生物性别决定方式

合集下载

生物的性别决定与性别比例

生物的性别决定与性别比例

生物的性别决定与性别比例性别是生物界的一种重要特征,对于不同物种的繁衍和进化具有至关重要的影响。

性别决定是指个体发育过程中决定其性别的机制,而性别比例则是指在一个群体中,不同性别个体的数量比例。

性别决定与性别比例是生物学研究领域的热门话题,本文将分别从遗传决定和环境因素两个方面探讨生物的性别决定和性别比例的相关机制。

一、遗传决定在很多物种中,性别是由遗传因素决定的。

许多动物和植物都存在着两种遗传性别:雄性和雌性。

在哺乳动物领域,雄性是由XY性染色体进行遗传决定的,而雌性则是由XX性染色体决定的。

例如,人类的性别决定基因是位于Y染色体上的SRY基因,它在胚胎发育时的表达决定了个体的性别。

在某些昆虫和其他无脊椎动物中,性别决定则与染色体或基因的组合有关。

例如,蚂蚁的性别决定是通过雄性配子(只有一套单倍体染色体)和雌性配子(两套单倍体染色体)的结合来决定的。

在蜜蜂中,雄性是由单倍体配子产生,而雌性是由受精卵发育而来。

这些不同的遗传机制导致了不同物种中性别比例的变化。

二、环境因素除了遗传决定外,环境因素也可以影响生物的性别决定和性别比例。

在许多爬行动物和鱼类中,环境温度是决定性别的重要因素。

例如,在某些龟类中,高温环境下的胚胎会发育成雌性,而低温环境下的胚胎则发育成雄性。

这种通过温度调控性别的现象被称为温度依赖性性别决定。

在某些鱼类中,性别决定是由社会结构和群体特性决定的。

例如,丽鱼是一种触须鱼类,它们生活在一个多雄一雌的群体中。

当雌鱼死亡时,最大的雄鱼会转变成雌鱼,以维持群体的繁衍。

这种性别决定机制被称为社会性别转变。

三、性别比例的调控性别比例对于个体和种群的生存和繁衍具有重要的影响。

在自然界中,性别比例通常会受到自然选择和进化的调控。

一种常见的观察是,性别比例随着环境的变化而发生变化,这被称为性别比例偏斜。

例如,在某些爬行动物中,高温环境会导致更多的雌性个体出现,从而导致性别比例偏斜。

性别比例的调控也可以通过性选择来实现。

动物性别决定的方式

动物性别决定的方式

• 温度对性别分化的影响
乌龟的受精卵在23-27℃之间孵化全为雄性,在32-33 ℃之间孵化全为雌性。扬子鳄的卵在不同的温度下,可发 育为不同的性别,当在30℃及以下时发育为雌体,当温 度在34℃及以上时发育为雄体 。因为温度对两栖类、爬 行类动物的性别分化的影响主要是对这些动物的性激素的 合成有着直接的作用。但高温只改变性别的表现型,而不 改变其基因型。
生物性别决定的方式
性别的发育必须经过两个步骤: 一、性别决定:
细胞内遗传物质对性别的作用。 二、性别分化:
在性别决定的基础上,经与一定环境条件的相互 作用,才发育为一定的性别。
性别决定的方式
1.XY型和ZW型(由性染色体决定性别)
XY

两条异型性染色体XY

两条同型性染色体XX
后代性 别
决定于父方
➢ 雌性动物为同配性别,有两条X染色体 ➢ 雄性动物为异配性别,仅有一条X染色体,没有Y染色体。
例如:雌蝗虫有24条染色体 (22+XX), 雄蝗虫有23条染 色体(22+X)。

ZO型 极少数昆虫或鸡、鸭等家禽为ZO型。 雌体为异配性别,只有1条Z染色体,没W染色体; 雄体为同配性别,有两条Z染色体;
喂蜂王浆
假减数分裂
喂普通蜂蜜
蜂 王
工 蜂 (不育雌性)
----------- ♀(n) + ♂(n) 正常减数分裂
2n为雌蜂
3、化学物质决定性别-后螠
后螠一种低等海生动物,雌性个体像颗豆子,有一个 顶端分叉的长吻,体长6cm左右;雄性个体只有雌性 的1/500,寄生在雌性个体的子宫里。
幼虫落在海底,自由生活--雌性
2、细胞染色体倍数决定性别
如蜜蜂、蚂蚁等昆虫 (1)雌雄决定于染色体倍数: 正常受精卵 2n为雌性 未受精的卵 n为雄性

生物的性别主要是由遗传物质决定的。如性染色体类型的差异

生物的性别主要是由遗传物质决定的。如性染色体类型的差异

1.受环境影响的性别决定生物的性别主要是由遗传物质决定的。

如性染色体类型的差异(XY型、ZW 型)、性染色体数目的差异(XO型、ZO型)、染色体组的倍性决定及基因差异决定型等。

但有些生物的性别决定也受到环境因素的影响。

通常影响生物性别决定的环境因素有温度、日照长短、营养条件和位置等。

1.温度温度对生物性别决定的影响在两栖类和爬行类中是普遍存在的。

爬行动物的性别决定机制有两种:一种是异形性染色体决定,另一种是温度决定。

温度决定性别被称为TSD(temperature-dependent sex determination)。

TSD在许多龟鳖、蜥蜴和鳄鱼中都能观察到。

实验显示,扬子鳄和密西西比鳄的卵在不同的温度下,发育为不同的性别,当温度在30℃和30℃以下,发育为雌体;当温度在34℃或34℃以上发育为雄体;乌龟的卵在23℃-27℃的温度下发为雄性,在32℃-33℃时发育为雌性。

所以当他们产卵在不同高度的海岸线或河岸时由于温度不同而影响子代性别的分化。

有人认为导致这种现象的原因可能是温度对爬行动物性激素的合成有直接的影响。

由于爬行类的性别比例由环境温度决定,而且有合适性别比例的温度范围又很窄,因此有人提出白垩纪恐龙灭绝的原因之一就是恐龙的TSD及气候剧变。

两栖类的性别分化也与温度有关。

某些蛙类中,雄蛙的性染色体是XY,雌蛙是XX。

如果让它们的蝌蚪在20℃温度下发育时,雌雄比例大约为1∶1;如果让这些蝌蚪在30℃温度下发育时,不管它们具有什么性染色体组成,全部发育成雄蛙。

这里要说明的是,虽然XX型的蝌蚪在高温下发育成雄蛙,但它们的性染色体仍然是XX,高温只能改变性别的表现型,不能改变性别的基因型。

在植物中,环境温度对性别分化也有重要作用。

例如,南瓜在发育过程中,晚上的温度在10℃左右时,就形成较多的雌花,如果低温和8小时日照结合起来,雌花就占绝对优势。

实际上,短日照和较低的夜温有利于发育产生较多雌花的现象在葫芦科植物里是很常见的。

性别决定的原理

性别决定的原理

性别决定的原理性别决定的原理涉及到遗传学和生物学的知识,主要通过两种方式来决定一个生物个体的性别,分别是染色体性别决定和性染色体决定。

以下将详细介绍这两种决定性别的原理。

一、染色体性别决定原理染色体性别决定是指通过染色体的性状来判断个体的性别。

在人类中,性染色体主要有两种类型,分别是X染色体和Y染色体,而非性染色体是指其他的22对染色体,它们不参与性别的决定。

1. X和Y染色体的差异性染色体的差异主要体现在XY染色体组合和XX染色体组合上。

一般而言,一个人的染色体组合为44个非性染色体加上两个性染色体。

男性的染色体组合为44个非性染色体加一个X染色体和一个Y染色体,记作46XY;而女性的染色体组合为44个非性染色体加上两个X染色体,记作46XX。

2. 性别决定基因SRY在人类的Y染色体上,存在一个名为SRY(Sex-determining Region Y)的基因,它是决定胚胎发展成男性的关键。

SRY基因会在胚胎发育早期激活,并启动一系列的生化反应,促使胚胎发展成男性。

这个基因编码的蛋白可以影响着世界上一系列的性别特征,包括男性生殖系统的形成和发育。

3. 遗传方式由于男性的染色体组合为XY,而女性的染色体组合为XX,所以决定一个人的性别取决于他们父母的遗传方式。

当一个人从他的父亲那里得到一个Y染色体时,他将会是一个男性,因为Y染色体中的SRY基因会激活男性特征的发育;而当一个人从他的父亲那里没有得到Y染色体,而是得到了两个X染色体时,他将会是一个女性,因为没有SRY基因的存在。

二、性染色体决定原理性染色体决定是指通过性染色体的数量来决定个体的性别。

不同的物种具有不同的性染色体决定方式,下面将介绍两种主要的性染色体决定方式。

1. XX-XY系统大多数哺乳动物都使用XX-XY系统来决定性别,其中雌性有两个X染色体,而雄性有一个X染色体和一个Y染色体。

在这一系统中,雌性是一种“隐藏的”性别,因为它们没有特别的基因在X染色体上,而男性则通过Y染色体上的特定基因来表达雄性特征。

生物的性别决定

生物的性别决定

生物的性别决定生物的性别决定着其繁衍后代的方式和性特征的发展。

在大多数生物中,性别是通过染色体决定的。

在人类以及许多其他动物中,性别基因通常由性染色体决定,这些性染色体可以是X和Y染色体,或者是ZW染色体。

性别决定系统可以分为两种类型:常染色体性别决定系统和性染色体性别决定系统。

常染色体性别决定系统是指性别决定基因位于非性染色体的染色体上,如果个体具有一对相同的性染色体,则为雌性,如果是一对不同的性染色体,则为雄性。

这种系统在人类中并不常见。

而性染色体性别决定系统是指性别决定基因位于性染色体上。

在人类中,男性具有一对XY染色体,女性则具有一对XX染色体。

由于Y 染色体上有一个特定的性别决定基因SRY (sex-determining region Y),这使得胚胎发展成为男性。

在没有SRY基因的情况下,个体发展成为女性。

然而,并不是所有的生物都是通过这两种性别决定系统来决定性别。

例如,鸟类和一些爬行动物采用了ZW染色体性别决定系统。

在这种系统中,雌性具有一对不同的性染色体ZW,而雄性具有一对相同的性染色体ZZ。

除了染色体性别决定系统外,还有其他因素可以影响生物的性别决定。

例如,温度可以在某些动物中影响性别。

这被称为环境性别决定。

对于一些爬行动物和鱼类来说,卵在特定温度下孵化会产生不同的性别。

这是因为胚胎在特定温度下的性染色体表达方式不同。

性别决定对生物演化和生物多样性起着重要作用。

性染色体的突变或异常可以导致性别取向的变化,甚至一些性别特征的发育异常。

这些异常可能会对个体的生存和繁殖能力产生影响。

在人类社会中,性别决定也扮演着重要的角色。

性别不仅仅是生物学上的概念,也涉及到社会和文化因素。

性别身份通常被分为男性和女性,但也存在其他性别身份的多样性。

性别认同是每个人内心深处对自身性别的认知和接受程度。

总结起来,生物的性别决定有多种方式,包括常染色体性别决定系统、性染色体性别决定系统以及环境性别决定。

生物性别决定方式

生物性别决定方式

决定方式不同的生物,性别决定的方式也不同。

性别的决定方式有:环境决定型(温度决定,如很多爬行类动物);年龄决定型(如鳝);染色体数目决定型(如蜜蜂和蚂蚁);有染色体形态决定型(本质上是基因决定型上匕如人类和果蝇等XY型、矢鹅和蛾类等ZW型)等等。

1性染色体决定性别多数生物体细胞中有一对同源染色体的形状相互间往往不同,这对染色体跟性别决定直接有关,称为性染色体;性染色体以外的染色体统称常染色体。

1・1XY型性别决定箭头所指性染色体,大者为X染色体,小者为Y染凡是雄性个体有2个异型性染色体,雌性个体有2个相同的性染色体的类型,称为XY型。

这类生物中,雌性是同配性别,即体细胞中含有2个相同的性染色体,记作XX;雄性的体细胞中则含有2个异型性染色体,其中一个和雌性的X染色体一样,也记作X,另一个异型的染色体记作Y,因此体细胞中含有XY两条性染色体。

XY型性别决定,在动物中占绝大多数。

全部哺乳动物、大部分爬行类、两栖类以及雌雄异株的植物都属于XY型性别决定。

植物中有女娄菜、菠菜、大麻等。

在哺乳动物的性别决定中,X染色体和Y染色体所起作用是不等的。

Y染色体的短臂上有一个"睾丸决定”基因,有决定“男性”的强烈作用;而X染色体几乎不起作用。

合子中只要有Y 就发育成雄性;仅有X染色体(X0)则发育成雌性。

雌雄异株的女娄菜体内,Y染色体携带决定雄性的基因,具有决定雄株的作用。

决定雌株的基因大部分在X上,也有一些在常染色体上。

但对于果蝇来说,丫染色体上没有决定性别的基因,在性别决定中失去了作用。

X是雌性的决定者。

例如染色体异常形成的性染色体组成为XO的果蝇将发育为雄性,而性染色体为XXY的果蝇则发育为雌性。

1.2ZW型性别决定ZW型性别决定凡雌性个体具有2个异型性染色体,雄性个体具有2个相同的性染色体的类型,称为ZW型。

这类生物中,雄性是同配性别。

即雌性的性染色体组成为ZW,雄性的性染色体组成为ZZ。

鸟类、鳞翅目昆虫、某些两栖类及爬行类动物的性别决定属这一类型。

【高中生物】浅谈生物界的性别决定类型

【高中生物】浅谈生物界的性别决定类型

【高中生物】浅谈生物界的性别决定类型多数动物和某些植物具有两性之分,不同生物的性别决定类型存在较大的差异,综合起来主要分为两大类,即遗传因素决定性别和环境因素决定性别。

1遗传因素决定性别1.1性染色体决定性别性染色体是指与生物体性别决定直接相关的染色体。

在自然界中,大多数生物体的性别差异是由性染色体的差异决定的。

1.1.1xy型性别决定XY型性别决定是最常见的性别决定类型。

所有哺乳动物、大多数爬行动物和两栖动物、一些鱼类和昆虫,以及雌雄异株植物,如雌性露菜、菠菜和大麻,都属于XY型性别决定。

这种类型的雌性是纯合的,即雌性个体的体细胞包含两条同型性染色体(XX);雄性是杂合的,即雄性个体的体细胞包含两条异型性染色体(XY)。

Y染色体在这种性别决定中起主导作用。

含有Y染色体的受精卵发育为雄性,没有Y染色体的受精卵发育为雌性。

其根本原因是Y染色体上存在SRY(睾丸决定基因),其表达产物锌脂蛋白通过抑制女性发育途径和启动男性发育途径,在调节性别分化中发挥作用。

因此,真正决定XY型生物性别的是SRY基因。

因此,SRY基因易位于X染色体或常染色体上的XX型受精卵将发育为男性个体;Y染色体上SRY基因缺失的XY型受精卵将发育成雌性个体。

1.1.2zw型性别决定鸟类、鳞翅目昆虫和一些两栖爬行动物属于ZW型性别决定。

ZW型生物的性染色体组成与XY型相反。

雄性为同性,体细胞中有两条同类型的性染色体(zz);雌性是杂合子,体细胞中有两条异型染色体(ZW)。

ZW型性别决定的机制尚不清楚。

根据普遍推测,W染色体可能携带抑制男性发育的基因。

1.1.3性指数决定性别虽然黑腹果蝇也有x和Y染色体,但其性别决定机制不属于XY型,而是由性别指数决定的,即性染色体(x)数与常染色体组(a)数的比值决定性别(见表1)。

表1人类和果蝇中性染色体和性别的关系性染色体xyxxxxxxxyxoxyyx:3a性别指数 1x:2a=0.5 2x:2a=13x:2a=1.5 2x:2a=11x:2a=0.5 1x:2a=0.5 1x:3a=0.33人类性别♂♀超雌♂♀超级男性-果蝇性别♂♀超雌核发育(不能成活)♀♂♂超雄从表1可以得出结论,人类的性别决定取决于Y染色体的存在,而果蝇的性别决定取决于性别指数。

八年级下册生物性别遗传知识点

八年级下册生物性别遗传知识点

八年级下册生物性别遗传知识点本文主要介绍八年级下册生物性别遗传知识点,包括性别决定
机制、染色体与性别、性连锁遗传等方面。

希望通过本文的阐述,能够让读者更加清晰地了解生物性别遗传的基础知识。

一、性别决定机制
性别决定机制是指决定生物个体男性或女性的生物学机制。


人类中,性别决定是由一个称为性染色体的染色体对完成的。


见的性染色体类型是XY(男性)和XX(女性)。

二、染色体与性别
在人类体内,性染色体对的组合方式主要有XY和XX两种。

该组合方式是由父母的遗传信息共同决定的,其中父亲提供的23
对染色体中,其中一对是性染色体(X或Y),而母亲则提供了
两个X性染色体。

因为X染色体包含许多生命机能所必需的基因,所以男性通常只继承一个X染色体和一个Y染色体。

因此,如果
父母的性染色体分别为X和Y,他们就有一半的可能性生下男孩,一半的可能性生下女孩。

三、性连锁遗传
性连锁遗传是一种物种特定的遗传机制,表现为某些遗传变异
形式只与一个性别相关。

在性连锁遗传中,一些基因位于性染色
体上,并只能由一种性别传递。

在人类中,这些基因通常类似于
一个克隆品库,其中X染色体包含了不同于Y染色体的一些基因,这些基因可以影响身体和生理发育,包括毛发颜色、某些视觉缺
陷和一些表观特征。

总的来说,生物性别遗传是生物基因遗传的一种重要方面,可
以影响到生物个体及其后代的性别、身体发育和其他重要的生理
特征。

希望通过本文的介绍,读者能够更加了解这些知识点,为
自己的学习和研究提供一个基础和方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决定方式
不同的生物,性别决定的方式也不同。

性别的决定方式有:环境决定型(温度决定,如很多爬行类动物);年龄决定型(如鳝);染色体数目决定型(如蜜蜂和蚂蚁);有染色体形态决定型(本质上是基因决定型,比如人类和果蝇等XY型、矢鹅和蛾类等ZW型)等等。

1 性染色体决定性别
多数生物体细胞中有一对同源染色体的形状相互间往往不同,这对染色体跟性别决定直接有关,称为性染色体;性染色体以外的染色体统称常染色体。

1.1 XY型性别决定
箭头所指性染色体,大者为X染色体,小者为Y染
凡是雄性个体有2个异型性染色体,雌性个体有2个相同的性染色体的类型,称为XY型。

这类生物中,雌性是同配性别,即体细胞中含有2个相同的性染色体,记作XX;雄性的体细胞中则含有2个异型性染色体,其中一个和雌性的X染色体一样,也记作X,另一个异型的染色体记作Y,因此体细胞中含有XY两条性染色体。

XY型性别决定,在动物中占绝
大多数。

全部哺乳动物、大部分爬行类、两栖类以及雌雄异株的植物都属于XY型性别决定。

植物中有女娄菜、菠菜、大麻等。

在哺乳动物的性别决定中,X染色体和Y染色体所起作用是不等的。

Y染色体的短臂上有一个“睾丸决定”基因,有决定“男性”的强烈作用;而X染色体几乎不起作用。

合子中只要有Y就发育成雄性;仅有X染色体(XO)则发育成雌性。

雌雄异株的女娄菜体内,Y染色体携带决定雄性的基因,具有决定雄株的作用。

决定雌株的基因大部分在X上,也有一些在常染色体上。

但对于果蝇来说,Y染色体上没有决定性别的基因,在性别决定中失去了作用。

X是雌性的决定者。

例如染色体异常形成的性染色体组成为XO的果蝇将发育为雄性,而性染色体为XXY的果蝇则发育为雌性。

1.2 ZW型性别决定
ZW型性别决定
凡雌性个体具有2个异型性染色体,雄性个体具有2个相同的性染色体的类型,称为ZW 型。

这类生物中,雄性是同配性别。

即雌性的性染色体组成为ZW,雄性的性染色体组成为ZZ。

鸟类、鳞翅目昆虫、某些两栖类及爬行类动物的性别决定属这一类型。

例如家鸡、家蚕等。

1.3 XO型性别决定
蝗虫、蟋蟀等直翅目昆虫和蟑螂等少数动物的性别决定属于XO型。

雌性为同配性别,体细胞中含有2条X染色体;雄性为异配性别,但仅含有1条X染色体。

如雌性蝗虫有24条染色体(22+XX);雄性蝗虫有23条染色体(22+X)。

减数分裂时,雌虫只产生一种X卵子;雄虫可产生有X和无X染色体的2种精子,其性别比例为1∶1。

1.4 ZO型性别决定
鳞翅目昆虫中的少数个体,雄性为ZZ,雌性为ZO的类型,称为ZO型性别决定。

此类型中,雌性产生2型配子,雄性产生单一类型配子,性别比例为1∶1。

2 染色体的单双倍数决定性别
蜜蜂的性别由细胞中的染色体倍数决定。

雄蜂由未受精的卵发育而成,为单倍体。

雌蜂由受精卵发育而来,是二倍体。

营养差异决定了雌蜂是发育成可育的蜂王还是不育的工蜂。

若整个幼虫期以蜂王浆为食,幼虫发育成体大的蜂王。

若幼虫期仅食2~3天蜂王浆,则发育成体小的工蜂。

单倍体雄蜂进行的减数分裂十分特殊,减数分裂第一次,出现单极纺锤体,染色体全部移向一极,两个子细胞中,一个正常,含16个染色体(单价体),另一个是无核的细胞质芽体。

正常的子细胞经减数第二次分裂产生两个单倍体(n=16)的精细胞,发育成精子。

膜翅目昆虫中的蜜蜂、胡蜂、蚂蚁等都属于此种类型。

3 环境条件决定性别
有些动物的性别,靠其生活史发育的早期阶段的温度、光照或营养状况等环境条件来决定的。

比如:海生蠕虫后益,是一种环节动物,成熟雌虫将卵产在海水中,刚发育的幼虫没
有性分化,之后自由生活的幼虫将落入海底,发育成雌虫,但是如果有机会落到雌虫的口吻上,很快下滑经内壁进入子宫发育成雄虫。

如果把已经落在雌虫口吻上的幼虫移去,让其继续自由生活,就发育成中间性,畸形程度视呆在雌虫口吻上时间的长短;许多线虫是靠营养条件的好坏来决定性别的,它们一般在性别未分化的幼龄期侵入寄主体内,低感染率时营养条件好,发育成的成体基本上都是雌性,而高感染率时,营养条件差,发育成的成体通常都是雄的;大多数龟类无性染色体,其性别取决于孵化时的温度。

如乌龟卵在20~27℃条件下孵出的个体为雄性,在30~35℃时孵出的个体为雌性。

鳄类在30℃以下孵化则几乎全为雌性,高于32℃时雄性则占多数;我国特产的活化石扬子鳄,巢穴建于潮湿阴暗的弱光处可孵化出较多雌鳄,巢穴建于阳光曝晒处,则可产生较多的雄性。

4 基因决定性别
某些植物既可以是雌雄同株,也可以是雌雄异株,这类植物的性别往往是靠某些基因决定的。

如葫芦科的喷瓜,决定性别的是三个复等位基因,即aD、a+、ad;其显隐关系为aD>a+>ad。

aD基因决定发育为雄株;a+基因决定雌雄同株;ad则决定发育为雌株。

性别的类型有5种基因型所决定:aDa+和aDad为雄株;a+a+和a+ad为雌雄同株;aad 为雌株;纯合的adad不存在,因为雌性个体不可能提供ad配子。

玉米也可因为2对基因的转变,引起雌雄同株和雌雄异株的差异。

5 性反转现象
在一定条件下,动物的雌雄个体相互转化的现象称为性反转。

鱼类的性反转是比较常见的,如黄鳝的性腺,从胚胎到性成熟是卵巢,只能产生卵子。

产卵后的卵巢慢慢转化为精巢,只产生精子。

所以,每条黄鳝一生中都要经过雌雄两个阶段。

成熟的雌剑尾鱼会出其不意地
变成雄鱼,老的雌鳗鱼有时转变成雄鱼。

鸡也有“牝鸡司晨”现象,且可用激素使性未分化的鸡胚转变性别。

性别比例
根据性别决定的原理,不论是哪种性别决定方式,后代的性别比例都是1∶1。

性别决定发生在受精的过程中,受精作用一经完成,性别也就决定了。

现以人的性别决定为例来说明XY型性别决定的情况。

人的性别决定方式为XY型,女性个体的一对性染色体是同型的,即XX;男性个体的一对性染色体是异型的,即XY。

从某种意义上说,性别也是按孟德尔方式遗传的,1:1的性别比例是一种测交的结果,这意味着某一性别(例如哺乳动物的雌性)是纯合体,而另一性(如雄性)是杂合体。

根据基因的分离规律,男性个体的精母细胞在经减数分裂形成精子时,可以同时产生含有X染色体的精子和含有Y染色体的精子,并且这两种精子的数目相等;女性个体在卵原细胞经减数分裂形成卵细胞过程中,只产生一种含X染色体的卵细胞。

受精作用发生时,因为精子、卵细胞的融合是随机进行的,因此形成两种类型(就性染色体的组合而言)的受精卵,即:将来发育为女性个体,含XX性染色体的受精卵;和将来发育为男性个体,含XY性染色体的受精卵,且这两种受精卵的比例为1:1,即女性个体与男性个体的数量比为1:1。

下面说明ZW型性别决定的情况。

ZW型性别决定方式和XY型性别决定方式正好相反。

属于ZW型性别决定的生物,雌性个体的体细胞中,含有两个异型性染色体,用ZW表示,它产生两种数量相等的卵细胞,即Z型卵细胞:W型卵细胞为1:1;雄性个体所含的性染色体为同型性染色体,用ZZ来表
示,它只产生一种精子,即Z型精子。

在受精过程中,两种配子融合是随机的,这样就使其产生的后代中,雄性个体和雌性个体的数量比同样也是1:1。

关于性别
雌雄性别是生物界最普遍、最引人注意的现象之一。

大多数生物特别是高等动物雌雄间的差异非常明显,这种差异表现在许多性状上。

在植物界,雌雄性别差异不像动物那样明显,雌株和雄株的差异多表现在花器上,有些低等生物雌雄性仅表现在生理差异上,而在外形上却完全相同。

因此,性别现象是一种很复杂的现象。

性别是雌雄性的性状差别。

这个性状包括内在的和外在的两个方面,也就是通常性的第一性征和第二性征。

第一性征先出现,主要表现为内在性状特征,比如精巢(睾丸),生殖器官等;第二性征是在第一性征的基础之上衍生来的,后出现,主要表现为外在的性状特征,比如男性的胡须,女性的乳房,公鸡的漂亮羽毛,孔雀的屏状尾巴。

物种差别
哺乳动物的性别主要取决于体内性染色体的组成,环境对性别的决定几乎没有影响。

但在低等一些的动物体内,如两栖类、爬行类等,性别的决定除与性染色体组成有关外,与环境的变化有一定的关系。

如青蛙等低等脊椎动物,即使性染色体组成为XY,但在温度较高的环境中也会发育成雌蛙,在温度较低的环境中,即使性染色体组成为XX,也会发育成雄蛙。

也就说低等的脊椎动物染色体对性别的决定不是很强烈的。

相关文档
最新文档