解析几何教学设计
解析几何课程教案

解析几何课程教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,如点、直线、圆等;(2)掌握坐标系中直线、圆的方程的求法与应用;(3)了解解析几何在实际问题中的应用。
2. 过程与方法:(1)通过实例引入解析几何的概念,培养学生的空间想象能力;(2)运用代数方法研究直线、圆的方程,提高学生解决问题的能力;(3)利用数形结合思想,分析实际问题,提升学生的应用能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣,激发学习热情;(2)培养学生克服困难的意志,提高自主学习能力;(3)感受数学在生活中的重要性,培养学生的应用意识。
二、教学内容1. 第一课时:解析几何概述(1)点的坐标;(2)直线的方程;(3)圆的方程。
2. 第二课时:直线的方程(1)直线的一般方程;(2)直线的点斜式方程;(3)直线的截距式方程。
3. 第三课时:圆的方程(1)圆的标准方程;(2)圆的一般方程;(3)圆的方程的性质。
4. 第四课时:直线与圆的位置关系(1)直线与圆相交的条件;(2)直线与圆相切的条件;(3)直线与圆相离的条件。
5. 第五课时:解析几何在实际问题中的应用(1)线性方程组的解法;(2)最大(小)值问题;(3)几何最优化问题。
三、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、讨论,探索解析几何的基本概念和性质;2. 利用数形结合思想,引导学生将几何问题转化为代数问题,提高解决问题的能力;3. 注重实际问题的引入,激发学生的学习兴趣,培养学生的应用意识。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度;3. 课后实践:鼓励学生参加数学竞赛或研究性学习,提升学生的应用能力。
五、教学资源1. 教材:人教版《高中数学》解析几何部分;2. 教辅:同步练习册、习题集等;3. 教学软件:几何画板、数学公式编辑器等;4. 网络资源:相关教学视频、课件、论文等。
小学六年级上册解析几何的认识教案

小学六年级上册解析几何的认识教案教案一:点、线、面的认识和区分目标:通过本堂课的学习,使学生能够正确地认识和区分点、线、面,并能够简单描述它们之间的关系。
教学内容:1. 点的定义和特点:点是没有大小和形状的,它是空间中最基本的元素。
2. 线的定义和特点:线是由无数个点连在一起形成的,它有长度,但没有宽度和高度。
3. 面的定义和特点:面是由无数个线段连接在一起形成的,它有长度和宽度,但没有高度。
4. 点、线、面之间的关系:点组成线,线组成面。
教学步骤:Step 1:导入通过简单问答的方式复习前几节课学习的内容,引出点、线、面的概念。
Step 2:点的认识和区分1. 准备一些小球,让学生手里拿着小球,观察小球的形状和特点,引导学生认识点的定义和特点。
2. 进一步让学生触摸桌面并感受桌面的平整程度,将桌面上的一个点用手指指出,引导学生感受到点的位置和存在。
Step 3:线的认识和区分1. 准备一根长绳,将绳子放在桌面上,观察绳子的形状和特点,引导学生认识线的定义和特点。
2. 让学生用手指沿着绳子的长度摸索,感受线的长度,并将绳子的两个端点用小纸片标记出来,引导学生认识线有起点和终点。
Step 4:面的认识和区分1. 准备一个方形纸片和一个长方形纸片,将它们放在桌面上,观察纸片的形状和特点,引导学生认识面的定义和特点。
2. 让学生用手指触摸纸片的边缘,感受到纸片的长度和宽度,并将纸片的一个边角用小纸片标记出来,引导学生认识面的有界性。
Step 5:点、线、面之间的关系1. 引导学生回顾前面学习的内容,总结点、线、面之间的关系:点组成线,线组成面。
2. 给学生举例的机会,让他们找出身边的点、线、面,并简单描述它们之间的关系。
Step 6:巩固练习板书题目:填空。
1. 一个小球是一个_______。
2. 两个点能够用一条_______连接起来。
3. 两条线段连接在一起就组成了一个_______。
4. 一个墙壁是一个_______。
《解析几何》教案

页眉内容《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。
(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1 向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c……标记向量,而用希腊字母λ、μ、ν……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2 向量的加法一向量的加法:定义1设、,以与为邻边作一平行四边形,取对角线向量,记,如图1-1,称为与之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量与向量在同一直线上,那么,规定它们的和是这样一个向量:若与的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1 向量的加法满足下面的运算律:1、交换律, (1.2-2)2、结合律. (1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律 .自空间任一点O开始依次作则有,所以.由定理1知,对三向量相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作.二向量的减法定义3 若,则我们把叫做与的差,记为显然,,特别地,.由三角形法则可看出:要从减去,只要把与长度相同而方向相反的向量加到向量上去.由平行四边形法可如下作出向量.设、,以与为邻边作一平行四边形,则对角线向量.例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证必要性设三向量、、可以构成三角形(图1-3),(图1-3),那么,即.充分性设,作那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证设四边形的对角线、交于点且互相平分(图1-4)因此从图可看出:,所以,∥,且,即四边形为平行四边形.(图1-4)§1.3 数量乘向量定义1.3.1设是一个数量,向量与的乘积是一向量,记作,其模等于的倍,即;且方向规定如下:当时,向量的方向与的方向相同;当时,向量是零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知:.据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 数量与向量的乘法满足下面的运算律:1) 1·=2)结合律, (1.3-1)3)分配律, (1.3-2)4) . ( 1.3-3)证 1)据定义显然成立.2)显然,向量、、的方向是一致,且= == .3)分配律如果或中至少有一个为0,等式显然成立;反之ⅰ)若,显然同向,且所以ⅱ)若不妨设若则有由ⅰ)可得,所以对的情形可类似证明.一个常用的结论:定理3. 若( 为数量 ),则向量与向量平行,记作;反之,若向量与向量平行且,则( 是数量).设是非零向量,用表示与同方向的单位向量.由于与同方向,从而与亦同方向,而且,即.我们规定:若,. 于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子改写成形式.十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证.(图1-5)证如图1-5,因为,所以但因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解定义1.4.1由向量与数量所组成的向量叫做向量的线性组合,或称可以用向量线性表示,或称可以分解成向量的线性组合.定理1.4.1如果向量,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数使得, (1.4-1)并且系数被,唯一确定.证若成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定存在实数使得(见1.3节中1.3.5的证明).再证的唯一性:如果,那么,而,所以,.定理1.4.2如果向量不共线,那么向量与共面的充要条件是可用向量线性表示,即, (1.4-2)并且系数被,唯一确定.证:(图1-6)因与不共线,由定义1.1.4知.设与中之一共线,那么由定理1.4.1有,其中中有一个为零;如果与都不共线,把它们归结共同的始点,并设,,,那么经过的终点分别作的平行线依次交直线于(图1-6),因,由定理 1.4.1,可设,所以由平行四边形法则得,即.反之,设,如果中有一个为零,如,那么与共线,因此与共面.如果,那么,从向量加法的平行四边形法则知与都共面,因此与共面.最后证的唯一性.因为=,那么,如果,那么,将有,这与假设矛盾,所以.同理,这就证明了唯一性.定理1.4.3 如果向量不共面,那么空间任意向量可以由向量线性表示,即存在一组实数使得,(1.4-3)并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2对于个向量,若存在不全为零的实数,使得, (1.4-4)则称向量线性相关.不是线性相关的向量叫做线性无关,即向量线性无关:.定理1.4.4在时,向量线性相关的充要条件是其中至少有一个向量是其余向量的线性组合.证设向量线性相关,则存在不全为零的实数使得,且中至少有一个不等于0,不妨设,则;反过来,设向量中有一个向量,不妨设为,它是其余向量的线性组合,即,即.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证设中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数,使得.则有,因为不全为零,所以线性相关.推论如果一组向量中含有零向量,那么这一组向量就线性相关类似地可证明下面的定理:定理1.4.6 两向量与共线线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点在线段上的充要条件是:存在非负实数,,使得,且,其中是任意取定的一点.证(先证必要性)设在线段上,则与同向,且,所以,.任取一点所以,所以,.取,,则,,.(充分性)若对任一点有非负实数,,使得,且则,所以与共线,即在直线上.又,所以在线段上.例2设为两不共线向量,证明,共线的充要条件是.证共线,线性相关,即存在不全为0的实数,使,(1.4-5)即.又因为不共线即线性无关,故方程有非零解.§1.5 标架与坐标一空间点的直角坐标:平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:(图1-7)右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向.三条坐标轴就组成了一个空间直角坐标系,点叫做坐标原点.注:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右.当然,它们的实际夹角还是.2、坐标面与卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与面.三个坐标面把空间分成了八个部分,这八个部分称为卦限.(图1-8)3、空间点的直角坐标取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标.依次称,,为点的横坐标、纵坐标和竖坐标,记为.反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系.定义1 我们把上面有序数组叫点在此坐标系下的坐标,记为.二空间两点间的距离公式定理1设、为空间的两点,则两点间的距离为(1.5-1)证过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示(图1-9)是直角三角形,故,因为是直角三角形,故,从而;而,,,故.特别地,点与坐标原点的距离为.三空间向量的坐标定义2 设是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,使得,那么我们把这组有序的实数,叫做向量在此坐标系下的坐标,记为或.定理2设向量的始终点坐标分别为、,那么向量的坐标为. (1.5-2)证由点及向量坐标的定义知,所以=.由定义知.定理3 两向量和的分量等于两向量对应的分量的和.证设,,那么=+=,所以. (1.5-3)类似地可证下面的两定理:定理4设,则.定理5 设,,则共线的充要条件是.(1.5-4)定理6三非零向量,,共面的充要条件是. (1.5-5)证因为不共面,所以存在不全为0的实数使得,由此可得因为不全为0,所以.§1.6 向量在轴上的射影一、空间点在轴上的投影:设已知点及轴,过点作轴的垂直平面,则平面与轴的交点叫做点在轴上的投影.(图1-10)二、向量在轴上的投影:定义1设向量的始点与终点在轴的投影分别为、,那么轴上的有向线段的值叫做向量在轴上的投影,记作,轴称为投影轴.(图1-11)这里,的值是这样的一个数:(1)即,数的绝对值等于向量的模.(2)当的方向与轴的正向一致时,;当的方向与轴的正向相反时,.三、空间两向量的夹角:设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作.(图1-12)若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度称为向量与数轴的夹角.四投影定理:定理1.6.1向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦.即, (1.6-1)(图1-13)证过向量的始点引轴,且轴与轴平行且具有相同的正方向,那未轴与向量的夹角等于轴与向量的夹角,而且有故由上式可知:向量在轴上的投影是一个数值,而不是向量.当非零向量与投影轴成锐角时,向量的投影为正.定理1.6.2对于任何向量都有. (1.6-2)证取,那么,设分别是在轴上的投影,那么显然有,因为所以,即.类似地可证下面的定理:定理1.6.3对于任何向量与任何实数有. (1.6-3)§1.7 两向量的数性积定义1.7.1 对于两个向量a和b 把它们的模|a|,|b|及它们的夹角的余弦的乘积称为向量和的数量积 记作ab,即ab=|a||b|cos .由此定义和投影的关系可得 ab|b|Prj b a=|a|Prj a b .数量积的性质(1) a·a=|a| 2,记a·a a 2,则a2|a| 2.(2) 对于两个非零向量a、b 如果a· b=0 则a b反之 如果a b 则a· b 0.定理1.7.1 如果认为零向量与任何向量都垂直 则a b a· b 0.定理1.7.2 数量积满足下面运算律:(1)交换律 a· b= b·a(2)分配律( a b)c a c b c( (3)a)· b a·(b )(a·b)(a)·(b )(a·b) 、为数证(1)由定义知显然.(2)的证明因为当c0时上式显然成立当c0时有(a b)c|c|Prj c(a b)|c|(Prj c a Prj c b)|c|Prj c a|c|Prj c ba cb c(3)可类似地证明.例1试用向量证明三角形的余弦定理证设在ΔABC中 ∠BCA||=a ||=b ||=c要证c 2a 2+b 2 2 a b cos记a b =c 则有 c a b从而 |c|2c c(a b)(a b)a2-2ab+b2|a|2+|b|22|a||b|cos(a^b)即c 2a 2+b 2 2 a b cos数量积的坐标表示 :定理1.7.3设a{a x a y a z } b{b x b y b z }则a·b a x b x a y b y a z b z证a· b( a x i a y j a z k)·(b x i b y j b z k)a xb x i·i a x b y i·j a x b z i·ka yb x j ·i a y b y j ·j a y b z j·ka zb x k·i a z b y k·j a z b z k·ka xb x a y b y a z b z定理1.7.4设a={},则向量a的模|a|=.证由定理1.7.2知|a|2=a2=,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={},则a的方向余弦为cos=,cos,cos;且,其中分别是向量a与x轴,y轴,z轴的夹角.证因为ai=|a|cos且ai=,所以 |a|cos=,从而 cos=.同理可证 coscos且显然两向量夹角的余弦的坐标表示定理1.7.6设(a ^ b)则当a0、b0时 有.证 因为a·b|a||b|cos,所以.例2 已知三点M (11 1) 、A (22 1) 和B (21 2) 求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角 .a{11 0} b{10 1}因为a b1110011所以从而.§1.8 两向量的向量积定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做a b或,它的模|a b||a||b|sin,它的方向与a和b垂直并且按a,b,a b确定这个顺序构成右手标架{O;a,b,a b}.从定义知向量积有下列性质:(1) a a0(2) 对于两个非零向量a,b如果a b0则a//b;反之如果a//b则a b0.定理1.8.1 两不共线向量a与b的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2两向量a与b共线的充要条件是a b0.证当a与b共线时,由于sin(a、b)=0,所以|a b|=|a||b| sin(a、b)=0,从而a b0;反之,当a b0时,由定义知,a=0,或b=0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律(1) 反交换律a b b a,(2) 分配律(a b)c a c b c,(3) 数因子的结合律 (a)b a(b)(a b) (为数).证(略).推论: c (a b) c a c b定理1.8.4 设a a x i a y j a z k b b x i b y j b z k,则a b(a y b za zb y)i(a z b x a x b z)j(a x b y a y b x)k证由向量积的运算律可得a b(a x i a y j a z k)(b x i b y j b z k)a xb x i i a x b y i j a x b z i ka yb x j i a y b y j j a y b z j k a z b x k i a z b y k a z b z k k由于i i j j k k0i j k j k i k i j所以a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k.为了帮助记忆利用三阶行列式符号上式可写成a yb z i+a z b x j+a x b y k a y b x k a x b z j a z b y i(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k例1设a(2 11)b(11 2)计算a b解=2i j2k k4j i i5j 3k例2已知三角形ABC的顶点分别是A (123)、B (345)、C (247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例3 设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量n表示角速度它的大小等于角速度的大小它的方向由右手规则定出即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示n与r的夹角那么a|r| sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v||n|a|n||r| sinv的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有v n r§1.9 三向量的混合积定义1.9.1 给定空间的三个向量,我们把叫做三向量的混合积,记做或.定理1.9.1三个不共面向量的混合积的绝对值等于以为棱的平行六面体的体积,并且当构成右手系时混合积为正;当构成左手系时混合积为负,也就是=当构成右手系时,当构成左手系时.证由于向量不共面,所以把它们归结到共同的试始点可构成以为棱的平行六面体,它的底面是以为边的平行四边形,面积为,它的高为,体积是.根据数性积的定义,其中是与的夹角.当构成右手系时,,,因而可得.当构成左手系时,,,因而可得.定理1.9.2三向量共面的充要条件是.证若三向量共面,由定理1.9.1知,所以,从而.反过来,如果,即,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即.证当共面时,定理显然成立;当不共面时,混合积的绝对值等于以为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论:.定理1.9.4设,,,那么.证由向量的向性积的计算知,再根据向量的数性积得===.推论: 三向量共面的充要条件是.例1设三向量满足,证明:共面。
高中数学解析几何教案

高中数学解析几何教案教案一:平面与空间解析几何基础知识一、教学内容1. 平面解析几何的基本概念和性质a. 平面方程的一般形式b. 平面的点法式方程c. 平面的截距式方程2. 空间解析几何的基本概念和性质a. 空间直线和平面的方程b. 点到直线和点到平面的距离公式c. 直线与平面的位置关系二、教学目标1. 理解平面解析几何的基本概念和性质2. 掌握平面的方程形式以及点法式和截距式方程的应用3. 理解空间解析几何的基本概念和性质4. 掌握空间直线和平面的方程形式以及点到直线和点到平面的距离公式的运用5. 掌握直线与平面的位置关系1. 导入(5分钟)利用实际生活中的例子,引导学生思考平面和空间的概念,激发学生学习解析几何的兴趣。
2. 概念讲解(30分钟)分别介绍平面解析几何和空间解析几何的基本概念,通过示意图和实例帮助学生理解。
3. 平面解析几何的基本概念和性质(50分钟)a. 讲解平面方程的一般形式,并通过示例演示如何由一般方程得到点法式方程和截距式方程。
b. 指导学生进行练习,巩固平面的方程形式转换和方程应用题目。
4. 空间解析几何的基本概念和性质(50分钟)a. 教授空间直线和平面的方程形式,并解释其几何意义。
b. 讲解点到直线和点到平面的距离公式,并通过实例演示应用。
c. 引导学生分析直线与平面的位置关系,并讲解相应的判定条件。
5. 总结与拓展(15分钟)小结平面解析几何和空间解析几何的基本知识,并提出进一步拓展的问题,以激发学生的思考和探索欲望。
1. 教学课件或投影仪2. 教材和练习题3. 黑板和粉笔五、教学评估1. 教学过程中的教师观察和评价2. 学生的练习作业和小组讨论表现3. 课后作业的完成情况和准确性通过本教案的教学,学生能够掌握平面和空间解析几何的基本概念和性质,理解方程的几何意义,并能够应用到平面和空间解析几何的问题中。
同时,通过合作讨论和实际练习,学生的解决问题的能力和思维能力也能得到提升。
解析几何课程教案

解析几何课程教案一、教学目标1. 让学生掌握解析几何的基本概念和基本公式。
2. 培养学生运用解析几何知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 解析几何的基本概念:坐标系、点、直线、圆等。
2. 解析几何的基本公式:直线方程、圆的方程等。
3. 解析几何中的重要性质和定理。
三、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、基本公式和重要性质。
2. 利用图形展示,让学生直观地理解解析几何的知识。
3. 设置例题和练习题,巩固所学知识,培养学生的解题能力。
四、教学步骤1. 引入坐标系,讲解点的坐标表示方法。
2. 讲解直线的基本概念和直线方程的求法。
3. 讲解圆的基本概念和圆的方程的求法。
4. 讲解解析几何中的重要性质和定理。
5. 通过例题和练习题,让学生运用所学知识解决问题。
五、教学评价1. 课堂问答:检查学生对解析几何基本概念的理解。
2. 作业批改:检查学生对解析几何知识的掌握和运用能力。
3. 阶段性测试:评估学生对解析几何的整体掌握情况。
4. 学生反馈:了解学生在学习过程中的需求和困惑,及时调整教学方法。
六、教学难点与对策1. 难点:理解并掌握解析几何中的抽象概念和复杂公式。
对策:通过具体例子和图形展示,帮助学生直观地理解抽象概念;分步骤讲解公式,让学生逐步掌握。
2. 难点:解决实际问题时的坐标运算。
对策:引导学生将实际问题转化为坐标问题,逐步讲解运算方法,让学生熟练运用。
七、教学实践与拓展1. 案例分析:选取实际问题,让学生运用解析几何知识解决。
2. 拓展练习:设计有一定难度的练习题,激发学生的学习兴趣,提高解题能力。
八、课程资源与辅助工具1. 教材:选用权威、实用的教材,为学生提供系统、全面的学习资源。
2. 网络资源:利用互联网查找相关教学视频、文章,丰富教学内容。
3. 几何画板:为学生提供直观的图形展示,帮助理解抽象概念。
九、课程进度安排1. 课时:本课程共计30课时。
《解析几何》教案

《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。
(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1 向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c……标记向量,而用希腊字母λ、μ、ν……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2 向量的加法一向量的加法:定义1设、,以与为邻边作一平行四边形,取对角线向量,记,如图1-1,称为与之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量与向量在同一直线上,那么,规定它们的和是这样一个向量:若与的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1 向量的加法满足下面的运算律:1、交换律, (1.2-2)2、结合律. (1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律 .自空间任一点O开始依次作则有,所以.由定理1知,对三向量相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作.二向量的减法定义3 若,则我们把叫做与的差,记为显然,,特别地,.由三角形法则可看出:要从减去,只要把与长度相同而方向相反的向量加到向量上去.由平行四边形法可如下作出向量.设、,以与为邻边作一平行四边形,则对角线向量.例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证必要性设三向量、、可以构成三角形(图1-3),(图1-3),那么,即.充分性设,作那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证设四边形的对角线、交于点且互相平分(图1-4)因此从图可看出:,所以,∥,且,即四边形为平行四边形.(图1-4)§1.3 数量乘向量定义1.3.1设是一个数量,向量与的乘积是一向量,记作,其模等于的倍,即;且方向规定如下:当时,向量的方向与的方向相同;当时,向量是零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知:.据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 数量与向量的乘法满足下面的运算律:1) 1²=2)结合律, (1.3-1)3)分配律, (1.3-2)4) . (1.3-3)证 1)据定义显然成立.2)显然,向量、、的方向是一致,且 = == .3)分配律如果或中至少有一个为0,等式显然成立;反之ⅰ)若 ,显然同向,且所以ⅱ)若不妨设若则有由ⅰ)可得,所以对的情形可类似证明.一个常用的结论:定理3. 若( 为数量 ),则向量与向量平行,记作;反之,若向量与向量平行且,则( 是数量).设是非零向量,用表示与同方向的单位向量.由于与同方向,从而与亦同方向,而且,即.我们规定:若,. 于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子改写成形式.十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证.(图1-5)证如图1-5,因为,所以但因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解定义1.4.1由向量与数量所组成的向量叫做向量的线性组合,或称可以用向量线性表示,或称可以分解成向量的线性组合.定理1.4.1如果向量,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数使得, (1.4-1)并且系数被,唯一确定.证若成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定存在实数使得(见1.3节中1.3.5的证明).再证的唯一性:如果,那么,而,所以,.定理1.4.2如果向量不共线,那么向量与共面的充要条件是可用向量线性表示,即, (1.4-2)并且系数被,唯一确定.证:(图1-6)因与不共线,由定义1.1.4知.设与中之一共线,那么由定理1.4.1有,其中中有一个为零;如果与都不共线,把它们归结共同的始点,并设,,,那么经过的终点分别作的平行线依次交直线于(图1-6),因,由定理 1.4.1,可设,所以由平行四边形法则得,即.反之,设,如果中有一个为零,如,那么与共线,因此与共面.如果,那么,从向量加法的平行四边形法则知与都共面,因此与共面.最后证的唯一性.因为=,那么,如果,那么,将有,这与假设矛盾,所以.同理,这就证明了唯一性.定理1.4.3 如果向量不共面,那么空间任意向量可以由向量线性表示,即存在一组实数使得, (1.4-3)并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2对于个向量,若存在不全为零的实数,使得, (1.4-4)则称向量线性相关.不是线性相关的向量叫做线性无关,即向量线性无关:.定理1.4.4在时,向量线性相关的充要条件是其中至少有一个向量是其余向量的线性组合.证设向量线性相关,则存在不全为零的实数使得,且中至少有一个不等于0,不妨设,则;反过来,设向量中有一个向量,不妨设为,它是其余向量的线性组合,即,即.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证设中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数,使得.则有,因为不全为零,所以线性相关.推论如果一组向量中含有零向量,那么这一组向量就线性相关类似地可证明下面的定理:定理1.4.6 两向量与共线线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点在线段上的充要条件是:存在非负实数,,使得,且,其中是任意取定的一点.证(先证必要性)设在线段上,则与同向,且,所以,.任取一点所以,所以,.取,,则,,.(充分性)若对任一点有非负实数,,使得,且则,所以与共线,即在直线上.又,所以在线段上.例2设为两不共线向量,证明,共线的充要条件是.证共线,线性相关,即存在不全为0的实数,使, (1.4-5)即.又因为不共线即线性无关,故方程有非零解.§1.5 标架与坐标一空间点的直角坐标:平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:(图1-7)右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向.三条坐标轴就组成了一个空间直角坐标系,点叫做坐标原点.注:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右.当然,它们的实际夹角还是.2、坐标面与卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与面.三个坐标面把空间分成了八个部分,这八个部分称为卦限.(图1-8)3、空间点的直角坐标取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标.依次称,,为点的横坐标、纵坐标和竖坐标,记为.反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系.定义1 我们把上面有序数组叫点在此坐标系下的坐标,记为.二空间两点间的距离公式定理1设、为空间的两点,则两点间的距离为(1.5-1)证过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示(图1-9)是直角三角形,故,因为是直角三角形,故,从而;而,,,故.特别地,点与坐标原点的距离为.三空间向量的坐标定义2 设是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,使得,那么我们把这组有序的实数,叫做向量在此坐标系下的坐标,记为或.定理2设向量的始终点坐标分别为、,那么向量的坐标为. (1.5-2)证由点及向量坐标的定义知,所以=.由定义知.定理3 两向量和的分量等于两向量对应的分量的和.证设,,那么=+=,所以. (1.5-3)类似地可证下面的两定理:定理4设,则.定理5 设,,则共线的充要条件是. (1.5-4)定理6三非零向量,,共面的充要条件是. (1.5-5)证因为不共面,所以存在不全为0的实数使得,由此可得因为不全为0,所以.§1.6 向量在轴上的射影一、空间点在轴上的投影:设已知点及轴,过点作轴的垂直平面,则平面与轴的交点叫做点在轴上的投影.(图1-10)二、向量在轴上的投影:定义1设向量的始点与终点在轴的投影分别为、,那么轴上的有向线段的值叫做向量在轴上的投影,记作,轴称为投影轴.(图1-11)这里,的值是这样的一个数:(1)即,数的绝对值等于向量的模.(2)当的方向与轴的正向一致时,;当的方向与轴的正向相反时,.三、空间两向量的夹角:设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作.(图1-12)若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度称为向量与数轴的夹角.四投影定理:定理1.6.1向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦.即, (1.6-1)(图1-13)证过向量的始点引轴,且轴与轴平行且具有相同的正方向,那未轴与向量的夹角等于轴与向量的夹角,而且有故由上式可知:向量在轴上的投影是一个数值,而不是向量.当非零向量与投影轴成锐角时,向量的投影为正.定理1.6.2对于任何向量都有. (1.6-2)证取,那么,设分别是在轴上的投影,那么显然有,因为所以,即.类似地可证下面的定理:定理1.6.3对于任何向量与任何实数有. (1.6-3)§1.7 两向量的数性积定义1.7.1 对于两个向量a和b 把它们的模|a|,|b|及它们的夹角的余弦的乘积称为向量和的数量积 记作ab,即ab=|a||b|cos .由此定义和投影的关系可得 ab|b|Prj b a=|a|Prj a b .数量积的性质(1) a²a=|a| 2,记a²a a 2,则a2|a| 2.(2) 对于两个非零向量a、b 如果a² b=0 则a b反之 如果a b 则a² b 0.定理1.7.1 如果认为零向量与任何向量都垂直 则a b a² b 0.定理1.7.2 数量积满足下面运算律:(1)交换律 a² b= b²a(2)分配律( ab)c a cb c( (3)a)² b a²(b )(a²b)(a)²(b )(a²b)证(1)由定义知显然.(2)的证明因为当c0时上式显然成立当c0时有(ab)c|c|Prj c(ab)|c|(Prj c a Prj c b)|c|Prj c a|c|Prj c ba cb c(3)可类似地证明.例1试用向量证明三角形的余弦定理证设在ΔABC中 ∠BCA||=a ||=b ||=c要证c 2a 2+b 22 a b cos记a b =c 则有 c ab从而 |c|2c c(ab)(ab)a2-2ab+b2|a|2+|b|22|a||b|cos(a^b)即c 2a 2+b 22 a b cos数量积的坐标表示 :定理1.7.3设a{a x a y a z } b{b x b y b z } 则a²b a x b x a y b y a z b z证 a² b( a x i a y j a z k)²(b x i b y j b z k)a xb x i²i a x b y i²j a x b z i²ka yb x j ²i a y b y j ²j a y b z j²ka zb x k²i a z b y k²j a z b z k²ka xb x a y b y a z b z定理1.7.4设a={},则向量a的模|a|=.证由定理1.7.2知|a|2=a2=,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={},则a的方向余弦为cos=,cos,cos;且,其中分别是向量a与x轴,y轴,z轴的夹角.证因为 ai=|a|cos且ai=,所以 |a|cos=,从而 cos=.同理可证 coscos且显然两向量夹角的余弦的坐标表示定理1.7.6设(a ^ b) 则当a0、b0时 有.证 因为a²b|a||b|cos,所以.例2 已知三点M (11 1) 、A (22 1) 和B (21 2) 求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角 .a{11 0} b{10 1}因为a b1110011所以从而.§1.8 两向量的向量积定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做a b或,它的模|a b| |a||b|sin,它的方向与a和b垂直并且按a,b, a b确定这个顺序构成右手标架{O;a,b,a b}.从定义知向量积有下列性质:(1) a a0(2) 对于两个非零向量a,b如果a b0则a//b;反之如果a//b则a b0.定理1.8.1 两不共线向量a与b的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2两向量a与b共线的充要条件是a b0.证当a与b共线时,由于sin(a、b)=0,所以|a b|=|a||b| sin(a、b)=0,从而a b0;反之,当a b0时,由定义知,a =0,或b =0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律(1) 反交换律a b b a,(2) 分配律 (ab)c a cb c,(3) 数因子的结合律 (a)b a(b)(a b) ().证(略).推论: c (ab) c a c b定理1.8.4 设a a x i a y j a z kb b x i b y j b z k,则 a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k证由向量积的运算律可得a b (a x i a y j a z k)(b x i b y j b z k)a xb x i i a x b y i j a x b z i ka yb x j i a y b y j j a y b z j k a z b x k i a z b y k a z b z k k由于i i j j k k0i j kj k ik i j所以a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k.为了帮助记忆利用三阶行列式符号上式可写成a yb z i+a z b x j+a x b y k a y b x k a x b z j a z b y i(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k例1设a(2 1 1) b(11 2)计算a b解=2ij2kk4ji i5j 3k例2已知三角形ABC的顶点分别是A (123)、B (345)、C (247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例3 设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量n表示角速度它的大小等于角速度的大小它即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示n与r的夹角那么a|r| sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v||n|a|n||r| sinv的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有v n r§1.9 三向量的混合积定义1.9.1 给定空间的三个向量,我们把叫做三向量的混合积,记做或.定理1.9.1三个不共面向量的混合积的绝对值等于以为棱的平行六面体的体积,并且当构成右手系时混合积为正;当构成左手系时混合积为负,也就是=当构成右手系时,当构成左手系时.证由于向量不共面,所以把它们归结到共同的试始点可构成以为棱的平行六面体,它的底面是以为边的平行四边形,面积为,它的高为,体积是.根据数性积的定义,其中是与的夹角.当构成右手系时,,,因而可得.当构成左手系时,,,因而可得.定理1.9.2三向量共面的充要条件是.证若三向量共面,由定理1.9.1知,所以,从而.反过来,如果,即,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即.证当共面时,定理显然成立;当不共面时,混合积的绝对值等于以为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论:.定理1.9.4设,,,那么.证由向量的向性积的计算知,再根据向量的数性积得===.推论: 三向量共面的充要条件是.例1设三向量满足,证明:共面。
《解析几何》课程教案

一、教案基本信息教案名称:《解析几何》课程教案课时安排:共24 课时,每课时45 分钟教学对象:高中一年级学生教学目标:1. 让学生掌握解析几何的基本概念、方法和技巧。
2. 培养学生运用解析几何知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
教学内容:第一章:解析几何概述1.1 解析几何的定义与发展历程1.2 坐标系与坐标轴1.3 点、直线、圆的方程第二章:直线方程2.1 直线方程的定义与分类2.2 直线方程的斜率与截距2.3 直线方程的应用第三章:圆的方程3.1 圆的方程定义与性质3.2 圆的标准方程与一般方程3.3 圆的方程应用第四章:曲线与方程4.1 曲线与方程的概念4.2 常见曲线的方程4.3 曲线与方程的应用第五章:解析几何中的问题解决策略5.1 解析几何问题的类型与解法5.2 图形分析与变换5.3 解析几何在实际问题中的应用二、教学方法1. 采用讲授法,系统地讲解解析几何的基本概念、方法和技巧。
2. 运用案例分析法,结合具体实例分析,让学生深入理解解析几何的应用。
3. 采用互动教学法,鼓励学生提问、讨论,提高学生的参与度。
4. 利用数形结合法,引导学生通过图形来直观理解解析几何问题。
三、教学评价1. 平时作业:检查学生对基本概念、方法和技巧的掌握程度。
2. 课堂练习:评估学生在课堂上解决问题、分析问题的能力。
3. 课程报告:考察学生对实际问题应用解析几何知识的能力。
4. 期末考试:全面测试学生对本课程的掌握情况。
四、教学资源1. 教材:选用权威、实用的解析几何教材。
2. 课件:制作精美、清晰的课件,辅助课堂教学。
3. 习题库:提供丰富、多样的习题,便于学生课后练习。
4. 参考资料:推荐学生阅读相关书籍、论文,拓展知识面。
五、教学进度安排第1-4 课时:解析几何概述第5-8 课时:直线方程第9-12 课时:圆的方程第13-16 课时:曲线与方程第17-20 课时:解析几何中的问题解决策略第21-24 课时:复习与总结六、教学策略及建议6.1 针对不同学生的学习基础,采取分层教学,既注重基础知识的学习,又提供一定的拓展内容。
解析几何教程教学设计

解析几何教程教学设计前言解析几何作为高中数学中的一个重要分支,是建立在初等数学的基础之上的一门新的数学学科。
教学解析几何需要遵循一定的规律和方法,能够使学生更好地理解和应用解析几何的知识。
在本篇文章中,我们将结合自己的教学经验,为大家分享一些解析几何教学的设计和教学建议。
一、课程设计1. 教学目标解析几何的教学目标主要包括以下两个方面:•培养学生对几何题目的判断与解决问题的能力。
•培养学生感受到解析几何的美感,学生需要能够通过分析和观察来表述自己的方程式,并能解释图形的特征和性质。
2. 教学内容解析几何的教学内容主要包括以下几个方面:•解析几何的基本概念:点、直线、二次曲线。
•解析几何的基本知识:曲面和曲线的方程、交点、垂直和平行、对称和抛物线。
•解析几何的应用:解决题目、证明定理,及其他数学应用。
3. 教学步骤解析几何的教学步骤主要包括以下几个阶段:•研究曲线和曲面的基本性质,如二次方程式、参数方程和标准方程式等。
•深入理解二次曲线的基本形式、性质和特征。
•学习如何在数据分析和表示中应用解析几何。
•设计有效的问题和习题,加深学生的理论知识和实践应用。
二、教学建议1. 掌握常见图形的方程解析几何的基础是掌握不同类型图形的方程式。
掌握不同类型图形的方程,有利于学生更好地理解解析几何的概念和应用。
在学习的过程中,要求学生具备简单的线性代数知识、微积分知识和三角学知识,掌握图形的基本形式和特征,掌握图形间的运动和关系。
2. 以实际问题为背景设计教学教学要以实际问题为背景,针对不同程度和不同兴趣的学生设计不同层次的课件,为学生提供更加贴近生活的解析几何问题。
这样有利于加深学生的理论知识应用。
同时,设计问题和习题,提高学生综合应用数学知识的能力。
3. 改进传统课堂教学方式传统的讲授方式过于单一,缺乏互动性。
改变传统的课堂教学方式,引入更多多媒体教学形式,如PowerPoint、视频、互动课件等,可以增加学生的兴趣和参与度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▲设置部分难易得当的课堂练习题,引导、鼓励学
生自己动手完成. 通过让学生获得成功以获得自信心和 积极学习的态度.
6.作业与考试
做习题是巩固学得理论知识的重要手段. 这些题目主要包 括巩固概念的题目、练习计算的题目、加深理解的题目和综 合性的题目. 教师有选择的批改作业,但不少于三分之一,并有详细的
2.《解析几何学习辅导书 》 吕林根 高等教育出版社 2006 3.《空间解析几何》 高给铸 王敬庚 等 北师大版 2007
8.成绩记载及比例
本课程是考试课,每学期的最后成绩由两部分组成. ﹡将平时作业成绩,课堂提问成绩加权平均得出平时成绩. 平 时成绩占期末总成绩的30 %. ﹡期末考试占期末总成绩的70 %.
第二章
轨迹和方程
§2.1 平面曲线的方程
§2.2 曲面的方程 §2.3 空间曲线的方程 第三章 平面与空间直线 §3.1 平面的方程
(3学时)
(3学时) (2学时) (3学时)
§3.2 平面与点的相关位置
§3.3 §3.4 两平面的相关位置 空间直线的方程
(1学时)
(1学时) (3学时)
§3.5 §3.6 §3.7 §3.8 第四章 §4.1 §4.2 §4.3 §4.4 §4.5 §4.6
算方法,提高动手能力,习题课的选题非常重要. 选题应注意:
▲设置具有典型性、代表性的例题,以充分体现所 学知识和总结各部分知识间的联系及运用的规律,便于 学生将所学知识融会贯通,举一反三. 引导学生用学到 的知识解决实际问题,帮助学生提高动手能力.
▲将典型题型归类,总结知识运用的规律,以克服学
生面对习程设计
郑州师范学院数学系 郭 城
解析几何课程设计
★ ★ ★ ★ ★ ★ ★ 1. 基本描述 2. 课程体系、课程内容 3. 教材分析 4. 课堂授课方式 5. 习题课设计 6. 作业与考试 7. 教学参考书
1. 基本描述
▲ 课程名称: 解析几何 ▲ 开课单位: 郑州师范学院数学系 ▲ 总学时: 70 讲课学时: 60 习题课学时: 10 ▲ 适合专业: 数学与应用数学 ▲ 授课对象: 一年级第一学期学生 ▲ 教材: 《解析几何》第四版 吕林根 许道子 高等教育出版社
2.课程体系、课程内容
1.教学定位 解析几何是我校理科数学专业必修的重要基础理
论课,是学生学习几何学系列课程及数学专业其它后
继课程的重要基础,也为高观点下深入理解中学教学
内容所必需。 解析几何把空间的几何结构系统的代数化、数量 化,从而把代数运算引进几何中来,所以解析几何的 最基本的思想是用代数的方法来研究几何。学会用代 数的方法处理几何问题是学生应该培养的能力。
直线与平面的相关位置 (1学时) 空间直线与点的相关位置 (1学时) 空间两直线的相关位置 (3学时) 平面束 (1学时) 柱面、锥面、旋转曲面与二次曲面 柱面 (2学时) 锥面 (1学时) 旋转曲面 (1学时) 椭球面 (1学时) 二次曲线的主直径与主方向 (2学时) 二次曲线方程的化简和分类 (2学时)
5.习题课设计
习题课重在帮助学习掌握课堂讲授的基本概念、基
本理论、基本方法. 本门课程具有概念、定理、符号和 运算规律多,内容相互纵横交错,知识前后联系紧密、运 用灵活的特点. 面对习题学生常无从下手,习题课的设置 是非常必要的. 为了使学生充分理解概念,掌握定理的条
件、结论、应用,熟悉符号意义,掌握各种运算规律、计
§4.5 抛物面 (2学时) §4.6 单叶双曲面与双曲抛物面的直母线 (3学时) 第五章 二次曲线的一般理论 §5.1 二次曲线与直线的相关位置关系 (1学时) §5.2 二次曲线的渐近方向、中心、渐近线(2学时) §5.3 二次曲线的切线 (1学时) §5.4 二次曲线的直径 (2学时) §5.5 二次曲线的主直径与主方向 (2学时) §5.6 二次曲线方程的化简和分类 (2学时)
*注意内容的衔接
每次课的前5 - 6 分钟时间,复习归纳上次课的内容,
主要采用提问引导方式,自然引导学生将上次课知识与本 次课内容联系上,利于学生进入本次课的情境.
*从问题出发的教学模式
尽量从一些重要的问题出发,一步一步根据解决这些
问题的需要引入概念和定义,提供方法和技巧. 培养学生 发现问题、分析问题和解决问题的能力.
2.课程体系、内容
课程的内容主要包括:向量与坐标,轨迹与方程, 空间直线和平面的方程,柱面、锥面、旋转面和 二次曲面和二次曲线的一般理论。 向量和坐标实质是空间结构代数化的过程,接下 来的章节,都是借助于代数的计算来研究空间中的 直线,曲线以及他们生成的曲面。
3. 教学内容与学时安排 第一章 向量与坐标 §1.1 向量的概念 (1课时) §1.2 向量的加减法 (1课时) §1.3 数量乘向量 (1课时) §1.4 向量的线性关系和向量的分解(3课时) §1.5 标架与坐标 (2课时) §1.6 向量在轴上的射影 (2课时) §1.7 两向量的数量积 (2课时) §1.8 两向量的向量积 (2课时) §1.9 三向量的混合积 (2课时)
作业成绩记录,以了解学生掌握知识的情况. 该课程是考试课. 考试采用笔试,采用规范化试卷,题型有 填空题、选择题、计算和证明题. 因为本课程开课时间为第一 学期,学生刚刚进入大学,还不太适应大学的学习生活,所以设置 期中考试可以帮助学生及时调整学习方法,认识和适应大学的 学习.
7.教学参考书
1. 《解析几何》 尤承业 北京大学出版社 2004
谢谢各位专家和老师!
3. 教材分析
《解析几何》第四版是在第三版的基础上稍加修
订而成。该教材叙述清晰,通俗易懂,易教易学等优 点。同时此教材选材精心,内容论述科学准确,结构 设计巧妙、合理,例题、习题安排得当。 缺点是该教材以代数知识为基础,而高等代数和 本教材同步开课,所以衔接两门课之间的知识授课顺 序,显得尤为重要。 《解析几何学习辅导书》作为辅助教材。
本课程的教学注重教育学生认识和理解现实生活 中的问题,领会“数”与“形”的内在联系,掌握解 析几 何的核心内容,即:向量代数,空间直线,平面,二次曲 面和二次曲线等。 通过本课程的教学要使学生比较系统地理解解析 几何的基本概念和基本理论,掌握基本方法。 逐步培 育生具有逻辑推理和抽象思维能力、空间直观和想 象能力及综合运用所学的知识分析和解决问题的能 力,为学好后续课程打下坚实的基础。
*以积极的态度感染学生 上课精神饱满、乐观热情. 情绪是可以感染学生的, 让学生在清新、轻松的环境中以愉快的心情、积极的 态度学习.
*应用CAI 教学
教师要认真研究CAI 教学方法,认真备课. 不但在课 程的内容上如此,而且需要认真钻研如何运用多媒体技 术,如何把你的想法用相应的技术制作出来. 必须将CAI 教学和板书结合起来,有效地控制讲课的节奏,给学生留 有充分的思考时间,才会收到良好的效果.
4.课堂授课方式
本课程以课堂教学为主(60 学时左右) ,安排适当
的习题课(10 学时左右) ,辅以适当的多媒体辅助教学.
为了全面提高教学质量,关键是深入进行教学方法的
研究. 在教学方法的改革与实践中,努力使教师从知识 的传授者转变为学生学习的激发者、组织者和引导者, 培养学生获取新知识的能力、再学习的能力和创新能 力. 具体做法如下:
*采用启发式、互动式教学方法,启发学生的思维
教师在授课过程中,注意教学内容表述的启发性,给 学生留出充足的想象空间,引导学生积极思考,使学生 对教师提出的问题有响应,师生之间有对话、有交流. 鼓励学生积极思维,调动学生求解、研究问题的欲望.
*妥善处理重点、难点
在教学中要突出重点,重点要简明扼要,清晰易懂. 在处理难点的过程中,要引导学生学会逐步分解难点、 化解难点的思维方法.