初高中知识衔接—数与式的教学案例
初三升高中数学衔接教案讲义大全

初三升高中数学衔接教案讲义大全初三升高中数学衔接教材教案讲义第一讲:数与式的运算——绝对值绝对值的代数意义是:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值仍是零。
即:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。
绝对值的几何意义是:一个数的绝对值,是数轴上表示它的点到原点的距离。
两个数的差的绝对值的几何意义是:a-b表示在数轴上,数a和数b之间的距离。
例1:解不等式:x-1+x-3>4.练1:1) 若x=5,则x=5;若x=-4,则x=-4.2) 如果a+b=5,且a=-1,则b=6;若1-c=2,则c=-1.练2:下列叙述正确的是(A)若a=b,则a=b;(B)若a>b,则a>b;(C)若a<b,则a<b;(D)若a=b,则a=±b。
练3:化简:|x-5|-|2x-13| (x>5)。
练4:观察下列每对数在数轴上的对应点间的距离4与-2,3与5,-2与-6,-4与3,并回答下列各题:1) 你能发现所得距离与这两个数的差的绝对值有什么关系吗?2) 若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为|a-(-1)|=|a+1|。
3) 结合数轴求得x-2+x+3的最小值为,取得最小值时x的取值范围为x≥5/3.4) 满足x+1+x+4>3的x的取值范围为x>-2/3.阅读理解题:阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1。
AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时。
①如图2,点A、B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|。
初高中数学衔接 1.数与式教案

第一讲 数与式在初中,我们已学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式(多项式、单项式)、分式、根式.它们具有实数的属性,可以进行运算.在多项式的乘法运算中,我们学习了乘法公式(平方差公式与完全平方公式),并且知道乘法公式可以使多项式的运算简便.由于在高中学习中还会遇到更复杂的多项式乘法运算,因此本节中将拓展乘法公式的内容,补充三个数和的完全平方公式、立方和、立方差公式.在根式的运算中,我们已学过被开方数是实数的根式运算,而在高中数学学习中,经常会接触到被开方数是字母的情形,但在初中却没有涉及,因此本节中要补充.基于同样的原因,还要补充“繁分式”等有关内容.一、乘法公式【公式1】平方差公式:22()()a b a b a b -=+- 【公式2】完全平方公式:222()2a b a ab b ±=±+ 【公式3】完全立方公式:33223()33a b a a b ab b ±=±+±【公式4】ca bc ab c b a c b a 222)(2222+++++=++(完全平方公式)证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222++++++++++=. ∴等式成立【例1】计算:22)312(+-x x解:原式=22]31)2([+-+x x222222432111()()()2(22()33381.339x x x x x x x =++++⨯+⨯⨯=-+-+ 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式5】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+. 【公式6】3322))((b a b ab a b a -=++-(立方差公式)证明:22223333()()[()][()()]()a b a ab b a b a a b b a b a b -++=+---+-=+-=-.【例2】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++解:(1)原式=333644m m +=+.(2)原式=3333811251)21()51(n m n m -=-.(3)原式=644)()44)(4(63322242-=-=++-a a a a a .(4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=. 说明:在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.【例3】已知2310x x -+=,求331x x +的值. 解:2310x x -+= 0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x xx x x说明:本题若先从方程2310x x -+=中解出x 的值后,再代入代数式求值,则计算较烦.本题则根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.引申:))((3222333ca bc ab c b a c b a abc c b a ---++++=-++二、指数式当n N ∈时,an na a a a 个⋅⋅⋅=. 当n Q ∈时,⑴零指数01(0)a a =≠, ⑵负指数1(0)n na a a -=≠.⑶分数指数 0,,n maa m n =>为正整数).幂运算法则:(1),(2)(),(3)() (,0,,)mnm nm n mn n n n a a aa a ab a b a b m n Z +⋅===>∈.【例4】求下列各式的值:328,21100-,43)8116(-解: 422)2(8233323232====⨯;101)10(110011002121212===-;8272332)32()8116(3333444343====----.【例5】计算下列各式⑴)3()6)(2(656131212132b a b a b a -÷-; ⑵8)(8341-q p . 解: ⑴a ab bab a b a b a 444)3()6)(2(0653121612132656131212132===-÷--+-+;⑵3232888)()()(83418341q p qp qp q p ===---.三、根式0)a ≥叫做二次根式,其性质如下:(1) 2(0)a a =≥||a =0,0)a b =≥≥0,0)a b=>≥ 如果有nx a =,那么x 叫做a 的n 次方根,其中n 为大于1的整数.当n a =,当n {,0||,0a a a a a ≥==-<. 【例6】化简下列各式:1)x +≥解:(1) 原式=2|1|211-+=-+=(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明:||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(3) -+解:(1) 原式623==--(2) 原式ab=(3) 原式=+-+说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式;②被开方数不含能开得尽方的因数或因式.(2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式()或被开方数有分母().这时形式() ,转化为“分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(,其中2+与2-).四、分式当分式AB的分子、分母中至少有一个是分式时,AB就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.【例8】化简11xxxxx-+-解法一:原式=222(1)11(1)1(1)(1)11x xx x x x xx x x x xx x x xx xxxx xx xx++=====--⋅+-+-+++--+解法二:原式=22(1)1(1)(1)111()x xx x x xx x x x x xx x xxx xxxx xx++====-⋅-+--+++--⋅说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A mB B m⨯=⨯进行化简.一般根据题目特点综合使用两种方法.【例9】化简233396162279x x x xxx x x++-+-+--解:原式=22339611612(3)3(3)(3)2(3)(3)(39)(9)x x x x xx x x x xx x x x x++--+-=--+-+-+-++-22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x xx x x x x+-------===+-+-+.说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式.。
初中与高中的衔接数学教案

初中与高中的衔接数学教案教学目标:通过本课学习,学生将能够熟练掌握初中数学知识,为高中数学学习奠定良好基础。
教学内容:初中与高中数学知识的衔接,包括初中数学知识的复习与延伸,高中数学知识的引入。
教学重点:初中数学知识的回顾与巩固,高中数学知识的初步引入与理解。
教学难点:初中数学知识与高中数学知识的衔接,学生需要跨越知识的边界,理清逻辑关系。
教学准备:教师准备好教案、教材、多媒体设备等教学工具;学生准备好课本、笔记本和笔等学习用具。
教学步骤:1.复习初中数学知识。
教师可以通过课堂互动让学生回顾和巩固初中数学知识,如方程、函数、几何等内容。
2.引入高中数学知识。
教师可以简要介绍高中数学的内容和学习方法,让学生做好学习准备。
3.进行知识衔接。
教师可以通过案例讲解初中数学知识与高中数学知识的联系和衔接,引导学生拓展思路,加深理解。
4.分组讨论。
教师让学生小组合作讨论与解决一些涉及初中和高中数学知识的问题,培养学生的合作与解决问题的能力。
5.总结与反思。
教师带领学生总结本节课的学习内容,学生反思自己的学习收获和不足之处,并提出问题。
教学评价:通过教师的现场观察、学生的表现以及课后作业的完成情况,对学生的学习情况进行评价,并提出建议和指导。
教学反思:教师根据教学过程和学生的反馈,总结本节课的教学效果和不足之处,为下一节课的教学改进提供参考。
扩展活动:为学生提供相关拓展资料或参加数学竞赛等活动,激发学生学习兴趣,促进数学能力的提升。
教学结束语:本节课的目标是让学生理清初中数学与高中数学之间的联系,帮助学生顺利过渡到高中数学学习阶段。
希望大家在今后的学习中能够积极探索,勇攀高峰!谢谢大家的认真听讲,下节课见!。
高中初中数学衔接教案

高中初中数学衔接教案一、教学目标:1. 知识与技能:使学生掌握初高中数学衔接知识点,理解初中和高中数学的差异,提高数学思维能力。
2. 过程与方法:通过对比分析、讨论交流等方法,引导学生自主探究初高中数学知识点,提高学生的数学素养。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力,树立学生的自信心。
二、教学内容:1. 初高中数学差异:数与代数、几何、统计与概率等方面的差异。
2. 初高中数学衔接知识点:实数、函数、方程、不等式、解析几何、概率统计等。
三、教学过程:1. 导入:通过向学生介绍初高中数学的差异,引起学生的兴趣,激发学生的学习动机。
2. 对比分析:引导学生对比初中和高中数学的知识点,使学生了解初中和高中数学的差异。
3. 自主探究:让学生自主学习初高中数学衔接知识点,引导学生通过小组合作、讨论交流等方式,加深对知识点理解。
4. 案例分析:通过分析典型题目,使学生掌握初高中数学衔接知识点的应用。
5. 总结提升:对本节课的内容进行总结,强化学生的记忆,提高学生的数学素养。
6. 课后作业:布置适量作业,巩固所学知识,提高学生的实际应用能力。
四、教学策略:1. 情境教学:创设生动有趣的情境,激发学生的学习兴趣。
2. 启发式教学:引导学生自主探究,培养学生的数学思维能力。
3. 合作学习:组织学生进行小组合作、讨论交流,提高学生的合作能力。
4. 激励评价:关注学生的学习过程,给予及时的表扬和鼓励,提高学生的自信心。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,了解学生的掌握程度。
3. 考试成绩:通过考试,评估学生对知识的掌握程度和应用能力。
4. 学生反馈:听取学生的意见和建议,不断调整教学方法,提高教学质量。
六、教学资源:1. 教材:选用符合新课程标准的教材,为学生提供全面、系统的学习资源。
初高中衔接内容数学教案

初高中衔接内容数学教案
一、教学目标:
1. 知识与技能:学生能够掌握初中数学与高中数学的衔接知识,如函数、方程、不等式等
内容。
2. 过程与方法:通过引导学生进行问题解决和思维拓展,培养学生的数学思维和解决问题
的能力。
3. 情感态度与价值观:培养学生对数学学习的兴趣和自信心,激发学生学习数学的积极性。
二、教学内容:
本节课主要教学内容为初高中数学衔接的知识点,包括但不限于:
1. 函数与方程的衔接:介绍高中函数与初中函数的联系,并引导学生探讨函数的性质和图
像变化。
2. 不等式的衔接:通过举例引导学生理解不等式的性质和解法,并培养学生分析问题、解
决问题的能力。
3. 逻辑推理与证明:引导学生进行逻辑推理和证明练习,培养学生的思维逻辑和分析能力。
三、教学过程:
1. 导入:通过提出一个问题或引入一个实例,激发学生对本课内容的兴趣。
2. 学习与讨论:教师介绍和讲解本节课的知识点,引导学生进行讨论和互动,加深对知识
的理解。
3. 练习与应用:设计一些练习题和问题,让学生进行练习和解答,巩固所学知识。
4. 总结与拓展:对本课内容进行总结,引导学生拓展思维,思考更深层次的问题。
5. 作业布置:布置相关的作业,加强对知识的巩固与熟练掌握。
四、教学评估:
通过课堂表现、作业情况和考试成绩等多方面对学生进行评估,及时发现问题并进行针对
性调整和指导。
五、教学反思:
教学结束后,教师应对本节课的教学效果进行反思和总结,发现问题并加以改进,为下一
节课的教学做好准备。
初高中知识衔接数学教案

初高中知识衔接数学教案教学内容:初中数学与高中数学知识的衔接教学目标:1. 了解初中数学和高中数学之间的知识衔接关系;2. 掌握数学知识的渐进性和深入性;3. 提高学生对数学学习的兴趣和动力。
教学重点:1. 初中数学和高中数学知识的衔接点;2. 渐进式学习方法的应用。
教学难点:1. 高中数学对初中数学知识的深入理解;2. 如何利用初中数学知识快速适应高中数学学习。
教学准备:1. 教材:初中数学教材、高中数学教材;2. 教具:黑板、彩色粉笔、计算器等。
教学步骤:第一步:导入(5分钟)教师简单介绍初中数学和高中数学之间的知识衔接关系,引导学生对今天的学习内容产生兴趣。
第二步:理论讲解(15分钟)1. 教师通过对几个例题的讲解,让学生了解初中数学和高中数学之间的知识衔接点;2. 教师讲解数学知识的渐进性和深入性,引导学生明确学习目标。
第三步:实例练习(20分钟)1. 学生在教师的指导下完成一些衔接性的习题,加深对知识点的理解;2. 学生自主练习,并彼此交流讨论。
第四步:课堂讨论(10分钟)学生就学习过程中遇到的问题进行讨论和解答,教师及时纠正学生的错误理解。
第五步:拓展延伸(10分钟)1. 学生进行拓展延伸练习,进一步加深对知识点的理解;2. 学生通过实际问题的解决,巩固所学知识。
第六步:作业布置(5分钟)布置相关作业,巩固所学知识。
教学反思:通过本节课的学习,学生对初中数学和高中数学之间的知识衔接有了更深入的了解,对数学学习的兴趣有所提高。
在日后的教学中,要加强对初中数学知识的深度学习,以便更好地适应高中数学学习的要求。
同时,要注重渐进式学习方法的应用,帮助学生更好地掌握数学知识。
初中数学 初高中数学衔接教材 教案

初高中数学衔接教材一、现有初高中数学知识存在以下“脱节”:1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
二、初高中数学衔接目录:前言第一讲数与式的运算(两课时)第二讲因式分解(两课时)第三讲一元二次方程根与系数的关系(一课时)第四讲不等式(两课时)第五讲二次函数的最值问题(一课时)第六讲简单的二元二次方程组(一课时)第七讲分式方程和无理方程的解法(一课时)第八讲直线、平面与常见立体图形(一课时)第九讲直线与圆,圆与圆的位置关系(一课时)初高中数学衔接教材初高中衔接从观念开始----致高一年级新同学一、初、高中的比较和初中数学相比,高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。
初高中数学衔接课教案

初高中数学衔接课教案教案标题:初高中数学衔接课教案教学目标:1. 确保学生对初中数学知识的掌握,并能够灵活运用。
2. 为学生提供初高中数学知识的衔接,使他们能够顺利过渡到高中数学学习。
3. 培养学生的数学思维能力和解决问题的能力。
教学重点:1. 复习和巩固初中数学知识。
2. 引入高中数学概念和思维方式。
3. 培养学生的数学思维能力和解决问题的能力。
教学难点:1. 如何引导学生理解高中数学概念和思维方式。
2. 如何帮助学生将初中数学知识与高中数学知识进行衔接。
教学准备:1. 教材:包括初中数学教材和高中数学教材。
2. 教具:黑板、彩色粉笔、教学PPT等。
教学过程:一、导入(5分钟)1. 引入话题,介绍初高中数学衔接的重要性。
2. 激发学生对数学学习的兴趣。
二、复习初中数学知识(20分钟)1. 复习初中数学知识点,如整数、分数、代数等。
2. 提供一些初中数学题目进行巩固练习。
三、引入高中数学概念(15分钟)1. 引导学生了解高中数学的学科内容和学习方法。
2. 介绍高中数学中的新概念,如函数、三角函数等。
3. 通过示例和图示等方式让学生初步理解高中数学概念。
四、初高中数学知识衔接(25分钟)1. 分析初高中数学知识的差异和联系。
2. 引导学生将初中数学知识与高中数学知识进行对比和衔接。
3. 提供一些综合性的题目,让学生运用初中数学知识解决高中数学问题。
五、培养数学思维能力(20分钟)1. 进行一些数学思维训练,如逻辑推理、问题解决等。
2. 引导学生思考数学问题的多种解决方法和思路。
六、总结与反思(5分钟)1. 总结今天的学习内容和收获。
2. 鼓励学生提出问题和建议,以便更好地改进教学。
教学延伸:1. 鼓励学生自主学习,提供相关的参考资料和习题。
2. 建议学生积极参加数学竞赛和活动,拓宽数学视野。
教学评估:1. 教师观察学生的参与度和学习态度。
2. 学生完成课堂练习和作业的情况。
3. 学生对数学概念和解题方法的理解程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中知识衔接《数与式的运算》教学案例一、相关背景介绍本课选自高中课程标准实验教科书《数学》(必修一)(苏教版)指数函数是高中新引进 的第一个基本初等函数,因此,先让学生了解指数函数的实际背景,然后对指数函数概念的建立,函数图象的绘制及基本性质作初步的介绍。
课标要求理解指数函数的概念和意义,能借助计算机画出具体指数函数的图象,初步探索并理解指数函数有关的性质。
本节课属于新授课,通过引导,组织和探索,让学生在学习的过程中体会研究具体指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的的方法等,使学生能更深刻理会指数函数的意义和基本性质。
二、本节课教学目标1.知识与技能: (1)掌握指数函数的概念,并能根据定义判断一个函数是否为指数函数.(2)能根据指数函数的解析式作出函数图象,并根据图象给出指数函数的性质.(3)能根据单调性解决基本的比较大小的问题.2.过程与方法:引导学生结合指数的有关概念来理解指数函数概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数当底分别是01a <<,1a >的性质。
3.情感、态度、价值观:使学生领会数学的抽象性和严谨性,培养他们实事求是的科学态度,积极参与和勇于探索的精神.4.重难点:(1)指数函数的定义、图象、性质(2)指数函数的描绘及性质三、课堂教学实录1.问题情景问题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,一个这样的细胞分裂x 次以后,得到的细胞个数y 与x 有怎样的关系.问题2.有一根1米长的绳子,第一次剪去绳长的一半,第二次再剪去剩余绳子的一半,…,剪去x 次后绳子剩余的长度为y 米,试写出y 与x 之间的关系.2.学生活动1.思考问题1,2给出y 与x 的函数关系?2.观察得到的函数2x y =,12xy ⎛⎫= ⎪⎝⎭与函数2y x =的区别. 3.观察函数2x y =,12xy ⎛⎫= ⎪⎝⎭与x y a =的相同特点.3.建构数学(用投影仪,把两个例子展示到黑板上)[师]:通过问题1,2的分析同学们得出y 与x 之间有怎样的关系?[生1]:分裂一次得到2个细胞,分裂两次得到4(22=)个细胞,分裂三次得到8(32=),所以分裂x 次以后得到的细胞为2x 个,即y 与x 之间为y 2x =.[生2]:第一次剩下绳子的12,第二次剩下绳子的14(212=),第三次剩下绳子的18 (312=),那么剪了x 次以后剩下的绳长为12x 米,所以绳长y 与x 之间的关系为12x y ⎛⎫= ⎪⎝⎭. (学生说完后在屏幕上展示这两个式子)[师]:这两个关系式能否都构成函数呢?[生]:每一个x 都有唯一的y 与之对应,因此按照函数的定义这两个关系都可以构成函数.[师]:(接着把2y x =打出来)既然这两个都是函数,那么同学们观察我们得到的这两个函数y 2x =,12xy ⎛⎫= ⎪⎝⎭在形式上与函数2y x =有什么区别.(引导学生从自变量的位置观察).[生]:前两个函数的自变量都在指数的位置上,而2y x =的自变量在底上. [师]:那么再观察一下y 2x =,12x y ⎛⎫= ⎪⎝⎭与函数x y a =有什么相同点? [生]:他们的自变量都在指数的位置,而且他们的底都是常数.[师]:由此我们可以抽象出一个数学模型x y a =就是我们今天要讲的指数函数.(在屏幕上给出定义)定义:一般地,函数x y a =(0,1a a >≠)叫做指数函数,它的定义域是R .概念解析1:[师]:同学们思考一下为什么x y a =中规定0,1a a >≠?(引导学生从定义域为R 的角度考虑).(先把0a =,0a <,1a =显示出来,学生每分析一个就显示出一个结果)[生]:⑴若0a =,则当0x =时,00x a = 没有意义.⑵若0a <,则当x 取分母为偶数的分数时,没有意义.例如:12(2)-=⑶若1a =,则1x a =,这时函数就为一个常数1没有研究的价值了.所以,我们规定指数函数的底0,1a a >≠.[师]:很好,请坐.我们既然知道了底的取值范围,那么看这样一个问题:问题1.已知函数(32)xy a =-为指数函数,求a 的取值范围.(屏幕上给出问题)[生]:由于32a -作为指数函数的底因此必须满足: 232033210a a a a ⎧->>⎧⎪⇒⎨⎨-≠⎩⎪≠⎩即2|03a a a ⎧⎫>≠⎨⎬⎩⎭且 概念解析2:[师]:我们知道形如x y a =(0,1a a >≠)的函数称为指数函数.通过观察我们发现: ⑴x a 前没有系数,或者说系数为1.既1x a ⋅;⑵指数上只有唯一的自变量x ;⑶底是一个常数且必须满足:0,1a a >≠.那么,根据分析同学们判断下列表达式是否为指数函数?(在屏幕上给出问题2)问题2.⑴(0.2)x y =,⑵(2)x y =-,⑶x y e =,⑷1()3x y =⑸1x y =,⑹23x y =⋅,⑺3x y -=,⑻22x x y +=[生1]:(答)⑴⑶⑷为指数函数.⑵⑸⑹⑺⑻不是.[生2]: 我不同意,⑺应该是指数函数,因为133xx y -⎛⎫== ⎪⎝⎭. [师]:很好,我们发现有些函数表面上不是指数函数,其实经过化简以后就变成了指数函数.所以不要仅从表面上观察,要抓住事物的本质.[师]:上面我们分析了指数函数的定义,那么下面我们就根据解析式来研究它的图象和性质.根据解析式我们要作出函数图象一般有哪几个步骤?[生]:(共同回答)列表,描点,连线.[师]:好,下面我请两个同学到黑板上分别作出2x y =,12x y ⎛⎫= ⎪⎝⎭和3x y =,13x y ⎛⎫= ⎪⎝⎭的函数图象.(等学生作好图并点评完以后,再把这四个图用几何画板在屏幕上展示出来) [师]:那么我们下面就作出函数:2xy =,12x y ⎛⎫= ⎪⎝⎭, 3x y =,13x y ⎛⎫= ⎪⎝⎭的图象[师]:通过这四个指数函数的图象,你能观察出指数函数具有哪些性质?(先把表格在屏幕上打出来,中间要填的地方先空起来,根据学生的分析一步步展示出来)[生1]:函数的定义域都是一切实数R ,而且函数的图象都位于x 轴上方.[师]:函数的图象都位于x 轴上方与x 有没有交点?随着自变量x 的取值函数值的图象与x 轴是什么关系?[生1]:没有.随着自变量x 的取值函数的图象与x 轴无限靠近.[师]:即函数的值域是:(0,)+∞.那么还有没有别的性质?[生2]:函数12x y ⎛⎫= ⎪⎝⎭、13x y ⎛⎫= ⎪⎝⎭是减函数,函数2x y =、3x y =是减函数. [师]:同学们觉的他这种说法有没有问题啊?(有)函数的单调性是在某个区间上的,因此有说明是在哪个范围内.又110,123<<,12,3<那么上述的结论可以归纳为: [生2]:当01a <<时,函数x y a =在R 上是减函数,当1a >时,函数x y a =在R 上是增函数.[师]:很好,请做!(提问[生3])你观察我们在作图时的取值,能发现什么性质?[生3]:当自变量取值为0时,所对的函数值为1.一般地指数函数xy a =当自变量x 取0时,函数值恒等于1.[师]:也就是说指数函数恒过点(0,1),和底a 的取值没有关系.那么你能否结合函数的单调性观察函数值和自变量x 之间有什么关系?[生3]:由图象可以发现:当01a <<时,若0x >,则0()1f x <<;若0x <,则1()f x <.当1a >时,若0x >,则()1f x >;若0x <,则0()1f x <<.[师]:刚才是我们通过每个函数的图象得到共同的性质,那么同学们在观察函数图象之间有没有什么联系? [生4]: 函数2x y =与12x y ⎛⎫= ⎪⎝⎭的图象关于y 轴对称,函数3x y =与13xy ⎛⎫= ⎪⎝⎭的图象关于y 轴对称,所以是偶函数.(? ? ? ?)[师]:前面的结论是正确的,同学们说后面那句话对吗?[生]:(共同回答)不对,因为函数的奇偶性是对一个函数的,所以没有这个性质.[师]:由此我们得到一般的结论, 函数x y a =与xy a -=的图象关于y 轴对称.[师]:很好,那么我们把同学们刚才归纳的指数函数的性质综合起来,放到一张表格内.巩固与练习1根据指数函数的性质,利用不等号填空.(在屏幕上给出练习,让学生口答)⑴()345 0,⑵15- 0,⑶07 0,⑷()4249- 0,⑸()223 1,⑹()47- 1,⑺1210- 1,⑻36 1.注:这部分知识主要考察了指数函数的值域和对性质:当01a <<时,①若0x >,则0()1f x <<②若0x <,则1()f x <;当1a >时①若0x >,则()1f x > ②若0x <,则0()1f x <<的应用.这个知识点是比较重要的部分在后面的比较大小中常常用到,所以在这个地方给出这样的一个巩固练习还是很有必要的.4.数学运用例1.比较大小⑴ 2.5 3.21.5,1.5 ⑵ 1.2 1.50.5,0.5-- ⑶0.3 1.21.5,0.8分析:[师]:前面我们讲了指数函数,好象和这个比大小没有关系.这几个也不是函数那怎么比较大小呢?先不考虑这个上面讲的性质哪个可以和大小联系起来呢?[生]:单调性和大小有关,我们可以借助于指数函数的单调性老考虑,要比较大小的两个数可以看成指数函数() 1.5x f x =当x 取2.5,3.2时对应的函数值,再根据() 1.5x f x =在(),-∞+∞是单调增的就可以比较大小了.即:解: ⑴考虑指数函数() 1.5xf x =.因为 1.51>所以() 1.5xf x =在R 上是增函数.因为 2.5 3.2<所以2.53.21.5 1.5<[师]:很好,充分运用了指数函数的性质.下面的两个小题请两个同学上来板书.也是利用指数函数的性质.⑵考虑指数函数()0.5xf x =.因为 00.51<<所以() 1.5xf x =在R 上是减函数.因为 1.2 1.5->-所以1.2 1.50.50.5--<⑶由指数函数的性质知0.301.5 1.51>=,而1.200.80.81<=所以0.3 1.21.50.8>[师]:第⑵小题和⑴一样直接借助单调性即可解题,第⑶小题在考虑是就发现单调性不能直接应用,两个底不一样.但是借助一个中间变量1就可以把问题解决了.例2.⑴已知0.533x ≥,求实数x 的取值范围;⑵已知0.225x<,求实数x 的取值范围.解:⑴因为31>,所以指数函数()3x f x =在R 上是增函数.由0.533x ≥,可得0.5x ≥,即x 的取值范围为[)0.5,+∞ ⑵因为00.21<<所以指数函数()0.2xf x =在R 上是减函数,因为 221250.25--⎛⎫== ⎪⎝⎭所以 20.20.2x -<由此可得2x >-,即x 的取值范围为()2,-+∞.五.回顾小结x y a =(0,1a a >≠),x R ∈).要能根据概念判断一个函数是否为指数函数. 2.指数函数的性质(定义域、值域、定点、单调性).3.利用函数图象研究函数的性质是一种直观而形象的方法,因此记忆指数函数性质时可以联想它的图象.教学反思:本节课较好地体现了以教师为主导,学生为主体,以知识为载体和以培养学生的思维能力,特别是研究问题能力为重点的教学思想。