正态总体的均值检验

合集下载

正态总体均值的假设检验

正态总体均值的假设检验

上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。

2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。

类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。

右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。

例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。

我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。

8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。

例如:比较甲、乙两厂生产的某种产品的质量。

将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。

比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。

上面,我们假定 σ12=σ22。

当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。

在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。

通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。

J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。

概率论与数理统计72正态总体的均值和方差的假设检验

概率论与数理统计72正态总体的均值和方差的假设检验
0.19, 0.04, 0.08, 0.20, 0.12 假定处理前后含脂率都服从正态分布,且相互独立, 方差相等.问处理前后含脂率的均值有无显著差异
( = 0.05)?
解 以X表示物品在处理前的含脂率,Y表示物品在
处理后的含脂率,且 X ~ N ( μ1,σ12 ),Y ~ N ( μ2,σ22 )
样本(Y1,Y2, ,Yn2 )来自总体Y .
1. 已知方差时两个正态总体均值的检验
σ12,σ22为已知, μ1, μ2未知的检验(U检验法)
1 假设 H0 : 1 2 , H1 : 1 2;
2 取检验统计量为
U (X Y)/
σ12 σ22 n1 n2
~ N (0,1)
(当H0成立时)
3 取显著性水平为 α. P{ U u/2 } ,
~
t(n1 n2
2),
(当H0成立时)
其中 Sw2
( n1
1)S1*n21 (n2 1)S2*n22 n1 n2 2
.
3° 给定显著水平 ( 0< < 1)
P{ | T | t /2(n1 n2 2) } ,
查表可得 tα / 2(n1 n2 2). 拒绝域:
W1 {( x1, x2,, xn1; y1, y2,, yn2 ) :| t | t/2(n1 n2 2)}
X
~
N
(
1
,
2 1
),Y
~
N
(
2
,
2 2
),
为了考察温度对材料断裂强力的影响,在70 C与80 C
下,分别重复作了8次试验,得数据如下:
选择统计量
U X 800 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函

正态总体均值的假设检验

正态总体均值的假设检验
t不落在拒绝域中,故接受 H 0
即认为元件的平均寿 命不大于 225小时。
二、两个正态总体均值差的检验(t 检验N)o:
Image
设X1,X2,,Xn1是 来 自 正 态 总 体 N(m1,s2)的 样 本Y;1,Y2,,Yn2是 来 自 正 态 总 体 N(m2,s2)的 样 本 , 且 设 两 样 立本 。独 又 分 别 记 它 们
1)
s
2 2
10 10 - 2
= 2.775,
t0.05 (18) = 1.7341,
故拒绝域为:
T = X -Y
Sp
11 10 10
- t 0.05 (18 ) = -1.7341 ,
可算得 T = -4.295 < -1.7341 , 故拒绝 H 0 ,
即 认为新方法能提高得率。
已知总 例体服从2正态某分布地,且区方差大高致相考同,负由抽样责获得人资料想如下:知道某年来自城市中学考生
当H0成 立 时T,~ t(n1 n2 -2), 对 于 给 定 a 的
P{|T |>ta/2(n1 n2 -2)}=a,
故 拒 绝 域 为|T |>t a/2(n1 n2 -2).
说明: 1. 对于单侧检验 “ H0 : m1 - m2 ≤ m0 ” 和 “ H0 : m1- m2 ≥ m0 ”, 可以类似地讨论。 常用的是 m0 = 0。 2. 对于两个正态总体的方差均为已知时,
的 样 本 均 值 X,Y为, 样 本 方 差 S12为 ,S22, 并 设 m1,m2,s2 均未知。
检验H: 0:m1-m2 =m0,H1:m1-m2 m0,
取统2


S2p
=
(n1
-1)S12 (n2 -1)S22 n1 n2 -2

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验

给定检验水平,查t(n-1)表得, t1-/2(n-1),使
得,
P{| T | t (n 1)}
即得,
1 2
P{|
x s
0
|
t 1
(n 1)}
n
2
拒绝域: 即
算出|T|与 t1比较,若 2 否则,接受H 0.
T , t1拒 绝 , H 0 2
例3 在某砖厂生产的一批砖中,随机地抽取6块进 行抗断强度试验,测得结果(单位:kg/cm2)如下: 32.56, 29.66, 31.64, 30.00, 31.87, 31.03, 设砖的抗断强度服从正态分布.问这批砖的 平均抗断强度是否为32.50 (kg/cm2)?(=0.05)。
2 0
,
H1
:
2
2 0
给定检验水平 ,查 2 n 1 分布表得
2 (n 1),
使得 P 2 2 (n 1)
根据样本值计算统计量的值.
如果 2 2 (n 1)
则拒绝 H 0 , 接受 H1.
第一类错误
弃真错误
第二类错误
取伪错误
假设检验的两类错误
所作判断 真实情况
H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第二类错误 (取伪)
第一类错误 (弃真)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
P
否定H0
H
为真
0
P第一类错误
P
不否定H0
H
为假
0
P第二类错误
若 T t,1拒绝 ,H接0 受
H1
T t1 ,接受 H,0 拒绝 H。1
3,4形式的检验成为右边检验.

§正态总体均值的假设检验

§正态总体均值的假设检验

1 , 2 , 2 未知,
问新操作方法是否会增加钢的得率? (α=0.05)
解:
H 0 : 1 2 0,
n1 10, n2 10,
H 1 : 1 2 0
2 s1
x 76.23,
3.325,
y 79.43,
2 s2 2.225,
2 2 ( n 1 ) s ( n 1 ) s 2 1 2 2 sw 1 2.775, n1 n2 2
H1 : 0
(2) 选取检验统计量
X 0 Z n
在 H 0 成立的条件下, Z ~ N (0,1) (3) 给定的显著性水平α ,查正态分布表得临界值 z
2
P{ Z z 2 }
(4) 计算检验统计量与临界值比较;
(5) 拒绝域
x 0 z 2 , n
(1) 提出假设
H0 : 0 ,
H1 : 0
(2) 选取检验统计量
X 0 t S n
在 H 0 成立的条件下, t ~ t ( n 1) (3) 给定的显著性水平α ,找临界值
t 2 (n 1)
使
P{ t t 2 ( n 1)}
x 0 t 2 ( n 1), 下结论. s n
解:设两种方法处理后的羊皮含脂率分别为X 和Y,
X ~ N ( 1 , 2 ), Y ~ N ( 2 , 2 )
x 16.375, y 14.857,
sw 2.945,
H 0 : 1 2 0, H1 : 1 2 0
在H0成立下,
X Y T ~ t ( n1 n2 2) 1 1 SW n1 n2

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

单个正态总体均值的检验两个正态总体均值差的检验小结布

单个正态总体均值的检验两个正态总体均值差的检验小结布

,当 未知时,关于 的单边检验得拒绝域在课本
P153-154附表中已给出。
t t 上述利用 统计量得出的检验法称为 检验法。在实际中,正态总体的方差常
为未知,所以我们常用
t 检验法来检验关于正态总体均值的检验问题。
X 例1 某种电子元件的寿命 (以小时计)服从正态分布,
16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170
取显著性水平为 ,现在来求这个问题的拒绝域.
因为 中的 全部都比 中的要小,从直观上看,
较合理的检验法应是:若观测值 与 的差
过分大,即
, 则我们拒绝 而接受 ,
因此拒绝域的形式为
(k 待定).
由标准正态分布的分布函数
P{拒绝
为真 }
的单调性得到
所以要控制 P{拒绝
为真} ,只需

即得
,从而得检验问题 的拒绝域为

这与上节得到的检验问题
比较正态总体
在方差
的拒绝域是一致的。 已知时,对均值 的两种检验问题

我们看到尽管两者原假设 的形式不同,实际意义也不一样,但对于相同 的显著性水平它们的拒绝域是相同的。因此遇到形如
的检验问题,可归结为
来讨论。对于下面将要讨论的有关正态总体的参数的检验也有类似的结果。
2. 未知,关于 的检验(t检验)
一、单个总体
均值 的检验
1. 已知,关于 的检验(u检验)
在上一小节中已讨论过正态总体
,当
已知时关于
的检验问题.在这些检验问题中,我们都是利用 在为真时服从
分布
的统计量

7-2正态总体参数的检验

7-2正态总体参数的检验
第二节 正态总体参数的假设检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故可以将霍特林分布的统计量换算成F统计量。
对给定的显著性水平α,检验的规则
nk k(n 1)
T
2
F
(k , n
k ), 拒绝原假设
nk k(n 1)
T
2
F
(k , n
k ), 接受原假设。
某地区农村男婴的体格测量数据如下
编号 1
身高(cm) 78
胸围(cm) 60.6
上半臂长(cm) 16.5
2
读入数据 read.table("tige.txt")->tige > tige
V1 V2 V3 1 78 60.6 16.5 2 76 58.1 12.5 3 92 63.2 14.5 4 81 59.0 14.0 5 81 60.8 15.5 6 84 59.5 14.0
检验均值是否有关系
1 4
2
3
H1
:
1 6
1
,
1 4
2
,
3至少有两个不等
求C
2 1
3 0
0 6
则上面的假设可以表达为
H0 : C 0
H1 : C 0
二、统计量及方法
检验: H0 : C H1 : C 其 中 C 为 一 已 知 的 k×p 阶 矩 阵 , k<p,
rank(C)=K,φ为已知的K维向量。根据多元正 态分布的性质可知,
§3 单个总体均值分量间结构关系的检验
一、问题引入 例 设 x ~ N p (,) (1,2,L , p )
x1, x2,L , xn
是取自该总体的样本。检验:
H0 : 1 L p H1 : 至少有一对i j
与上面的假设等价的是,寻找常数矩阵
1 1 0 L 0
C 1
0
1 L
0
M M M
76
58.1
12.5
3
92
63.2
14.5
4
81
59.0
14.0
5
81
60.8
15.5
6
84
59.5
14.0
检验三个指标的均值是否有关系
1 6
1
1 4
2
3
H0
:
1 6
1
1 4
2
3
H1
:
1 6
1,
1 4
2
,
3至少有两个不相等
T 2 n(Cx)CSC1 (Cx) ~ T (k,n 1)
F n k T 2 6 2 47.143=18.8572 k(n 1) 2(6 1)
与一元随机变量的情形相同,常常我们需要检验两个 总体的均值是否相等。
设从总体 N p (1,)和 Np (2,,) 中各自独立地抽取样 本 x (x1, x2,L , xn1 ) 和 y ( y1, y2,L , yn2 ) , 0 。
考虑假设 H0 : 1 2 H1 : 1 2
根据两个样本可得μ1和μ2的无偏估计量为
n2
p
1), 接受原假设;
n1 n2 p(n1
p 1T n2 2)
2
F
(
p, n1
n2
p
1), 拒绝原假设;
成对试验的T2统计量
前面我们讨论的是两个独立样本的检验问 题,但是不少的实际问题中,两个样本的数据 是成对出现的。例如当讨论男女职工的工资收 入是否存在差异;一种新药的疗效等。
n2
(n2 1)S2 (yi y)(yi y) i1
统计量T
2
n1n2 n1 n2
(x
y )Sp1 ( x
y)
当原假设为真的条件下,
F
n1 n2 p(n1
p 1T n2 2)
2
~
F(
p, n1
n2
p
1)
检验的规则为:
n1 n2 p(n1
p 1T n2 2)
2
F
(
p, n1
检验的统计量为 T 2 ndSd1d
其中 d x y
Sd
1 n 1
n i1
(di
d)(di
d)
当原假设为真时
F n p T 2 ~ F( p,n p) p(n 1)
n p p(n 1)
T
2
F
(
p, n
p), 拒绝原假设
n p p(n 1)
T
2
F
(
p, n
p), 接受原假设
例1 一组学生共5人,采用两种不同的方式进行教学, 然后对5个学生进行测验,得如下得分数:
1 6
1
1 4
2
3
n<-nrow(tige)
p<-ncol(tige)
xbar<-apply(tige,2,mean)Leabharlann S<-var(tige)
C<-matrix(c(2,-3,0,1,0,-6),2,3,byrow=T)
C
[,1] [,2] [,3]
[1,] 2 -3 0
[2,] 1 0 -6
学生序号
1 2 3 4 5
数学 89 98 75 76 90
教学方式
A 物理
数学
90
82
88
80
69
61
70
67
76
63
B 物理 85 83 70 66 65
分析不同的教学方式是否有差异。
分析
数据输入> score
nCx ~ Nk (C,CC)
(n 1)CSC ~ Wk (n 1,CΣC)
T 2 (n 1) n(Cx φ)(n 1)CSC1 n(Cx φ) n(Cx φ)CSC1 (Cx φ) ~ T (k,n 1)
当H0 : C 为真时,
F n k T 2 ~ F(k,n k) k(n 1)
ht2<-n*t(C%*%xbar)%*%solve(C%*%S%*%t(C))%*%(C%*%xbar) ht2
47.1434 计算阈值,比较与ht2大小,小于ht2,则拒绝原假设。 critical<-((n-1)*p)*qf(0.95,p,n-p)/(n-p)
§4 两个总体均值的检验
一、两个独立样本的情形
M
1 0 0 L 1
H0 : C 0 H1 : C 0
注:矩阵C不是唯一的,
1 1 0 L 0
C 0
1
1 L
0
M M M
M
0 0 0 L 1
在例4.2.1中,假定人类的体形有这样一 个一般规律的身高、胸围和上臂围平均尺寸比 例为6:4:1。检验比例是否符合这一规律。检验:
H0
:
1 6
1
1 n1
x n1 i1 xi
1 n2
y
n2
yi
i1
X
Y
~
Np
0,
(
1 n2
1 n2
)
n1n2
n1 n2
XY
~ N p 0,
又 n1 n2 2Sp (n1 1)S1 (n2 1)S2 ~ Wp (n1 n2 2,)
其中
n1
(n1 1)S1 (xi x)(xi x) i1
思考:两独立样本和成对样本的观测值有何不同。
设(xi,yi),i=1,2,3,…,n,时成对的试验数 据,由于总体X和Y均服从p维正态分布,且协 方差相等。
令di xi yi ,则di ~ N p ( ,d ),δ μ1 μ2。
假设检验 H0 : 1 2, H1 : 1 2 H0 : 0, H1 : 0
相关文档
最新文档