三概率的加法公式

合集下载

第三节--全概率公式与逆概率公式

第三节--全概率公式与逆概率公式
3)若n个事件 A1、A2、、An 是相互独立的,
则有 P(A1 A2 An ) P( A1 )P( A2 ) P( An )
医药数理统计方法
例6 如果幼儿在学语前就失聪,则很难学会说话,故有 “十聋九哑”一说,表明失聪与失语的关系.那么,辨音能 力是否也影响辨色能力呢?临床积累的资料见表:
解 以A1、A2、A3分别表示取得这盒X光片是由甲厂、
乙厂、丙厂产生的,B 取得的X光片为次品
P

A1


5 10
,P

A2


3 10
,
P

A3


2 10
医药数理统计方法
例1 设某医院仓库中有10盒同样规格的X光片,已知 其中有5 盒、3盒、2盒依次是甲厂、乙厂、丙厂生 产的。且甲、乙、丙三厂生产该种X光的次品率依次 为1/10、1/15、1/20,现从这10盒中任取一盒,再 从这盒中任取一张X光片,求取得的X光片是次品的 概率。
P(B | A) P( AB) P( A)
P(AB) =P(A)P(B|A)=P(B)P(A|B)
若A ,B 相互独 立 P( AB) P( A) P(B)
*3、事件的独立性 例如 将一颗均匀骰子连掷两次,
医药数理统计方法
设 A={第二次掷出6点}, B={第一次掷出6点},
显然 P(A|B)=P(A)
则我们可用全概率公式计算结果发生的概率.
即求 PB
医药数理统计方法
例1 设某医院仓库中有10盒同样规格的X光片,已知 其中有5 盒、3盒、2盒依次是甲厂、乙厂、丙厂生 产的。且甲、乙、丙三厂生产该种X光的次品率依次 为1/10、1/15、1/20,现从这10盒中任取一盒,再 从这盒中任取一张X光片,求取得的X光片是次品的 概率。

概率运算公式

概率运算公式

概率运算公式
概率运算是描述事件发生可能性的一种方法,它是基于数学理论的。

在概率运算中,有许多基本的公式被广泛使用。

接下来,我们将介绍一些常用的概率运算公式。

1. 加法法则:对于两个不相交的事件A和B,它们的并集概率
等于它们各自的概率之和。

P(A∪B) = P(A) + P(B)
2. 乘法法则:对于两个独立事件A和B,它们的交集概率等于
它们各自的概率之积。

P(A∩B) = P(A) × P(B)
3. 全概率公式:对于一个事件A,如果它可以分解成一系列互
不相交的事件{B1, B2, ..., Bn}的并集,那么有:
P(A) = Σ P(Bi) × P(A|Bi)
其中,P(A|Bi)表示在Bi发生的条件下,事件A发生的概率。

4. 贝叶斯公式:对于一个事件A和一系列互不相交的事件{B1, B2, ..., Bn},如果已知它们的先验概率P(Bi)和在各个条件下的条件概率P(A|Bi),那么有:
P(Bi|A) = P(Bi) × P(A|Bi) / Σ P(Bj) × P(A|Bj) 其中,P(Bi|A)表示在事件A发生的条件下,事件Bi发生的概率。

以上是概率运算中常用的一些公式,它们在实际应用中非常重要,可以帮助我们更好地理解事件发生的可能性。

- 1 -。

§1.3 概率的公理化定义及概率的加法公式

§1.3 概率的公理化定义及概率的加法公式

11
三、概率的加法公式
定理1.1 (关于两个互斥事件的概率加法公 式) 对任意两个事件A和B,有
P A B P( A) P( B) P( AB) .

A

AB
B
A B A B AB
而且 A B AB ,
所以
P A B P A P B AB P A P B P AB .
P A B C
B
C
A
P( A) P( B) P(C ) P( AB) P( AC ) P( BC )
P ( ABC ) .

16
定理1.3 (概率的一般加法公式) 对任意
n n 2 个事件 A1 , A2 ,
, An , 有
P Ai P Ai P Ai A j
12
例1.5 由长期统计资料得知,某一地区在 4月份每天下雨的概率为4/15,刮风的概率为 7/15,既刮风又下雨的概率为1/10,求4月份 的任一天下雨或刮风至少有一种发生的概率. 解 在4月份中任取一天,令A={下雨}, B={刮风},则
P A 4 15 , P B 7 15, P AB 1 10 . P A B P( A) P(B) P( AB)
概率的有限可加性

1 P P A A P ( A) P A .



☎当直接计算一个事件的概率难于实现时,
可以通过计算其对立事件的概率来完成.
8
性质1.4 (真差概率公式) 若 A B , 则
P B A P( B) P( A) .

概率计算公式

概率计算公式

概率计算公式概率计算是数理统计学中的重要内容,通过运用概率计算公式,我们可以对事件发生的可能性进行精确的预测和分析。

本文将介绍几种常用的概率计算公式,帮助读者更好地理解和应用概率计算。

一、频率法频率法是概率计算中最直观和常用的方法之一,它是通过实验数据的频率来估计事件发生的概率。

频率法概率计算公式如下:```P(A) = n(A) / n```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n表示实验总次数。

通过观察事件发生的实际频率,可以得出事件发生的概率近似值。

二、古典概型古典概型指的是指定试验中所有可能结果等可能的情况。

在古典概型中,可以使用以下概率计算公式:```P(A) = n(A) / n(S)```其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的有利次数,n(S)表示样本空间的大小。

三、总概率定理总概率定理用于计算在多个条件下的概率。

当有多个互斥事件B1、B2、…、Bn,且它们的并集等于样本空间S时,可以使用总概率定理进行计算。

总概率定理公式如下:```P(A) = P(A|B1) * P(B1) + P(A|B2) * P(B2) + ... + P(A|Bn) * P(Bn)```其中,P(A)表示事件A发生的概率,P(A|Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率。

总概率定理在实际问题中具有广泛的应用,通过将复杂问题分解为简单事件的条件下的概率计算,可以更好地解决实际问题。

四、条件条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率计算公式如下:```P(A|B) = P(A∩B) / P(B)```其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的计算可以帮助我们更好地理解事件之间的相关性,当我们已经了解到某个条件下的概率时,可以通过条件概率公式计算其他事件的概率。

概率加法公式的简单推导

概率加法公式的简单推导

( 二) 三个 事件的概率加法公式 设 A、 B、 C 为任 意三个 事件 ,则A、 B、 C 的事 件概率
可作 如下推导 :
P ( AUBUC) = P [ ( AU( B ) UC 】 ( 2 )
( A B C ) + P ( A B D) + P ( A C D) + P ( B c D) 一 P ( A B C D) ,( 9 ) ( 四) 五个事件 的概率加法计算公式 设A、 B 、 C 、 D 、 E 为任 意三个事件 , 则A、 B 、 C 、 D、 E 的 事件概率可作如下推导 :
P ( AuBuC ) = P ( A) + P ( B ) + P ( C ) 一 P ( A B ) 一 P ( A C )
P ( B C) + P ( AB C) 通过对具体 例题 的讲解 , 对 加 法公 式在使用 过程 中的一些技 巧 给 出了详细 的说
P ( AUBUCUDUE ) = e l ( AUB UCUD) UE 1 = P ( AuB uC uD) + P ( E) 一 P [ ( AUBUC UD ) E 】 ( 1 0 ) 又 因为P 『 ( AUB UCUD) E ] = P ( A E UB E UC EU D E ) , 利用公式 ( 9 ) 得:
芜湖
2 4 1 0 0 0 )
摘要 : 基 于两个事件的概 率加法公式 , 推 导 出了3  ̄ 5 个事件 的概 率加 法计算公式。通过 总结 多个事件概率 加 法公式 的一般规律 , 得到n 个事件的概率加法公式。
关键词 : 概率 ; 加法公式 ; 归 纳 法
中图分类号 : G 6 4 2 . 4 1
明 。本 文将 利用简单 的两个事件概率 加法公式 , 推 导 出3 ~ 5 个事件 的概率加法计算 公式 ,通过总结 归纳 多个 事件概率 加法公式 的一般规律 ,给出n 个事 件的

高中数学新人教B版必修3 概率的加法公式

高中数学新人教B版必修3  概率的加法公式
记作 _A___
图形表示
2.互斥事件的概率加法公式 (1)若 A,B 是互斥事件,则 P(A∪B)= P(A)+P(B) . (2)若-A 是 A 的对立事件,则 P(-A )= 1-P(A) . (3)若 A1,A2,…,An 两两互斥,则 P(A1∪A2∪…∪An) = P(A1)+P(A2)+…+P(An) .
[层级一 学业水平达标] 1.从一批产品(既有正品也有次品)中取出三件产品,设 A={三
件产品全不是次品},B={三件产品全是次品},C={三件产
品有次品,但不全是次品},则下列结论中错误的是 ( )
A.A 与 C 互斥
B.B 与 C 互斥
C.任何两个都互斥
D.任何两个都不互斥
解析:选 D 由题意知事件 A,B,C 两两不可能同时发生,
(1)P(A+B)=P(A)+P(B)=0.1+0.2=0.3. 所以射中 10 环或 9 环的概率为 0.3. (2)因为射中 7 环以下的概率为 0.1,所以由对立事件的 概率公式,得至少射中 7 环的概率为 1-0.1=0.9.
求复杂事件概率的注意事项 (1)正难则反是良策. (2)用互斥事件的概率和进行求解时一定要将事件分 拆为若干互斥的事件,不能重复和遗漏. (3)采用对立事件求概率时,一定要找准对立事件, 否则容易出现错误.
红球,有一个红球且有一个白球,全是白球,至少有一个的
对立面是没有一个,所以选 B.
4.某家庭电话在家中有人时,打进的电话响第一声时被接的概率
为 0.1,响第二声时被接的概率为 0.3,响第三声时被接的概率
为 0.4,响第四声时被接的概率为 0.1,那么电话在响前四声内
被接的概率是多少? 解:记“响第一声时被接”为事件 A,“响第二声时被接” 为事件 B,“响第三声时被接”为事件 C,“响第四声时被 接”为事件 D.“响前四声内被接”为事件 E,则易知 A,B, C,D 互斥,且 E=A∪B∪C∪D,所以由互斥事件的概率的 加法公式得, P(E)=P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.1+ 0.3+0.4+0.1=0.9. 即电话在响前四声内被接的概率是 0.9.

三个事件的概率计算公式

三个事件的概率计算公式

三个事件的概率计算公式1. 三个互斥事件的概率加法公式。

- 如果事件A、B、C两两互斥(即A∩ B=varnothing,A∩ C=varnothing,B∩ C=varnothing),那么P(A∪ B∪ C)=P(A)+P(B)+P(C)。

- 例如:掷骰子,事件A为掷出1点,事件B为掷出2点,事件C为掷出3点。

这三个事件两两互斥,P(A)=(1)/(6),P(B)=(1)/(6),P(C)=(1)/(6),P(A∪ B∪C)=P(A)+P(B)+P(C)=(1)/(6)+(1)/(6)+(1)/(6)=(1)/(2)。

2. 三个相互独立事件的概率乘法公式。

- 如果事件A、B、C相互独立(即P(A∩ B)=P(A)P(B),P(A∩ C)=P(A)P(C),P(B∩ C)=P(B)P(C),P(A∩ B∩ C)=P(A)P(B)P(C))。

- 例如:有三个口袋,第一个口袋中有2个红球3个白球,从第一个口袋中取到红球的概率P(A)=(2)/(5);第二个口袋中有3个红球2个白球,从第二个口袋中取到红球的概率P(B)=(3)/(5);第三个口袋中有4个红球1个白球,从第三个口袋中取到红球的概率P(C)=(4)/(5)。

因为从每个口袋取球的事件相互独立,所以从三个口袋中都取到红球的概率P(A∩ B∩ C)=P(A)P(B)P(C)=(2)/(5)×(3)/(5)×(4)/(5)=(24)/(125)。

3. 一般情况下(非互斥、非独立)三个事件的概率公式。

- P(A∪ B∪ C)=P(A)+P(B)+P(C)-P(A∩ B)-P(A∩ C)-P(B∩ C)+P(A∩ B∩ C)。

- 例如:在一个班级中,事件A表示学生喜欢数学,P(A) = 0.6;事件B表示学生喜欢语文,P(B)=0.5;事件C表示学生喜欢英语,P(C)=0.4。

同时喜欢数学和语文的概率P(A∩ B)=0.3,同时喜欢数学和英语的概率P(A∩ C)=0.2,同时喜欢语文和英语的概率P(B∩ C)=0.15,同时喜欢三门课的概率P(A∩ B∩ C)=0.1。

人教B版必修3高中数学3.1.4《概率的加减公式》ppt同步课件

人教B版必修3高中数学3.1.4《概率的加减公式》ppt同步课件
第三章 概 率
§3.1 事件与概率
§3.1.4 概率的加法公式
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.了解事件的并(或和)的含义及记法. 2.理解互斥事件和对立事件的定义. 3.掌握判断两个事件互斥或对立的方法以及两者的区别 与联系. 4.会应用公式P(A∪B)=P(A)+P(B),P( A )=1-P(A)解 决实际问题.
规律技巧 利用概率加法公式求概率时,一定先判断所涉 及事件是否互斥.
变式训练2 在数学考试中,小明的成绩在90分以上的概 率为0.16,在80~89分的概率为0.52,在70~79分的概率 0.12,在60~69分的概率为0.1,分别计算小明在数学考试中取 得80分以上的概率和小明及格的概率.
解 根据题意,小明的数学成绩在给出的四个范围内的事 件是互斥的,记B=“考试成绩在90分以上”,C=“考试成 绩在80~89分”,D=“考试成绩在70~79分”,E=“考试 成绩在60~69分”,根据互斥事件的概率加法公式,所求事件 的概率便可获解.
2.互斥事件、对立事件的判定方法 (1)利用基本概念 ①互斥事件不可能同时发生; ②对立事件首先是互斥事件,且必有一个要发生.
(2)利用集合的观点来判断 设事件A与B所含的结果组成的集合分别是A、B. ①若事件A与B互斥,则集合A∩B=∅; ②若事件A与B对立,则集合A∩B=∅,且A∪B=U(U为全 集),即A=∁UB或B=∁UA; ③对互斥事件A与B的和A∪B,可理解为集合A∪B.
(2)事件B“至少订一种报”与事件E“一种报也不订”是 不可能同时发生的,故B与E是互斥事件.由于事件B发生可导 致事件E一定不发生,且事件E发生会导致事件B一定不发生, 故B与E还是对立事件.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由 P(AB) = P(A)+P(B)
得 P(B) = P(AB)P(A) = 0.80.6 = 0.2
所以 P( B ) = 10.2 = 0.8
沈阳师范大学
概率论与数理统计
第3页
二 概率的单调性
性质4 若AB,则 P(AB) = P(A)P(B); 若AB,则 P(A) P(B).
= 11/41/41/4+0+1/6+1/60 =15/12 = 7/12
沈阳师范大学
概率论与数理统计
第7页
例4 一颗骰子掷4次,求至少出现一次6点的概率。
解:用对立事件进行计算, 记 A=“至少出现一次6点”, 则所求概率为
54 P( A) 1 P( A) 1 64 0.5177
沈阳师范大学
概率论与数理统计
第8页
课后练习
1.某工厂一个班组共有男工7人、女工4人,现要 选出3个代表,问选的3个代表中至少有1试求 P(AB)
沈阳师范大学
概率论与数理统计
第1页
一 概率的可加性
性质1:P(φ)=0 性质2:(有限可加性):若AB=φ,则
P(AB) = P(A)+P(B). 可推广到 n 个互不相容事件。 性质3:(对立事件公式) P( A )=1P(A).
沈阳师范大学
概率论与数理统计
第2页
例1 AB =φ,P(A)=0.6,P(A B )= 0.8, 求 B 的对立事件的概率。
第5页
例2 P(A)=0.4,P(B)=0.3,P(AB)=0.6, 求 P(AB)
解:因为 P(AB) = P(A)P(AB) ,所以先求 P(AB)
由加法公式得
P(AB) = P(A)+P(B)P(AB) = 0.4+0.30.6=0.1
所以 P(AB) = P(A)P(AB) = 0.3
性质5 P(AB) = P(A)P(AB).
沈阳师范大学
概率论与数理统计
第4页
三 概率的加法公式
1.(1) P(AB) = P(A)+P(B)P(AB)
(2) P(ABC) = P(A)+P(B)+P(C) P(AB)P(AC)P(BC)+P(ABC)
沈阳师范大学
概率论与数理统计
沈阳师范大学
概率论与数理统计
第6页
例3 P(A)=P(B)=P(C)=1/4, P(AB)=0, P(AC)=P(BC)=1/6, 求 A、B、C 都不出现的概率。
解:因为A、B、C 都不出现的概率为 P( ABC)
P( ABC) 1 P( A B C)
= 1P(A)P(B)P(C)+P(AB)+P(AC)+P(BC)P(ABC)
相关文档
最新文档