高中数学高考总复习角的概念的推广及任意角的三角函数习题及详解
高考数学总复习考点知识讲解与提升练习26 任意角和弧度制、三角函数的概念

高考数学总复习考点知识讲解与提升练习 专题26 任意角和弧度制、三角函数的概念考点知识1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.知识梳理 1.角的概念(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形. (2)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角按终边位置不同分为象限角和轴线角.(3)相反角:我们把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示.(2)公式3.任意角的三角函数(1)任意角的三角函数的定义:设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=y r ,cosα=xr,tanα=yx(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦,如图.常用结论1.象限角2.轴线角思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)-π3是第三象限角.(×)(2)若角α的终边过点P (-3,4),则cos α=-35.(√)(3)若sin α>0,则α是第一或第二象限角.(×)(4)若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2.(√)教材改编题 1.-660°等于()A .-133πradB .-256πradC .-113πradD .-236πrad答案C解析-660°=-660×π180rad =-113πrad.2.某次考试时间为120分钟,则从开始到结束,墙上时钟的分针旋转了________弧度. 答案-4π解析某次考试时间为120分钟,则从开始到结束,墙上时钟的分针顺时针旋转了-720°,即-4π.3.已知角α的终边经过点P (2,-3),则sin α=________,tan α=________. 答案-31313 -32解析因为x =2,y =-3,所以点P 到原点的距离r =22+(-3)2=13.则sin α=y r =-313=-31313,tan α=y x =-32.题型一角及其表示例1(1)(2023·宁波模拟)若α是第二象限角,则() A .-α是第一象限角 B.α2是第三象限角 C.3π2+α是第二象限角 D .2α是第三或第四象限角或在y 轴负半轴上 答案D解析因为α是第二象限角,可得π2+2k π<α<π+2k π,k ∈Z , 对于A ,可得-π-2k π<-α<-π2-2k π,k ∈Z ,此时-α位于第三象限,所以A 错误;对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2位于第一象限;当k 为奇数时,α2位于第三象限,所以B 错误;对于C ,可得2π+2k π<3π2+α<5π2+2k π,k ∈Z , 即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α位于第一象限,所以C 错误;对于D ,可得π+4k π<2α<2π+4k π,k ∈Z ,所以2α是第三或第四象限角或在y 轴负半轴上,所以D 正确. 延伸探究若α是第一象限角,则α2是第几象限角? 解因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z , 所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2是第一象限角,当k 为奇数时,α2是第三象限角.(2)在-720°~0°范围内所有与45°终边相同的角为________. 答案-675°和-315°解析所有与45°终边相同的角可表示为β=45°+k ×360°(k ∈Z ), 当k =-1时,β=45°-360°=-315°, 当k =-2时,β=45°-2×360°=-675°.思维升华 确定k α,αk(k ∈N *)的终边位置的方法先写出k α或αk的范围,然后根据k 的可能取值确定k α或αk的终边所在位置.跟踪训练1(1)“α是第四象限角”是“α2是第二或第四象限角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案A解析当α是第四象限角时,3π2+2k π<α<2π+2k π,k ∈Z ,则3π4+k π<α2<π+k π,k ∈Z ,即α2是第二或第四象限角.当α2=3π4为第二象限角时,α=3π2不是第四象限角,故“α是第四象限角”是“α2是第二或第四象限角”的充分不必要条件.(2)(2021·北京)若点P (cos θ,sin θ)与点Q ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫θ+π6,sin ⎝ ⎛⎭⎪⎫θ+π6关于y 轴对称,写出一个符合题意的θ=________. 答案5π12⎝ ⎛⎭⎪⎫满足θ=5π12+k π,k ∈Z 即可 解析∵P (cos θ,sin θ)与Q ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫θ+π6,sin ⎝ ⎛⎭⎪⎫θ+π6关于y 轴对称,即θ,θ+π6关于y 轴对称,θ+π6+θ=π+2k π,k ∈Z ,则θ=k π+5π12,k ∈Z ,当k =0时,可取θ的一个值为5π12.题型二弧度制及其应用例2已知一扇形的圆心角为α(α>0),弧长为l ,周长为C ,面积为S ,半径为r . (1)若α=35°,r =8cm ,求扇形的弧长;(2)若C =16cm ,求S 的最大值及此时扇形的半径和圆心角. 解(1)α=35°=35×π180rad =736πrad , 扇形的弧长l =αr =736π×8=149π(cm). (2)方法一由题意知2r +l =16,∴l =16-2r (0<r <8), 则S =12lr =12(16-2r )r =-r 2+8r =-(r -4)2+16,当r =4(cm)时,S max =16(cm 2),l =16-2×4=8(cm),α=lr=2,∴S 的最大值是16cm 2,此时扇形的半径是4cm ,圆心角α=2rad. 方法二S =12lr =14l ·2r ≤14·⎝⎛⎭⎪⎫l +2r 22=16, 当且仅当l =2r ,即r =4(cm)时,S 的最大值是16cm 2. 此时扇形的圆心角α=2rad.思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题. 跟踪训练2某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知OA =10,OB =x (0<x <10),线段BA ,CD 与BC ,AD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值. 解(1)根据题意,可算得BC =θx ,AD =10θ.因为AB +CD +BC +AD =30,所以2(10-x )+θx +10θ=30, 所以θ=2x +10x +10(0<x <10). (2)根据题意,可知y =S 扇形AOD -S 扇形BOC =12θ·(102-x 2)=12×2(x +5)(102-x 2)x +10=(x +5)(10-x )=-x 2+5x +50=-⎝⎛⎭⎪⎫x -522+2254,当x =52时,y max =2254.综上所述,当x =52时,铭牌的截面面积最大,且最大面积为2254.题型三三角函数的概念例3(1)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则下列选项正确的是() A .sin θ=-217B .α为钝角C.cosα=-27 7D.点(tanθ,sinα)在第一象限答案ACD解析角θ的终边经过点(-2,-3),sinθ=-217,A正确;θ与α的终边关于x轴对称,由题意得α的终边经过点(-2,3),α为第二象限角,不一定为钝角,cosα=-277,B错误,C正确;因为tanθ=32>0,sinα=217>0,所以点(tanθ,sinα)在第一象限,D正确.(2)已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.2 11C.-2或211 D.1答案B解析由题设可知,2a+1(2a+1)2+(a-2)2=35且2a+1>0,即a>-12,∴4a2+4a+15a2+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,∴a=211 .(3)若sinαtanα<0,且cosαtanα>0,则角α是()A.第一象限角B.第二象限角C .第三象限角D .第四象限角 答案B解析由sin αtan α<0,知α是第二象限或第三象限角, 由cos αtan α>0,知α是第一象限或第二象限角, 所以角α是第二象限角.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.跟踪训练3(1)若角α的终边上有一点P (a ,2a )(a ≠0),则2sin α-cos α的值是() A .-355 B.55C .-55D.355或-355答案D解析若α的终边上有一点P (a ,2a )(a ≠0),则cos α=a a 2+(2a )2=a5|a |=⎩⎪⎨⎪⎧ 55,a >0,-55,a <0,sin α=2aa 2+(2a )2=2a5|a |=⎩⎪⎨⎪⎧255,a >0,-255,a <0,所以2sin α-cos α=⎩⎪⎨⎪⎧355,a >0,-355,a <0.(2)sin2cos3tan4的值() A .小于0B .大于0 C .等于0D .不存在 答案A解析∵π2<2<3<π<4<3π2,∴sin2>0,cos3<0,tan4>0.∴sin2cos3tan4<0.(3)若A (1,a )是角θ终边上的一点,且sin θ=336,则实数a 的值为________. 答案11解析根据三角函数的终边上点的定义可得,r =1+a 2, 所以sin θ=a a 2+1=336>0,即a >0且a 2=11,所以a =11. 课时精练1.与-2023°终边相同的最小正角是() A .137°B.133°C.57°D.43° 答案A解析因为-2023°=-360°×6+137°, 所以与-2023°终边相同的最小正角是137°.2.(2023·合肥模拟)在平面直角坐标系中,若角θ的终边经过点P ⎝⎛⎭⎪⎫-sin π6,cos π3,则cos θ等于() A.12B .-12C.22D .-22 答案D解析由角θ的终边经过点P ⎝ ⎛⎭⎪⎫-sin π6,cos π3,即P ⎝ ⎛⎭⎪⎫-12,12,所以cos θ=-1214+14=-22.3.如图所示的时钟显示的时刻为4:30,此时时针与分针的夹角为α(0<α≤π).若一个半径为1的扇形的圆心角为α,则该扇形的面积为()A.π2B.π4C.π8D.π16答案C解析由图可知,α=18×2π=π4,所以该扇形的面积S =12×π4×12=π8.4.(2023·惠州模拟)如果点P (2sin θ,sin θ·cos θ)位于第四象限,那么角θ所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限答案B解析∵点P (2sin θ,sin θ·cos θ)位于第四象限, ∴⎩⎨⎧2sin θ>0,sin θ·cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,∴角θ所在的象限是第二象限.5.(2023·南昌模拟)我国在文昌航天发射场用长征五号运载火箭成功发射探月工程嫦娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月球表面400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转π3弧度,飞过的路程约为(取π≈3.14)() A .1069千米B .1119千米 C .2138千米D .2238千米 答案D解析嫦娥五号绕月飞行半径为400+1738=2138(千米),所以嫦娥五号绕月每旋转π3弧度,飞过的路程约为l =αr =π3×2 138≈3.143×2 138≈2238(千米).6.(2023·丽江模拟)屏风文化在我国源远流长,可追溯到汉代.某屏风工艺厂设计了一款造型优美的扇环形屏风,如图,扇环外环弧长为3.6m ,内环弧长为1.2m ,径长(外环半径与内环半径之差)为1.2m ,若不计外框,则扇环内需要进行工艺制作的面积的估计值为()A .2.58m 2B .2.68m 2C .2.78m 2D .2.88m 2 答案D解析设扇形的圆心角为α,内环半径为r m ,外环半径为R m ,则R -r =1.2(m), 由题意可知,α·r =1.2,α·R =3.6, 所以α(R +r )=4.8,所以扇环内需要进行工艺制作的面积的估计值为S =12α(R 2-r 2)=12α(R +r )(R -r )=12×4.8×1.2=2.88(m 2). 7.(2023·安阳模拟)已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值为________. 答案5π3解析因为sin5π6>0,cos 5π6<0, 所以角α的终边在第四象限, 根据三角函数的定义,可知sin α=cos5π6=-32, 故角α的最小正值为α=2π-π3=5π3. 8.数学中处处存在着美,机械学家莱洛发现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边△ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形(如图所示).若莱洛三角形的周长为2π,则其面积是________.答案2π-2 3解析由条件可知,弧长AB =BC =AC =2π3,等边三角形的边长AB =BC =AC =2π3π3=2,则以点A ,B ,C 为圆心,圆弧AB ,BC ,AC 所对的扇形面积为12×2π3×2=2π3,中间等边△ABC 的面积S =12×2×3=3.所以莱洛三角形的面积是3×2π3-23=2π-2 3. 9.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α为第四象限角,故m <0,从而m =-45,sin α=y r =m |OM |=-451=-45.10.如图,在平面直角坐标系Oxy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于点A (1,0),它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-12,求sin α的值和与角α终边相同的角β的集合;(2)若α∈⎝ ⎛⎦⎥⎤0,π2,请写出弓形AB 的面积S 与α的函数关系式.(注:弓形是指在圆中由弦及其所对的弧组成的图形)解(1)由题意知,若点B 的横坐标为-12,可得B 的坐标为⎝ ⎛⎭⎪⎫-12,32,∴sin α=32,于是α=2π3+2k π,k ∈Z , 与角α终边相同的角β的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=2π3+2k π,k ∈Z . (2)△AOB 的高为1×cosα2,AB =2sin α2, 故S △AOB =12×2sin α2×cos α2=12sin α,故弓形AB 的面积S =12·α·12-12sin α=12(α-sin α),α∈⎝⎛⎦⎥⎤0,π2.11.在平面直角坐标系中,若α与β的终边互相垂直,那么α与β的关系式为() A .β=α+90° B .β=α±90°C .β=α+90°+k ·360°(k ∈Z )D .β=α±90°+k ·360°(k ∈Z ) 答案D解析∵α与β的终边互相垂直,∴β=α±90°+k ·360°(k ∈Z ). 12.(多选)已知点P (sin x -cos x ,-3)在第三象限,则x 可能位于的区间是() A.⎝ ⎛⎭⎪⎫5π4,9π4 B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π4 答案AD解析由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝ ⎛⎭⎪⎫-3π4,π4,当k =1时,x 所在的一个区间是⎝⎛⎭⎪⎫5π4,9π4. 13.已知△ABC 为锐角三角形,若角θ的终边过点P (sin A -cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为()A .1B .-1C .3D .-3答案B解析因为△ABC 为锐角三角形,所以A +B >π2,A +C >π2,即A >π2-B ,C >π2-A , 所以sin A >cos B ,sin C >cos A , 所以θ是第四象限角,所以sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1.14.在北京冬奥会短道速滑混合接力的比赛中,中国队以2分37秒348的成绩获得金牌.如图,短道速滑的比赛场地的内圈半圆的弯道计算半径为8.5m ,直道长为28.85m ,点O 为半圆的圆心,点N 为弯道与直道的连接点,运动员沿滑道逆时针滑行,在某次短道速滑比赛最后一圈的冲刺中,运动员小夏在弯道上的P 点处成功超过所有对手,并领先到达终点Q (终点Q 为直道的中点).若从P 点滑行到Q 点的距离为31.425m ,则∠PON 等于()A.π2B.53C .2D.2π3答案C解析扇形PON 的弧长为31.425-12×28.85=17,故∠PON =178.5=2.15.(2023·常州模拟)赵爽是我国古代数学家、天文学家,约公元222年,赵爽在注解《周髀算经》一书时介绍了“勾股圆方图”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的大正方形.如图所示的是一张弦图,已知大正方形的面积为100,小正方形的面积为20,若直角三角形中较小的锐角为α,则sin αcos α的值为()A.15B.25C.55D.255 答案B解析设直角三角形的短直角边为x ,一个直角三角形的面积为100-204=20,小正方形的面积为20,则边长为2 5.大正方形的面积为100,则边长为10. 直角三角形的面积为12·x (x +25)=20⇒x =2 5.则直角三角形的长直角边为4 5.故sin α=55,cos α=255,即sin αcos α=25. 16.如图,点P 是半径为2的圆O 上一点,现将如图放置的边长为2的正方形ABCD (顶点A 与P 重合)沿圆周逆时针滚动.若从点A 离开圆周的这一刻开始,正方形滚动至使点A 再次回到圆周上为止,称为正方形滚动了一轮,则当点A 第一次回到点P 的位置时,正方形滚动了________轮,此时点A 走过的路径的长度为________.答案3(2+2)π解析正方形滚动一轮,圆周上依次出现的正方形顶点为B→C→D→A,顶点两次回到点P时,正方形顶点将圆周正好分成六等份,又4和6的最小公倍数为3×4=2×6=12,所以到点A首次与P重合时,正方形滚动了3轮.这一轮中,点A路径A→A′→A″→A是圆心角为π6,半径分别为2,22,2的三段弧,故路径长l=π6·(2+22+2)=(2+2)π3,所以点A与P重合时总路径长为(2+2)π.。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角为第二象限角,且,则的值为()A.B.C.D.【答案】B【解析】由,得:又因为:所以,解得:又因为角为第二象限角,所以,所以,故选B.【考点】同角三角函数基本关系及诱导公式.2.如图,A,B是单位圆上的两个质点,点B坐标为(1,0),∠BOA=60°.质点A以1 rad/s的角速度按逆时针方向在单位圆上运动,质点B以1 rad/s的角速度按顺时针方向在单位圆上运动.(1)求经过1 s 后,∠BOA的弧度;(2)求质点A,B在单位圆上第一次相遇所用的时间.【答案】(1)+2.(2)s【解析】解:(1)经过1 s 后,∠BOA的弧度为+2.(2)设经过t s 后质点A,B在单位圆上第一次相遇,则t(1+1)+=2π,所以t=,即经过s 后质点A,B在单位圆上第一次相遇.3.设角α是第三象限角,且=-sin,则角是第________象限角.【答案】四【解析】由α是第三象限角,知2kπ+π<α<2kπ+ (k∈Z),kπ+<<kπ+ (k∈Z),知是第二或第四象限角,再由=-sin知sin<0,所以只能是第四象限角.4.点P从(1,0)出发,沿单位圆x2+y2=1逆时针方向运动弧长到达Q点,则Q点的坐标为()A.(-,)B.(-,-)C.(-,-)D.(-,)【解析】设α=∠POQ,由三角函数定义可知,Q点的坐标(x,y)满足x=cosα,y=sinα,∴x=-,y=,∴Q点的坐标为(-,).5.已知角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.【答案】sinα=-,tanα=【解析】解:∵P(x,-)(x≠0),∴P到原点的距离r=.又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-.当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.6. [2014·潍坊质检]已知角α的终边经过点P(m,-3),且cosα=-,则m等于()A.-B.C.-4D.4【答案】C【解析】cosα==- (m<0),解之得m=-4,选C项.7.角终边上有一点,则下列各点中在角的终边上的点是()A.B.C.D.【答案】B【解析】因为角终边上有一点,所以因此即角的终边上的点在第三象限,所以选C.【考点】三角函数定义8.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【解析】∵∴与是终边相同的角,且此时=是最小的,选A.9.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.10.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.11.已知角α的终边上一点的坐标为(sin,cos),则角α的最小正值为()A.B.C.D.【答案】C【解析】∵sin>0,cos>0,∴角α的终边在第一象限,∴tanα====,∴角α的最小正值为.12.若角θ的终边在射线y=-2x(x<0)上,则cosθ=.【答案】-【解析】由已知得角的终边落在第二象限,故可设角终边上一点P(-1,2),则r2=(-1)2+22=5,∴r=,此时cosθ==-.13.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.【答案】【解析】由题意可知,点P在第四象限,且点P落在角θ的终边上,所以tan θ=-1,故θ=.14.已知则= .【答案】【解析】.【考点】三角函数求值.15.已知角x的终边上一点坐标为,则角x的最小正值为( ) A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值16.( )A.B.C.D.【答案】A【解析】.【考点】特殊角的三角函数值17.角的终边经过点,则的可能取值为( )A.B.C.D.【答案】D【解析】.【考点】1.任意角的三角函数;2.同角三角函数的基本关系18.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.19.求值:________.【答案】【解析】.【考点】三角函数的计算及诱导公式.20.如图,在平面直角坐标系中,以x轴为始边作两个锐角、,它们的终边分别与单位圆交于A、B两点.已知点A的横坐标为;B点的纵坐标为.则 .【答案】【解析】单位圆的半径是1,根据勾股定理以及点A的横坐标为,B点的纵坐标为,可知点A的纵坐标为,点B的横坐标为,所以,,,,因为,是锐角,所以,所以.【考点】1.任意角的三角函数;2.三角函数的和角公式21.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】C【解析】.故选C.【考点】扇形弧长公式.22.在平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则sin5α=.【答案】【解析】根据题意,由于平面直角坐标系xOy中,若角α的始边与x轴的正半轴重合,终边在射线y=-x(x>0)上,则可知,那么可知sin5α=sin,故答案为【考点】三角函数定义点评:解决的关键是利用三角函数的定义来求解三角函数值,属于基础题。
高三数学任意角和弧度制和任意角的三角函数试题答案及解析

高三数学任意角和弧度制和任意角的三角函数试题答案及解析1.已知角的终边经过点(-4,3),则cos=( )A.B.C.-D.-【答案】D【解析】由题意可知x=-4,y=3,r=5,所以.故选D.【考点】三角函数的概念.2.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=x,则tanα=() A.B.C.-D.-【答案】D【解析】∵α是第二象限角,∴cosα=x<0,即x<0.又cosα=x=,解得x=-3,∴tanα==-.3.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.4【答案】A【解析】由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin=sin,但与的终边不相同,故④错;当θ=π,cosθ=-1<0时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.4.把表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ值是()A.B.C.D.【答案】A【解析】∵∴与是终边相同的角,且此时=是最小的,选A.5.α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.【答案】【解析】∵OP=,∴cosα==x.又α是第二象限角,∴x<0,得x=-,∴sinα==.6.已知扇形的周长为8cm,则该扇形面积的最大值为________cm2.【答案】4【解析】设扇形半径为rcm,弧长为lcm,则2r+l=8,S=rl=r×(8-2r)=-r2+4r=-(r-2)2+4,所以S=4(cm2)max7.若角α,β满足-<α<β<π,则α-β的取值范围是()A.(-,)B.(-,0)C.(0,)D.(-,0)【答案】B【解析】由-<α<β<π知,-<α<π,-<β<π,且α<β,所以-π<-β<,所以-<α-β<且α-β<0,所以-<α-β<0.8.计算2sin(-600°)+tan(-855°)的值为()A.B.1C.2D.0【答案】C【解析】∵sin(-600°)=-sin600°=-sin(360°+240°)=-sin240°=-sin(180°+60°)=sin60°=,同理tan(-855°)=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1,∴原式=2×+×1=2.9.已知(1)求的值;(2)若是第三象限的角,化简三角式,并求值.【答案】(1);(2).【解析】(1)利用商数关系及题设变形整理即得的值;(2)注意既是一个无理式,又是一个分式,那么化简时既要考虑通分,又要考虑化为有理式.考虑通分,显然将两个式子的分母的积作为公分母,这样一来,被开方式又是完全平方式,即可以开方去掉根号,从将该三角式化简.试题解析:(1)∵∴ 2分解之得 4分(2)∵是第三象限的角∴= 6分=== 10分由第(1)问可知:原式== 12分【考点】三角函数同角关系式.10.已知角x的终边上一点坐标为,则角x的最小正值为( )A.B.C.D.【答案】C【解析】因为角终边上一点的坐标为,在第四象限,所以角是第四象限角,又,所以角的最小正值为.【考点】特殊角的三角函数值11.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2B.C.D.【答案】B【解析】已知弧度数为2的圆心角所对的弦长也是2,所以,即,所以.【考点】弧度制.12.已知角的终边经过点,且,则的值为()A.B.C.D.【答案】A【解析】,故点的坐标为,所以,所以,解得,故选A.【考点】三角函数的定义13.运用物理中矢量运算及向量坐标表示与运算,我们知道:两点等分单位圆时,有相应正确关系为,三等分单位圆时,有相应正确关系为,由此推出:四等分单位圆时的相应正确关系为 .【答案】【解析】用两点等分单位圆时,关系为,两个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差为:,用三点等分单位圆时,关系为,此时三个角的正弦值之和为0,且第一个角为,第二个角与第一个角的差与第三个角与第二个角的差相等,均为有,依此类推,可得当四点等分单位圆时,为四个角正弦值之和为0,且第一个角为,第二个角为,第三个角,第四个角为,即其关系为.【考点】三角函数的定义与三角恒等式.14.已知扇形的周长是8cm,圆心角为2 rad,则扇形的弧长为 cm.【答案】4【解析】设扇形的弧长,半径,圆心角分别为,则,又由即,得.【考点】扇形的弧长公式.15.已知为钝角,且,则与角终边相同的角的集合为.【答案】【解析】由为钝角,且,得,所以与角终边相同的角的集合为,当然也可写成,但注意制度要统一,不要丢掉.【考点】特殊角的三角函数、终边相同角的集合.16.(1)设扇形的周长是定值为,中心角.求证:当时该扇形面积最大;(2)设.求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)由扇形周长为定值可得半径与弧长关系(定值),而扇形面积,一般地求二元函数最值可消元化为一元函数(见下面详解),也可考虑利用基本不等式,求出最值,并判断等号成立条件,从而得解;(2)这是一个双变元(和)的函数求最值问题,由于这两个变元没有制约关系,所以可先将其中一个看成主元,另一个看成参数求出最值(含有另一变元),再求解这一变元下的最值,用配方法或二次函数图象法. 试题解析:(1)证明:设弧长为,半径为,则, 2分所以,当时, 5分此时,而所以当时该扇形面积最大 7分(2)证明:9分∵,∴, 11分∴当时, 14分又,所以,当时取等号,即. 16分法二:9分∵,, 11分∴当时,, 14分又∵,∴当时取等号即. 16分【考点】扇形的周长和面积、三角函数、二次函数.17.已知角的终边与单位圆交于,则()A.B.C.D.【答案】A【解析】因为,角的终边与单位圆交于,所以,,=,故选.【考点】三角函数的定义,三角函数诱导公式、倍角公式.18.已知角的顶点在坐标原点,始边与轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是,则的值为()A.B.C.D.【答案】C【解析】由题意可知,,因为所以,,所以.【考点】三角函数的定义,和差角公式.19.若角与角终边相同,则在内终边与角终边相同的角是 .【答案】【解析】因为角与角终边相同,所以=2kπ+,z,=,令k=0,1,2,3分别得到,即为所求。
高三专题三角函数与解三角形总结归纳

三角函数一. 任意角的概念与弧度制 (一)角的概念的推广 1.角概念的推广:在平面内,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角就是多少度角.按不同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角.习惯上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边.射线旋转停止时对应的边叫角的终边. 2.特殊命名的角的定义:(1)正角,负角,零角 :见上文.(2)象限角:角的终边落在象限内的角,根据角终边所在的象限把象限角分为:第一象限角、第二象限角、第三象限角、第四象限角. (3)轴线角:角的终边落在坐标轴上的角.终边在x 轴上的角的集合: {}|180,k k Z ββ=⨯︒∈ 终边在y 轴上的角的集合: {}|18090,k k Z ββ=⨯︒+︒∈终边在坐标轴上的角的集合:{}|90,k k Z ββ=⨯︒∈ (4)终边相同的角:与α终边相同的角:2,x k k Z απ=+∈ (5)与α终边反向的角:()21,x k k Z απ=++∈终边在y x =轴上的角的集合:{}|18045,k k Z ββ=⨯︒+︒∈ 终边在y x =-轴上的角的集合:{}|18045,k k Z ββ=⨯︒-︒∈(6)若角α与角β的终边在一条直线上,则角α与角β的关系:180,k k Z αβ=⨯︒+∈ (7)成特殊关系的两角若角α与角β的终边关于x 轴对称,则角α与角β的关系:360,k k Z αβ=⨯︒-∈ 若角α与角β的终边关于y 轴对称,则角α与角β的关系:360180,k k Z αβ=⨯︒+︒-∈ 若角α与角β的终边互相垂直,则角α与角β的关系:36090,k k Z αβ=⨯︒+±︒∈注意: (1)角的集合表示形式不唯一; (2)终边相同的角不一定相等,相等的角终边一定相同.(二)弧度制1.弧度制的定义:lRα=2.角度与弧度的换算公式:180π︒= 3602π︒= 10.01745︒= 157.305718'=︒=︒注意: (1)正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;(2)一个式子中不能角度、弧度混用.二. 任意角三角函数 (一)三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy=αtan ,余切y x =αcot2.三角函数的定义域(二)单位圆与三角函数线 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线;OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.(三)同角三角函数的基本关系式(1)sin csc 1,cos sec 1,tan cot 1αααααα⋅=⋅=⋅= (2)商数关系:ααααααcot sin cos ,tan cos sin == (3)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=(四)诱导公式(奇变偶不变,符号看象限)()()()()sin sin cos cos tan tan cot cot πααπααπααπαα+=-+=-+=+= ()()()()s i n 2s i n c o s 2c o s t a n 2t a n c o t 2c o t πααπααπααπαα-=--=-=--=-()()()()s i n s i n c o s c o s t a n t a n c o t c o tπααπααπααπαα-=-=--=--=-sin cos 2cos sin 2tan cot 2πααπααπαα⎛⎫+= ⎪⎝⎭⎛⎫+=- ⎪⎝⎭⎛⎫+=- ⎪⎝⎭ s i n c o s 2c o s s i n 2t a n c o t 2πααπααπαα⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭⎛⎫-= ⎪⎝⎭三. 三角函数的图象与性质(一)基本图象1.正弦函数2.余弦函数3.正切函数(二)函数图象的性质正弦、余弦、正切、余切函数的图象的性质四. 和角公式 两角和与差的公式βαβαβαsin sin cos cos )cos(-=+βαβαβαsinsin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+()s i n s i n c o sc o s s i nαβαβαβ-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五. 倍角公式和半角公式 (一)倍角与半角公式αααcos sin 22sin =2cos 12sin αα-±=ααααα2222sin211cos 2sin cos 2cos -=-=-= 2cos 12cos αα+±= ααα2tan 1tan 22tan -=s i n 1c o s t a n 21c o s s i n αααααα-==+(二)万能公式2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=六. 三角函数的积化和差与和差化积公式()()1s i n c o s s i n s i n 2αβαβαβ=++-⎡⎤⎣⎦ ()()1c o ss i n s i n s i n 2αβαβαβ=+--⎡⎤⎣⎦ ()()1c o s c o s c o s c o s 2αβαβαβ=++-⎡⎤⎣⎦ ()()1s i n s i n c o s c o s 2αβαβαβ=-+--⎡⎤⎣⎦ s i n s i n 2s i n c o s 22αβαβαβ+-+= 2c o s 2c o s 2c o s c o s βαβαβα-+=+s i n s i n 2c o s s i n 22αβαβαβ+--= co s c o s 2s i n s i n 22αβαβαβ+--=-sin15cos 754︒=︒=sin 75cos154︒=︒=tan15cot 752︒=︒=tan 75cot152︒=︒=+七. 辅助角公式(合一变形)()sin cos ,tan ,,22b a x b x x a ππϕϕϕ⎛⎫+=+=∈- ⎪⎝⎭一. 恒等变换 (一)基础题型1.(2015·福建)若5sin 13α=-,且α为第四象限角,则tan α=( ) A.125B.125- C.512D.512-2.已知α是第二象限的角,()4tan 23πα+=-,则tan α=________3.=________4.已知0θπ<<,1tan 47πθ⎛⎫+= ⎪⎝⎭,则sin cos θθ+=________5.方程()233102x ax a a +++=>两根tan ,tan αβ,且,,22ππαβ⎛⎫∈- ⎪⎝⎭,则αβ+=________6.已知()tan 4cos 2,22ππθπθθ⎛⎫-=-< ⎪⎝⎭,则tan2θ=( )A.C.(二)诱导公式1.已知奇函数()f x 在[]1,0-上为单调减函数,若,αβ为锐角三角形内角,则( )A.()()cos cos f f αβ>B.()()sin sin f f αβ>C.()()sin cos f f αβ<D.()()sin cos f f αβ>2.已知,,2παβπ⎛⎫∈ ⎪⎝⎭且cos sin 0αβ+>,则下列各式中成立的是( )A.αβπ+<B.32παβ+>C.32παβ+=D.32παβ+<(三)互余互补sin cos 2πθθ⎛⎫-= ⎪⎝⎭ c o s s i n 2πθθ⎛⎫-= ⎪⎝⎭ sin()sin πθθ-= c o s ()c o sπθθ-=-1.已知4cos 35πθ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭________;2cos 3πθ⎛⎫+=⎪⎝⎭2.(2016·广州检测)已知1cos 123πθ⎛⎫-= ⎪⎝⎭, 则5sin 12πθ⎛⎫+=⎪⎝⎭( )A.13 B.3C.13-D.3-3.(2017·合肥模拟)已知1cos cos ,,63432ππππααα⎛⎫⎛⎫⎛⎫+⋅-=-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求sin 2α的值; (2)求1tan tan αα-的值.(四)配凑角(已知条件会给θ范围)1.已知0,2πα⎛⎫∈ ⎪⎝⎭,若3cos 65πα⎛⎫+= ⎪⎝⎭,则sin 12πα⎛⎫-= ⎪⎝⎭2.设()21tan ,tan 544παββ⎛⎫+=-= ⎪⎝⎭,则tan 4πα⎛⎫+= ⎪⎝⎭( )A.138B.322C.1318D.13223.(2017·成都模拟)若()sin 2,sin 510αβα=-=且3,,,42ππαπβπ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,则αβ+=( ) A.74πB.94πC.54π或74πD.54π或94π4.若()111cos ,cos ,0,,,71422ππααβααβπ⎛⎫⎛⎫=+=-∈+∈ ⎪ ⎪⎝⎭⎝⎭,则β=( )A.3π- B.6πC.3πD.6π-5.若3335,,0,,cos ,sin 44445413πππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫∈∈-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()sin αβ+=________6.已知sin sin 3παα⎛⎫++= ⎪⎝⎭cos 3πα⎛⎫-= ⎪⎝⎭( )A.45-B.35-C.45D.35(五)升角(一倍角、二倍角转换) 解题思路:2cos 212sin θθ=- 2c o s 22c o s 1θθ=-一) 升角+诱导公式1.(2016·宿州模拟)若1sin 43πα⎛⎫+= ⎪⎝⎭,则cos 22πα⎛⎫-= ⎪⎝⎭( )A.9B.9-C.79D.79-2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭=( )A.19-C. D.193.(2016·南昌三模)已知tan 24πα⎛⎫+= ⎪⎝⎭,则tan 2α=( )A.34B .35C.34-D.35-4.已知1sin 43x π⎛⎫+= ⎪⎝⎭,则sin 42cos3sin x x x -=( )A.79B.79-C.9D.9-二)升角+互余、互补1.已知1sin 33x π⎛⎫+= ⎪⎝⎭,则5sin cos 233x x ππ⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭________2.(2017·江西新余三校联考)已知7cos 238x π⎛⎫-=- ⎪⎝⎭,则sin 3x π⎛⎫+= ⎪⎝⎭( )A.14B.78C.14±D.78±三)升角+配凑1.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A.19-B.9C.9-D.192.已知33cos ,4522πππαα⎛⎫+=≤< ⎪⎝⎭,则cos 24πα⎛⎫+= ⎪⎝⎭________3.已知cos 0,4102ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭________ (六)平方一)sin cos c θθ+=解题思路:2(sin cos )1sin 2θθθ±=± 1.已知4sin cos 3αα-=,则sin 2α=________2.已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα+=,则cos α=________3.已知1sin cos 3αα+=,则2sin 4πα⎛⎫-= ⎪⎝⎭( )A.118B.1718C.89D.94.已知()1sin cos ,,05x x x π+=∈-.(1)求sin cos x x -的值;(2)求2sin 22sin 1tan x xx+-的值.5.已知4sin cos 034πθθθ⎛⎫+=<< ⎪⎝⎭,则sin cos θθ-=________6.若,2παπ⎛⎫∈ ⎪⎝⎭,且3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则sin 2α=( )A.118B.118-C.1718D.1718-7.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值为( )A.12-+B.12+ C.18.若,22sin sin =+βα则βαcos cos +的取值范围________二)sin cos a b c θθ+=1.已知2sin cos 2αα+=,则tan 2α=________2.(2016·厦门质检)若2sin 21cos2αα=-,则tan α=________3.(2016·开封模拟)已知12sin 5cos 13αα-=,则tan α=( )A.512- B.125-C.125±D.712±4.已知sin αα+=tan α=( )A.2C.2-D.(七)12tan tan sin 2θθθ+= (2016·青岛模拟)化简:211tan sin 22cos tan 2αααα⎛⎫+⋅-= ⎪⎝⎭________(八)齐次式 1.若tan 2α=,则2sin 3cos 4sin 9cos αααα-=-________;224sin 3sin cos 5cos αααα--=________2.(2015·广东)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2sin sin cos cos 21ααααα+--的值.3.(2016·天一大联考)已知函数()()log 24a f x x =-+(0a >且1a ≠),其图象过定点P ,角α的始边与x 轴的正半轴重合,顶点与坐标原点重合,终边过点P ,则sin 2cos sin cos αααα+=-________4.(广东省广州2017届高三下学期第一次模拟)已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则co s 2θ=( ) A.45B.35C.35-D.45-5.已知3tan 5α=-,则sin 2α=( )A.1517B.1517- C.817-D.8176.若sin 3sin 02παα⎛⎫++= ⎪⎝⎭,则cos2α=( )A.35-B.35C.45-D.45二. 三角函数图象的变换 (一)图象平移和伸缩1.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴的方程是( )A.12x π= B.6x π=C.3x π=D.12x π=-2.已知函数()()()sin cos 0,2f x x x πωϕωϕωϕ⎛⎫=+++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( )A.()f x 在0,2π⎛⎫⎪⎝⎭上单调递减B.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递减C.()f x 在0,2π⎛⎫⎪⎝⎭上单调递增D.()f x 在3,44ππ⎛⎫⎪⎝⎭上单调递增3.将函数()()cos f x x x x R =∈的图象向左平移()0αα>个单位长度后,所得到的图象关于原点对称,则α的最小值为( )A.12πB.6πC.3πD.56π4.已知函数()()()sin 2cos 0y x x πϕπϕϕπ=+-+<<的图象关于直线1x =对称,则sin 2ϕ=______5.(2014·辽宁卷)将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )A.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减B.在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增C.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减D.在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增6.(2017·渭南模拟)由()y f x =的图象向左平移3π个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,得到2sin 36y x π⎛⎫=- ⎪⎝⎭的图象,则()f x 的解析式为( )A.()32sin 26f x x π⎛⎫=+ ⎪⎝⎭B.()2sin 66f x x π⎛⎫=- ⎪⎝⎭C.()32sin 23f x x π⎛⎫=+ ⎪⎝⎭D.()2sin 63f x x π⎛⎫=+ ⎪⎝⎭7.(2014·安徽)若将函数()sin 2cos2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值为( ) A.8πB.4πC.38πD.5π48.(2016·广东汕头模拟)将函数()sin 6y x x R π⎛⎫=+∈ ⎪⎝⎭的图象上所有点的纵坐标不变,横坐标缩小到原来的12倍,再把图象上各点向左平移4π个单位长度,则所得的图象的解析式为( ) A.5sin 26y x π⎛⎫=+⎪⎝⎭B.1sin 26y x π⎛⎫=+ ⎪⎝⎭C.2sin 23y x π⎛⎫=+ ⎪⎝⎭D.15sin 212y x π⎛⎫=+ ⎪⎝⎭9.当4x π=时,函数()()()sin 0f x A x A ϕ=+>取得最小值,则函数34y f x π⎛⎫=-⎪⎝⎭是( ) A.奇函数且图象关于点,02π⎛⎫⎪⎝⎭对称B.偶函数且图象关于点(),0π对称C.奇函数且图象关于直线2x π=对称D.偶函数且图象关于点,02π⎛⎫⎪⎝⎭对称10.(2016·长沙四校联考)将函数()()sin 0,22f x x ωϕωϕ⎛⎫=+>-≤< ⎪⎝⎭图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度得到sin y x =的图象,则函数()f x 的单调递增区间为( ) A.52,2,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B.52,2,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦C.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D.5,,66k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦11.为了得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin 2y x =的图象( )A.向左平移56π个单位长度 B.向右平移56π个单位长度 C.向左平移512π个单位长度D.向右平移512π个单位长度12.(2013·新课标全国卷Ⅱ)函数()()cos 2y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ=________二)图象求解析式1.若函数()f x 具有以下两个性质:①()f x 是偶函数;②对任意实数x ,都有44f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()f x 的解析式可以是( ) A.()cos f x x =B.()cos 22f x x π⎛⎫=+ ⎪⎝⎭C.()sin 42f x x π⎛⎫=+ ⎪⎝⎭D.()cos6f x x =2.已知()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<在同一周期内当12x =时取最大值,当12x =时取最小值,与y 轴的交点为(,则()f x =____________3.已知函数)0,()sin()(πϕϕ<<∈+=R x x x f ,若点1,62π⎛⎫ ⎪⎝⎭在函数26y f x π⎛⎫=+ ⎪⎝⎭的图象上,则ϕ=_________4.已知函数()()2sin f x x ωϕ=+,对于任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则6f π⎛⎫= ⎪⎝⎭________5.(2017·安徽江南十校联考)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为4π,且对任意x R ∈,都有()3f x f π⎛⎫≤ ⎪⎝⎭成立,则()f x 图象的一个对称中心的坐标是( )A.2,03π⎛⎫- ⎪⎝⎭ B.,03π⎛⎫- ⎪⎝⎭C.2,03π⎛⎫⎪⎝⎭D.5,03π⎛⎫⎪⎝⎭6.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图象的对称中心完全相同,若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围________7.(2015·湖南)将函数()sin 2f x x =的图象向右平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( ) A.512πB.3πC.4πD.6π8.(2016·安徽芜湖一模)函数()()sin ,0,2f x x x R ωϕωϕ⎛⎫=+∈>< ⎪⎝⎭的部分图象如图所示,若122,,63x x ππ⎛⎫∈ ⎪⎝⎭,且()()12f x f x =,则()12f x x +=( )A.2-B.12-C.12D.29.(2017·石家庄模拟)函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则1124f π⎛⎫= ⎪⎝⎭( )A.2- B.2-C.2-D.1-10.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则ϕ=( )A.6π- B .6πC.3π-D.3π11.已知函数()()sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则6y f x ⎛⎫=+ ⎪⎝⎭取得最小值时x 的集合为________12.已知函数()()cos f x A x ωϕ=+的图象如图所示,223f π⎛⎫=- ⎪⎝⎭,则6f π⎛⎫-= ⎪⎝⎭( ) A.23-B.12-C.23D.1213.(2016·泉州质检)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若tan 3α=,则8f πα⎛⎫+= ⎪⎝⎭( )A.35-B.45-C. D.三.特殊三角函数最值1.当06x π<≤时,函数()22cos cos sin sin xf x x x x=-的最小值为________2.求函数()2cos ,0,sin xy x xπ-=∈的最小值.3.(2016·全国Ⅱ)函数()cos 26cos 2f x x x π⎛⎫=+- ⎪⎝⎭的最大值为( )A.4B.5C.6D.74.函数273sin 2cos ,,66y x x x ππ⎡⎤=--∈⎢⎥⎣⎦的值域为________5.求函数2sin 12sin 1x y x +=-的值域.6.求函数sin 2cos xy x=-的最小值.7.求函数2cos y x=+的值域.8.若0,2πα⎛⎫∈ ⎪⎝⎭,则2214s in c o s αα+的最小值为________9.求函数()()1sin 3sin 2sin x x y x++=+的最值及对应的x 的集合.四.参数相关1.已知0ω>,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上是减函数,则ω的取值范围________2.(2016·全国乙卷)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A.11B.9C.7D.53.已知函数()()2sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭在区间,126ππ⎛⎤- ⎥⎝⎦则ϕ的取值范围( )A.0,3π⎡⎤⎢⎥⎣⎦B.,36ππ⎡⎤-⎢⎥⎣⎦C.,04π⎡⎫-⎪⎢⎣⎭D.,03π⎡⎤-⎢⎥⎣⎦4.若函数()()s i n 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=________5.已知0ω>, ()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围( )A.15,24⎡⎤⎢⎥⎣⎦B.13,24⎡⎤⎢⎥⎣⎦C.10,2⎛⎫⎪⎝⎭D.(]0,26.若已知0ω>,函数()cos 4f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递增,则ω的取值范围________7.已知()()sin 0,363f x x f f πππωω⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且()f x 在区间错误!未找到引用源。
2022届新高考高三数学一轮复习考点讲义第7讲:三角函数【含答案】

三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
角的概念的推广与任意角的三角函数随堂练习(含答案)

角的概念的推广与任意角的三角函数基础巩固强化1.(文)(2011·绵阳二诊)已知角A 同时满足sin A >0且tan A <0,则角A 的终边一定落在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B[解析] 由sin A >0且tan A <0可知,cos A <0,所以角A 的终边一定落在第二象限.选B.(理)(2012·广西田阳高中月考)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三角限角D .第四象限角 [答案] C[解析] 根据各象限内三角函数值的符号进行判断即可. 由sin αtan α<0可知sin α,tan α异号,从而α为第二或第三象限角. 由cos αtan α<0可知cos α,tan α异号,从而α为第三或第四象限角. 综上可知,α为第三象限角.2.(文)(2011·杭州模拟)已知角α终边上一点P ⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π[答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12, ∴角α为第四象限角, ∴α=2π-π6=11π6,故选B.(理)已知锐角α终边上一点P 的坐标是(4sin3,-4cos3),则α等于( )A .3B .-3C .3-π2 D.π2-3[答案] C[解析] ∵π2<3<π,∴cos3<0,∴点P 位于第一象限, ∴tan α=-cos3sin3=sin (3-π2)cos (3-π2)=tan ⎝⎛⎭⎪⎫3-π2, ∵3-π2∈⎝ ⎛⎭⎪⎫0,π2,∴α=3-π2. 3.若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( )A .5B .2C .3D .4 [答案] B[解析] 设扇形的半径为R ,圆心角为α,则有2R +Rα=12R 2α,即2+α=12Rα整理得R =2+4α,由于4α≠0,∴R ≠2.4.已知点P (-3,4)在角α的终边上,则sin α+cos α3sin α+2cos α的值为( )A .-16 B.16 C.718 D .-1[答案] B[解析] 由条件知tan α=-43, ∴sin α+cos α3sin α+2cos α=tan α+13tan α+2=16. 5.(文)设0≤θ<2π,如果sin θ>0且cos2θ>0,则θ的取值范围是( )A .0<θ<3π4 B .0<θ<π4或3π4<θ<π C.3π4<θ<π D.3π4<θ<5π4 [答案] B[解析] ∵0≤θ<2π,且sin θ>0,∴0<θ<π. 又由cos2θ>0得,2k π-π2<2θ<2k π+π2, 即k π-π4<θ<k π+π4(k ∈Z ).∵0<θ<π, ∴θ的取值范围是0<θ<π4或3π4<θ<π.(理)(2011·海口模拟)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( )A .(π4,π2)B .(π,5π4)C .(3π4,5π4)D .(π4,π2)∪(π,5π4)[答案] D[解析] ∵P 点在第一象限,∴⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,如图,使sin α>cos α的角α终边在直线y =x 上方,使tan α>0的角α终边位于第一、三象限,又0≤α≤2π,∴π4<α<π2或π<α<5π4.6.(文)(2011·新课标全国理)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45[答案] B[解析] 依题意:tan θ=±2,∴cos θ=±15,∴cos2θ=2cos 2θ-1=25-1=-35或cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,故选B.(理)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22 C .-1 D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2011·太原调研)已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m >0)是角α终边上一点,则2sin α+cos α=________.[答案] 25[解析] 由条件知x =-4m ,y =3m ,r =x 2+y 2=5|m |=5m ,∴sin α=y r =35,cos α=x r =-45,∴2sin α+cos α=25.8.(2011·江西文)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上的一点,且sin θ=-255,则y =________.[答案] -8[解析] |OP |=42+y 2,根据任意角三角函数的定义得,y42+y2=-255,解得y =±8,又∵sin θ=-255<0及P (4,y )是角θ终边上一点, 可知θ为第四象限角,∴y =-8.9.(文)(2012·南昌调研)已知sin(α+π12)=13,则cos(α+7π12)的值为________.[答案] -13[解析] cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13. (理)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A cos α,35,则cos α-sin α=________.[答案] -75[解析] 由条件知,sin α=35, ∴cos α=-45,∴cos α-sin α=-75. 10.(2011·广州模拟)A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限.C 是圆O 与x 轴正半轴的交点,△AOB 为正三角形.记∠AOC =α.(1)若A 点的坐标为⎝ ⎛⎭⎪⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值;(2)求|BC |2的取值范围.[解析] (1)∵A 点的坐标为⎝ ⎛⎭⎪⎫35,45,∴tan α=43,∴sin 2α+sin2αcos 2α+cos2α=sin 2α+2sin αcos α2cos 2α-sin 2α=sin 2αcos 2α+2×sin αcos α2-sin 2αcos 2α=tan 2α+2tan α2-tan 2α=169+832-169=20. (2)设A 点的坐标为(cos α,sin α), ∵△AOB 为正三角形,∴B 点的坐标为(cos(α+π3),sin(α+π3)),且C (1,0), ∴|BC |2=[cos(α+π3)-1]2+sin 2(α+π3)=2-2cos(α+π3).而A 、B 分别在第一、二象限, ∴α∈(π6,π2). ∴α+π3∈(π2,5π6), ∴cos(α+π3)∈(-32,0). ∴|BC |2的取值范围是(2,2+3).能力拓展提升11.(文)设α是第二象限角,且|sin α2|=-sin α2,则α2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵α是第二象限角,∴α2是第一、三象限角, 又∵sin α2≤0,∴α2是第三象限角,故选C.(理)若α是第三象限角,则y =|sin α2|sin α2+|cos α2|cos α2的值为( )A .0B .2C .-2D .2或-2 [答案] A[解析] ∵α为第三象限角,∴α2为第二、四象限角 当α2为第二象限角时,y =1-1=0,当α2为第四象限角时,y =-1+1=0.12.(文)若θ∈⎝ ⎛⎭⎪⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B [解析]解法1:如图,由单位圆中三角函数线可知,当θ∈⎝⎛⎭⎪⎫3π4,5π4时,sin θ+cos θ<0,sin θ-cos θ>0.∴复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应点在第二象限.解法2:∵cos θ+sin θ =2sin ⎝ ⎛⎭⎪⎫θ+π4,sin θ-cos θ=2sin ⎝ ⎛⎭⎪⎫θ-π4,又∵θ∈⎝ ⎛⎭⎪⎫3π4,5π4.∴π<θ+π4<3π2,∴sin ⎝ ⎛⎭⎪⎫θ+π4<0. ∵π2<θ-π4<π,∴sin ⎝ ⎛⎭⎪⎫θ-π4>0, ∴当θ∈⎝ ⎛⎭⎪⎫3π4,5π4时,cos θ+sin θ<0,sin θ-cos θ>0.故选B.(理)(2011·绵阳二诊)记a =sin(cos2010°),b =sin(sin2010°),c =cos(sin2010°),d =cos(cos2010°),则a 、b 、c 、d 中最大的是( )A .aB .bC .cD .d [答案] C[解析] 注意到2010°=360°×5+180°+30°,因此sin2010°=-sin30°=-12,cos2010°=-cos30°=-32,-π2<-32<0,-π2<-12<0,0<12<32<π2,cos 12>cos 32>0,a =sin(-32)=-sin 32<0,b =sin(-12)=-sin 12<0,c =cos(-12)=cos 12>0,d =cos(-32)=cos 32>0,∴c >d ,因此选C.[点评] 本题“麻雀虽小,五脏俱全”考查了终边相同的角、诱导公式、正余弦函数的单调性等,应加强这种难度不大,对基础知识要求掌握熟练的小综合训练.13.已知角θ的终边上有一点M (3,m ),且sin θ+cos θ=-15,则m 的值为________.[答案] -4[解析] r =32+m 2=m 2+9, 依题意sin θ=m m 2+9,cos θ=3m 2+9,∴m m 2+9+3m 2+9=-15.即m +3m 2+9=-15,解得m =-4或m =-94,经检验知m =-94不合题意,舍去. 故m =-4.14.(文)已知下列四个命题(1)若点P (a,2a )(a ≠0)为角α终边上一点,则sin α=255; (2)若α>β且α、β都是第一象限角,则tan α>tan β; (3)若θ是第二象限角,则sin θ2cos θ2>0; (4)若sin x +cos x =-75,则tan x <0. 其中正确命题的序号为________. [答案] (3)[解析] (1)取a =1,则r =5,sin α=25=255; 再取a =-1,r =5,sin α=-25=-255,故(1)错误.(2)取α=2π+π6,β=π3,可知tan α=tan π6=33,tan β=3,故tan α>tan β不成立,(2)错误.(3)∵θ是第二象限角,∴sin θ2cos θ2=12sin θ>0,∴(3)正确. (4)由sin x +cos x =-75<-1可知x 为第三象限角,故tan x >0,(4)不正确.(理)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝ ⎛⎭⎪⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45,∴sin(α+β)=sin αcos β+cos αsin β=-45. [点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝ ⎛⎭⎪⎫π2+β=cos β=-45. 15.在平面直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫12,cos 2θ在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12.(1)求cos2θ的值; (2)求sin(α+β)的值.[解析] (1)因为OP →·OQ →=-12, 所以12sin 2θ-cos 2θ=-12,即12(1-cos 2θ)-cos 2θ=-12,所以cos 2θ=23, 所以cos2θ=2cos 2θ-1=13.(2)因为cos 2θ=23,所以sin 2θ=13,所以点P ⎝ ⎛⎭⎪⎫12,23,点Q ⎝ ⎛⎭⎪⎫13,-1,又点P ⎝⎛⎭⎪⎫12,23在角α的终边上,所以sin α=45,cos α=35.同理sin β=-31010,cos β=1010, 所以sin(α+β)=sin αcos β+cos αsin β =45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 16.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积.[解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π, ∴圆锥的高h =52-⎝ ⎛⎭⎪⎫5π2=5π2-1π, V =13πR 2h =π3×⎝ ⎛⎭⎪⎫5π2·5π2-1π=125π2-12.1.(2011·深圳一调、山东济宁一模)已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4[答案] D[解析] 由sin 3π4>0,cos 3π4<0知角θ是第四象限的角,∵tan θ=cos 3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4. 2.一段圆弧的长度等于其圆内接正三角形的边长,则其所对圆心角的弧度数为( )A.π3B.2π3C. 3D. 2 [答案] C[解析] 设圆的半径为R ,由题意可知:圆内接正三角形的边长为3R ,∴圆弧长为3R .∴该圆弧所对圆心角的弧度数为3RR = 3.3.设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>tan45°=1>cos25°=sin65°>sin25°>0,y =log 12x 为减函数,∴a <c <b .4.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340 [答案] C[解析] ∵f (n )=2sin ⎝ ⎛⎭⎪⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝ ⎛⎭⎪⎫2cos π3+1+⎝ ⎛⎭⎪⎫2cos 2π3+1+⎝ ⎛⎭⎪⎫2cos 3π3+1+…+⎝ ⎛⎭⎪⎫2cos 2010π3+1 =2⎝ ⎛⎭⎪⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.5.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.[解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x .∵x ≠0,∴x =±10,∴r =2 3. 当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同理可求得sin α+1tan α=65-66.。
高考数学任意角弧度制及任意角的三角函数考点习题及答案

高考数学任意角弧度制及任意角的三角函数考点习题及答案高考数学任意角弧度制及任意角的三角函数考点习题1.若=k180+45(kZ),则角在()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限2.(2014福建厦门适应性考试)“=30”是“sin =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为()A. B. C. D.4.已知点P(tan ,cos )在第二象限,则角的终边所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.(2014浙江杭州模拟)已知角的终边经过点(3a-9,a+2),且cos 0,sin 0,则实数a的取值范围是()A.(-2,3]B.(-2,3)C.[-2,3)D.[-2,3]6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④若sin =sin ,则与的终边相同;⑤若cos 0,则是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.47.若三角形的两个内角,满足sin cos 0,则此三角形为.8.函数y=的定义域为.9.已知角的终边在直线y=-3x上,求10sin +的值.10.(1)已知扇形周长为10,面积是4,求扇形的圆心角;(2)一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.11.已知角=2k-(kZ),若角与角的终边相同,则y=的值为()A.1B.-1C.3D.-3高考数学任意角弧度制及任意角的三角函数考点习题参考答案1.A解析:当k=2m+1(mZ)时,=2m180+225=m360+225,此时角为第三象限角;当k=2m(mZ)时,=m360+45,此时角为第一象限角.2.A解析:由=30可得sin =,由sin =可得=k360+30或k360+150,kZ,所以“=30”是“sin =”的充分不必要条件,故选A.3.C解析:设圆的半径为R,由题意可知,圆内接正三角形的边长为R,则圆弧长为R.故该圆弧所对圆心角的弧度数为.4.D解析:由题意,得tan 0,且cos 0,则角的终边在第四象限.5.A解析:由cos 0,sin 0可知,角的终边落在第二象限或y轴的正半轴上,所以有解得-20,cos 0,角为钝角.故三角形为钝角三角形.8.(kZ)解析:2cos x-10,cos x.由三角函数线画出x满足条件的终边的范围(如图阴影所示).则x(kZ).9.解:设角终边上任一点为P(k,-3k)(k0),则r=|k|.当k0时,r=k,则sin ==-,,因此,10sin +=-3+3=0.当k0时,r=-k,则sin =,=-,因此,10sin +=3-3=0.综上,10sin +=0.10.解:(1)设圆心角是,半径是r,则解得(舍去).因此,扇形的圆心角为.(2)设圆的半径为r cm,弧长为l cm,则解得则圆心角==2.如图,过O作OHAB于点H,则AOH=1.因为AH=1sin 1=sin 1(cm),所以AB=2sin 1(cm).11.B解析:由=2k-(kZ)及终边相同角的概念知,角的终边在第四象限,又角与角的终边相同,所以角是第四象限角,所以sin 0,cos 0,tan 0.因此,y=-1+1-1=-1,故选B.猜你感兴趣:1.高中数学任意角和弧度制复习要点2.高中数学《任意角的三角函数》知识点3.高二数学必修4任意角和弧度制知识点4.高中数学必修4任意角的三角函数测试题及答案。
《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。
(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。
集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。
(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。
②角的集合表示形式是不唯一的。
要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。
要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。
区域角是无数个区间角的集合。
注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。
考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。
(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学高考总复习角的概念的推广及任意角的三角函数习题及详解一、选择题1.(2010·广州检测)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] C[解析] ∵sin α<0,∴α为第三、四象限角或终边落在y 轴负半轴上, ∵tan α>0,∴α为第一、三象限角, ∴α为第三象限角.2.(2010·安徽省168中学联考)已知集合A ={(x ,y )|y =sin x },集合B ={(x ,y )|y =tan x },则A ∩B =( )A .{(0,0)}B .{(π,0),(0,0)}C .{(x ,y )|x =k π,y =0,k ∈Z }D .∅ [答案] C[解析] 函数y =sin x 与y =tan x 图象的交点坐标为(k π,0),k ∈Z .3.(2010·河北正定中学模拟)已知角α终边上一点P ⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.56π B.116π C.23πD.53π [答案] B[解析] 由条件知,cos α=sin 2π3=sin π3=32, sin α=cos 2π3=-cos π3=-12,∴角α为第四象限角,∴α=2π-π6=11π6,故选B.4.(2010·山东师大附中模拟)cos ⎝⎛⎭⎫-523π=( ) A .-12B .-32C.12D.32[答案] A[解析] cos ⎝⎛⎭⎫-52π3=cos 52π3=cos ⎝⎛⎭⎫17π+π3 =-cos π3=-12.5.(2010·河南新乡市模拟)已知角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ) A.35 B .-35C.45D .-45[答案] B[解析] ∵a <0,∴r =(-4a )2+(3a )2=-5a , ∴sin α=3a r =-35,故选B.6.(2010·广东佛山顺德区质检)函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b2=( )A .0 B.22C .-1D .1[答案] D[解析] 由条件知,a =-π2+2k π (k ∈Z ),b =π2+2k π,∴cos a +b 2=cos2k π=1.7.(2010·青岛市质检)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( ) A .-12B .-32C.12D.32[答案] A[解析] 由条件知,π=a 1+a 5+a 9=3a 5,∴a 5=π3,∴cos(a 2+a 8)=cos2a 5=cos 2π3=-cos π3=-12,故选A.8.(2010·衡水市高考模拟)设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] ∵tan70°>cos25°>sin25°>0,log 12x 为减函数,∴a <c <b .9.(2010·北京西城区抽检)设0<|α|<π4,则下列不等式中一定成立的是( )A .sin2α>sin αB .cos2α<cos αC .tan2α>tan αD .cot2α<cot α[答案] B[解析] 当-π4<α<0时,A 、C 、D 不成立.如α=-π6,则2α=-π3,sin2α=-32,sin α=-12,-32<-12,tan2α=-3,tan α=-33,cot2α=-33,cot α=-3,而-3<-33,此时,cot2α>cot α.10.如图所示的程序框图,运行后输出结果为( )A .1B .2680C .2010D .1340[答案] C[解析] ∵f (n )=2sin ⎝⎛⎭⎫n π3+π2+1=2cos n π3+1.由S =S +f (n )及n =n +1知此程序框图是计算数列a n =2cos n π3+1的前2010项的和.即S =⎝⎛⎭⎫2cos π3+1+⎝⎛⎭⎫2cos 2π3+1+⎝⎛⎭⎫2cos 3π3+1+…+⎝⎛⎭⎫2cos 2010π3+1 =2⎝⎛⎭⎫cos π3+cos 2π3+cos 3π3+…+cos 2010π3+2010=2×335×cos π3+cos 2π3+cos 3π3+cos 4π3+cos 5π3+cos 6π3+2010=2010.二、填空题11.(2010·南京调研)已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.[答案] 10[解析] 根据题意知tan α=-6x =-35,所以x =10.12.已知△ABC 是锐角三角形,则点P (cos B -sin A ,tan B -cot C ),在第________象限. [答案] 二[解析] ∵△ABC 为锐角三角形,∴0<A <π2,0<B <π2,0<C <π2,且A +B >π2,B +C >π2,∴π2>A >π2-B >0,π2>B >π2-C >0, ∵y =sin x 与y =tan x 在⎝⎛⎭⎫0,π2上都是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B ,tan B >tan ⎝⎛⎭⎫π2-C , ∴sin A >cos B ,tan B >cot C ,∴P 在第二象限.13.在(0,2π)内使sin x >cos x 成立的x 的取值范围是______. [答案] (π4,5π4)[解析] 由三角函数定义结合三角函数线知,在(0,2π)内,使sin x >cos x 成立的x 的取值范围为(π4,5π4).[点评] 要熟知单位圆中的三角函数线在三角函数值的大小中的应用.14.(文)(2010·上海嘉定区模拟)如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点A ⎝⎛⎭⎫cos α,35,则cos α-sin α=________. [答案] -75[解析] 由条件知,sin α=35,∴cos α=-45,∴cos α-sin α=-75.(理)(2010·北京延庆县模拟)直线y =2x +1和圆x 2+y 2=1交于A ,B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则sin(α+β)=________.[答案] -45[解析] 将y =2x +1代入x 2+y 2=1中得,5x 2+4x =0,∴x =0或-45,∴A (0,1),B ⎝⎛⎫-45,-35,故sin α=1,cos α=0,sin β=-35,cos β=-45, ∴sin(α+β)=sin αcos β+cos αsin β=-45.[点评] 也可以由A (0,1)知α=π2,∴sin(α+β)=sin ⎝⎛⎭⎫π2+β=cos β=-45. 三、解答题15.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. [解析] ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2), 由三角函数的定义,有sin α=-66,1tan α=-5, ∴sin α+1tan α=-66-5=-65+66;当x =-10时,同理可求得sin α+1tan α=65-66.16.(文)已知sin θ、cos θ是方程x 2-(3-1)x +m =0的两根. (1)求m 的值; (2)求sin θ1-cot θ+cos θ1-tan θ的值.[解析] (1)由韦达定理可得⎩⎨⎧sin θ+cos θ=3-1 ①sin θ·cos θ=m ② 由①得1+2sin θ·cos θ=4-2 3.将②代入得m =32-3,满足Δ=(3-1)2-4m ≥0,故所求m 的值为32- 3.(2)先化简:sin θ1-cot θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=cos 2θ-sin 2θcos θ-sin θ=cos θ+sin θ =3-1.(理)已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,且θ∈(0,2π), (1)求sin θ1-cot θ+cos θ1-tan θ的值;(2)求m 的值;(3)求方程的两根及此时θ的值. [解析] (1)由韦达定理可知⎩⎨⎧sin θ+cos θ=3+12①sin θ·cos θ=m 2②而sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin θ+cos θ=3+12; (2)由①两边平方得1+2sin θcos θ=2+32,将②代入得m =32; (3)当m =32时,原方程变为 2x 2-(1+3)x +32=0,解得x 1=32,x 2=12, ∴⎩⎨⎧sin θ=32cos θ=12或⎩⎨⎧sin θ=12cos θ=32又∵θ∈(0,2π),∴θ=π6或π3.17.周长为20cm 的扇形面积最大时,用该扇形卷成圆锥的侧面,求此圆锥的体积. [解析] 设扇形半径为r ,弧长为l ,则l +2r =20, ∴l =20-2r ,S =12rl =12(20-2r )·r =(10-r )·r , ∴当r =5时,S 取最大值.此时l =10,设卷成圆锥的底半径为R ,则2πR =10, ∴R =5π,∴圆锥的高h =52-⎝⎛⎭⎫5π2=5π2-1π,V =13πR 2h =π3×⎝⎛⎭⎫5π2·5π2-1π=125π2-13π2.。