功功率输出的变化,功率负载的增加或减少以及系统布线异常,总线电压将超出电压限制。
可以调整与设备无关的故障原因,以满足网络和用户的电压和质量要求。
针对上述情况的措施:(1)设定运行方式,合理分配负荷(2)增加或减少无功功率,改变电容器组(3)改变电网参数,停止,投或并解变压器(4)改变有功和无功的重新分配,并调整变压器旁路。
1.2母线 PT高、低压熔断器熔断
高压和低压母线PT熔断器电压分析后熔断的高压熔断器:当变压器的高压侧熔断时。
熔丝相电压为零,两相绕组的剩余端电压为线电压。
每个线圈末端的电压必须是1/2线电压。
在不考虑接地系统的电容的情况下,在高压配电系统中,地的相对电容和通过它的电容电流是客观的和不容忽视的。
因此,熔断器未熔断的两相的相电压基本保持正常的相电压。
PT保险丝再次熔断后,熔断相的相电压为零。
非熔断相的相电压表示正常高压熔断器和低压熔断器之间的最显著差异。
高压熔断器熔断到开路端口电压。
低压熔断器的开路电压为零。
1.3电网存在接地或断相的故障
35kV和10V主电源接地故障系统是当有接地连接时电源的中性点未接地的系统。
是允许2小时运行。
单相未完全接地一相的电压降低但小于零,并且两相的电压增加但不相同。
其中一相略高于线电压。
一相的电压增加不超过线电压,两相的电压降低,但它们不相等。
中性点不连接到本地电网,该阶段的下一阶段是接地相。
网络故障被破坏时,当交换机未就位或刀片阶段断开,网络故障就会中断。
断开网络将导致负载不平衡,进而导致中性点移动。
1.4PT励磁特性不同引起的异常
如果三相PT激励特性不相同。
与三相不对中载荷类似,中性点改变。
只会导致输出电压不平衡;当激发特性非常不同时。
三角开路绕组两端的零序电压大于检测装置的电压设定值。
它将使电压继电器工作并发送接地信号,从而产生"虚拟接地"现象。
2铁磁谐振
2.1铁磁谐振产生的原因
当变压器连接到星形侧并且中性点直接接地时,每个相绕组的电感与分布电容C0并联连接,形成独立的LC振荡电路,可以认为是电源的三相对称负载,但在一定的"铁磁共振下激发下发生。
当电源总线突然连接到电源时变压器和单相接地以及变压器分别谐振。
励磁电流大,会使变压器电流增加数倍。
导致变压器铁心饱和,造成电压互感器产生饱和电涌。
2.2铁磁谐振的形式
变压器的铁磁谐振可以是基波(工频)或分频,甚至是高频。
通常,经常发生基频和频分谐振。
根据运行经验,当电源突然用变压器接通空总线时,容易产生基波谐振,当发生单相接地时,容易发生分频谐振。
2.3电压互感器发生谐振的现象
基波共振:单相电压降低,两相电压升高到线电压以上。
分频谐振:三相电压增加,过电压不高,电压表有抖动。
3防范处理措施
3.1电压感器一、二次侧熔丝熔断后的处理方法
用万用表检查第二侧的保险丝是否熔断并测量。
保险丝两端没有电压。
电压表示保险丝熔断。
更换合格的保险丝,如果二次保险丝没有熔断,那么故障通常发生在高压侧,高压熔断器在变压器运行中熔断,变压器必须先断开。
为防止变压器反向供电,必须拆下次级侧电压的保险丝管以确认没有异常。
可以使用高压绝缘手套或使用高压绝缘夹来代替高压保险丝。
更换保险丝后,再次尝试电源。
如果它再次熔化,则必须考虑变压器的内部故障并验证测试。
3.2接地故障防止 PT烧毁的措施
当接地时和接地消失时,系统的单相接地有两个转换。
首先,当我们分析接地连接时,如果系统某相接地。
那么该相直接与地接通,另外两个电源电路(如主变压器的绕组)也是良好的金属通道。
因此,当接地时,装卸路线三个相对的电容器不通过高压绕组,即此时。
PT 高压绕组中没有输入电流。
当接地连接消失时,固定接地连接的可能性消失,并且三个相对的金属接地通道没有其他方式。
只有高压绕组即存储在三个相对电容3C0中的负载,才是三相PT高压绕组电感。
类似于突然闭合的空载变压器,叠加更大的瞬态输入电流。
燃烧高压保险并限制当前生产非常容易。
3.3电磁式互感器励磁特性不一致的处理方法
3.3.1电磁变压器的励磁特性不一致当使用三个单相电压互感器构建绝缘监测装置时。
应选择同一制造商生产的三个单相电压互感器,相同类型的铁芯和相同的励磁特性。
如果单个部件烧坏且没有配套的备件,则必须同时更换三个。
3.3.2消除铁磁谐振的方法
选择具有更好励磁特性的电磁式电压互感器或切换到电容式电压互感器;在电磁式电压互感器二次侧的开口三角形中加一个阻尼电阻器;放置一个电阻器(约9kn,150W)立即进入变压器初级侧与地之间的中性点,然后在大约1min后自动断开;当选择灭弧线圈的位置时,尽量防止电网的一部分由于电网运行方式的变化而失去灭弧线圈。
4相关建议
由于10kV系统相电压不均匀且初级线电压平衡,谐波消除装置将在非分类状态下长时间执行操作,导致电阻消费者的变化并超过了要求的范围。
谐波消除装置的电阻改变,并且谐波消除装置中出现三次谐波电流,导致零点改变。
最后,二次电压不平衡,在电压互感器的生产中,制造商必须严格控制施工质量,特别是特性试验的要求,尽量小于35kV的电压互感器谐波热点去除装置安装在中性点位置。
在正常工作条件下,它不会对中性电压产生严重影响。
当发生谐振过电压时,它也会破坏谐振,能够保护设备的安全性。
5结束语
母线电压出现故障的原因种类很多.不同的站情况并不相同,即使存在相同的问题.在不同的变电站当中出现的电压值也是不相同的,因此母线电压故障的分析不能单独来看.必须结合变电站的具体情况进行分析。
本文只是总结了部分故障现象,并做了简要的分析,希望可以给同行们起到一定的借鉴意义。
参考文献:
[1]赵智大.高电压技术[M].北京:中国电力出版社,2006.
[2]朱德恒.严璋电气设备状态监测与故障诊断技术.北京:中国电力出版社.2009.
[3]王亚芳.杨丙寅.某变电站10kV 母线电压异常分析.水电 Z-程,2016(09).
I4]平绍勋.电力系统内部过电压保护及实例分析lMI.北京:中国电力出版社 .010.。