AWG美标电线规格

合集下载

美制电线标准AWG与公制、英制单位对照及UL 线材基本介绍

美制电线标准AWG与公制、英制单位对照及UL 线材基本介绍

美制电线标准AWG与公制、英制单位对照及UL 线材基本介绍在以太网和xDSL接入网设计中,经常会碰到诸如24AWG、26AWG等等表示电缆直径的方法。

其实AWG(American Wire Gauge)是美制电线标准的简称,AWG值是导线厚度(以英寸计)的函数。

下表是AWG 与公制、英制单位的对照表。

其中,4/0表示0000,3/0表示000,2/0表示00,1/0表示0。

例如,常用的电话线直径为26AWG,约为0.4mm。

AWG外径截面积(mm2)电阻值(Ω/km)AWG外径截面积(mm2)电阻值(Ω/km)公制mm英制inch公制mm英制inch4/011.680.46107.220.17220.6430.02530.324754.3 3/010.400.409685.010.21230.5740.02260.258848.5 2/09.270.364867.430.26240.5110.02010.204789.4 1/08.250.324953.490.33250.440.01790.162479.6 17.350.289342.410.42260.4040.01590.12811432 6.540.257633.620.53270.3610.01420.10211283 5.830.229426.670.66280.320.01260.08042274 5.190.204321.150.84290.2870.01130.06472895 4.620.181916.77 1.06300.2540.01000.05073616 4.110.162013.30 1.33310.2260.00890.04013217 3.670.144310.55 1.68320.2030.00800.03165838 3.260.12858.37 2.11330.180.00710.02559449 2.910.1144 6.63 2.67340.160.00630.020195610 2.590.1019 5.26 3.36350.1420.00560.01691,20011 2.300.0907 4.17 4.24360.1270.00500.01271,53012 2.050.0808 3.332 5.31370.1140.00450.00981,37713 1.820.0720 2.627 6.69380.1020.00400.00812,40014 1.630.0641 2.0758.45390.0890.00350.00622,10015 1.450.0571 1.64610.6400.0790.00310.00494,08016 1.290.0508 1.31813.5410.0710.00280.00403,68517 1.150.0453 1.02616.3420.0640.00250.00326,30018 1.020.04030.810721.4430.0560.00220.00255,544 190.9120.03590.566726.9440.0510.00200.002010,200 200.8130.03200.518933.9450.0460.00180.00169,180 210.7240.02850.411642.7460.0410.00160.001316,300由表中归纳出的AWG与英寸的关系如下:AWG = A lg inch - B其中,A=-19.93156857,B=9.73724。

awg导线标准

awg导线标准

awg导线标准
AWG导线标准是美国导线规格的一种表示方式,全称为American Wire Gauge (AWG)。

AWG标准是用于测量电线导体直径的一种系统。

较大的AWG编号表示较小的直径和较高的导线容量,较小的AWG编号则表示较大的直径和较低的导线容量。

以下是一些常见的AWG导线标准及其直径范围:
- 24 AWG:直径0.511 mm-0.573 mm,适合低电压和低电流应用,例如电子设备内部的细小电缆。

- 20 AWG:直径0.812 mm-0.912 mm,适合低电压和中低电流应用,例如低功率电子设备或音视频连接。

- 16 AWG:直径1.291 mm-1.450 mm,适合中低电压和中电流应用,例如家庭电气线路。

- 12 AWG:直径2.052 mm-2.305 mm,适合低电压和高电流应用,例如电动工具或电动车辆电缆。

需要注意的是,不同国家和地区可能也有其他导线标准,如国际电工委员会(IEC)和中国国家标准(GB)。

因此,在选择导线时,需要根据实际需求和适用标准来确定最合适的尺寸。

AWG与平方数对照表

AWG与平方数对照表

AWG与平方数对照表在电气和电子工程领域,AWG(American Wire Gauge,美国线规)是一种用于表示导线直径的标准。

而平方数则是用来描述导线横截面积的常见方式。

了解 AWG 与平方数之间的对应关系对于正确选择和使用导线至关重要。

首先,我们来简单了解一下 AWG 标准。

AWG 数值越小,导线的直径越大,所能承载的电流也就越大。

例如,AWG 10 的导线比 AWG 20 的导线要粗,能够传输更多的电流。

| AWG 数值|直径(英寸)|直径(毫米)|横截面积(平方毫米)||||||| 0 | 03249 | 8252 | 5349 || 1 | 02893 | 7348 | 4241 || 2 | 02576 | 6544 | 3362 || 3 | 02294 | 5827 | 2667 || 4 | 02043 | 5189 | 2115 || 5 | 01819 | 4621 | 1677 || 6 | 01620 | 4115 | 1330 || 7 | 01443 | 3665 | 1055 || 8 | 01285 | 3264 | 8367 || 9 | 01144 | 2906 | 6630 || 10 | 01019 | 2588 | 5261 || 11 | 009074 | 2305 | 4172 || 12 | 008081 | 2053 | 3309 || 13 | 007196 | 1828 | 2625 || 14 | 006408 | 1628 | 2081 || 15 | 005707 | 1450 | 1646 || 16 | 005082 | 1291 | 1309 || 17 | 004526 | 1150 | 1038 || 18 | 004030 | 1024 | 08226 || 19 | 003589 | 0912 | 06527 || 20 | 003204 | 0812 | 05175 || 21 | 002846 | 0723 | 04107 || 22 | 002535 | 0644 | 03257 || 23 | 002257 | 0573 | 02581 || 24 | 002010 | 0511 | 02047 || 25 | 001790 | 0455 | 01624 || 26 | 001594 | 0404 | 01288 || 27 | 001420 | 0361 | 01021 || 28 | 001264 | 0321 | 008097 || 29 | 001126 | 0286 | 006428 || 30 | 001003 | 0255 | 005067 || 31 | 0008928 | 0227 | 004030 || 32 | 0007950 | 0201 | 003196 || 33 | 0007080 | 0180 | 002578 || 34 | 0006305 | 0160 | 002007 || 35 | 0005615 | 0142 | 001590 || 36 | 0005000 | 0127 | 001267 |从这个对照表中可以看出,AWG 数值的变化与导线直径和横截面积的变化并非线性关系。

AWG美标电线规格

AWG美标电线规格

AWG美标电线规格vw-1是电线的防火等级Ul,VW-1测试标准,实验规定试样保持垂直,用试验用的喷灯(火焰高度125mm,热功率500W)燃烧15秒钟,然后停止15秒钟,反复5次。

合格标准为:1、余火焰不可超过60秒钟2、试样不可烧损25%以上,3、垫在底部的外科用棉不可被落下物引燃。

例如:“CSA AWM I A 90 C 300 V FT1”表示AWM电子线,内部使用,不承担机械损坏,耐温90 C,额定电压:300 V,燃烧等级为FT-1。

工厂测试的要求2005-10-8 15:27在以太网和xDSL接入网设计中,经常会碰到诸如24AWG、26AWG等等表示电缆直径的方法。

事实上AWG(American Wire Gauge)是美制电线标准的简称,AWG值是导线厚度(以英寸计)的函数。

下表是AWG与公制、英制单位的对比表。

其中,4/0表示0000,3/0表示000,2/0表示00,AWG外径截面积(mm2)电阻值(Ω/km)AWG外径截面积(mm2)电阻值(Ω/km)公制mm 英制inch公制mm英制inch4/011.680.46107.220.17220.6430.02530.324754.3 3/010.400.409685.010.21230.5740.02260.258848.5 2/09.270.364867.430.26240.5110.02010.204789.4 1/08.250.324953.490.33250.440.01790.162479.6 17.350.289342.410.42260.4040.01590.12811432 6.540.257633.620.53270.3610.01420.10211283 5.830.229426.670.66280.320.01260.08042274 5.190.204321.150.84290.2870.01130.06472895 4.620.181916.77 1.06300.2540.01000.05073616 4.110.162013.30 1.33310.2260.00890.04013217 3.670.144310.55 1.68320.2030.00800.03165838 3.260.12858.37 2.11330.180.00710.02559449 2.910.1144 6.63 2.67340.160.00630.020195610 2.590.1019 5.26 3.36350.1420.00560.01691,20011 2.300.0907 4.17 4.24360.1270.00500.01271,53012 2.050.0808 3.332 5.31370.1140.00450.00981,37713 1.820.0720 2.627 6.69380.1020.00400.00812,40014 1.630.0641 2.0758.45390.0890.00350.00622,10015 1.450.0571 1.64610.6400.0790.00310.00494,08016 1.290.0508 1.31813.5410.0710.00280.00403,68517 1.150.0453 1.02616.3420.0640.00250.00326,30018 1.020.04030.810721.4430.0560.00220.00255,544190.9120.03590.566726.9440.0510.00200.002010,200200.8130.03200.518933.9450.0460.00180.00169,180210.7240.02850.411642.7460.0410.00160.001316,300由表中归纳出的AWG与英寸的关系如下:AWG = A lg inch - B其中,A=-19.93156857,B=9.73724。

美制线缆标准简称AWG的详尽解释

美制线缆标准简称AWG的详尽解释

Table 8 Maximum Cable Length (m) for Gauge of Wire and Speaker Impedance在以太网和xDSL接入网设计中,经常会碰到诸如24AWG、26AWG等等表示电缆直径的方法。

其实AWG(American Wire Gauge)是美制电线标准的简称,AWG值是导线厚度(以英寸计)的函数。

下表是AWG 与公制、英制单位的对照表。

其中,4/0表示0000,3/0表示000,2/0表示00,1/0表示0。

例如,常用的电话线直径为26AWG,约为0.4mm。

13 1.820.0720 2.627 6.69380.1020.00400.00812,40014 1.630.0641 2.0758.45390.0890.00350.00622,10015 1.450.0571 1.64610.6400.0790.00310.00494,08016 1.290.0508 1.31813.5410.0710.00280.00403,68517 1.150.0453 1.02616.3420.0640.00250.00326,30018 1.020.04030.810721.4430.0560.00220.00255,544 190.9120.03590.566726.9440.0510.00200.002010,200 200.8130.03200.518933.9450.0460.00180.00169,180 210.7240.02850.411642.7460.0410.00160.001316,300由表中归纳出的AWG与英寸的关系如下:AWG = A lg inch - B其中,A=-19.93156857,B=9.73724。

以下摘自<BASSBOX XOVER>的ONLINE HELP.The purpose of the crossover network is to divide the sound between the drivers in a multi-driver speaker. How well this is accomplished is not just a matter of good design. It also requires good execution. This topic contains advice to help with execution.GeneralLet抯begin with some general suggestions:Measure all componentsIt is best to measure the value of all components before using them in a crossover network. This is best accomplished with an impedance bridge and tone generator. Ideally, the components should be measured at the crossover frequency.Lower-order networks like 1st and 2nd-order networks can usually tolerate greater component variations than higher-order networks like 3rd and 4th-order networks. If you are unsure whether a component value is close enough to work, try substituting the measured value in your X昽ver Prodesign and plot the results. Use the graphs to evaluate the changes.Series components are the most criticalThe series components are the most important elements in a crossover network because the audio signal must pass through them before arriving at the driver. The parallel components serve as shunts to drain a portion of the audio signal away from the driver. There are ten series components in the three-way crossover network below (they are highlighted in pink).If you need to economize, it is best to do so with the parallel components and reserve the highest quality parts for the series components.ConnectionsTo make a good electrical connection between two or more components, begin by creating a strong mechanical connection. This can be as simple as carefully twisting their wire leads together. Take care not to put too much tension on each lead where it enters the component. A component with a broken lead is useless. Finally, solder the connections to create a long lasting, airtight connection. The wires should be heated enough to allow the solder to flow onto them but not so hot that a component is damaged.MountingUnless you have the resources to design and manufacture a printed circuit board (PCB) for the crossover network you will need to obtain some sort of flat and thin nonconductive material to serve as a circuit board for component mounting. Commonly used materials include hardboard and pegboard.Create a cut pattern for the circuit board by laying all the components on a piece of paper in their mounting position and drawing a rectangle around them. Use the pattern to cut the correct size piece from the circuit board material.When mounting the parts, it is important to not allow them to touch each other (except at the connections). This is especially true of inductors and resistors.The parts should be securely mounted to the circuit board so that they cannot vibrate. This can be accomplished by gluing them to the circuit board with a nonconductive adhesive. Commonly used adhesives include silicone rubber and epoxy glue.Most crossover networks are installed inside the speaker box. If this is done, it is important to keep the crossover network as far as possible away from the drivers. This is because the magnetic field of the drivers can interact with the crossover network and cause distortion. This problem is minimized when shielded drivers are used.Some designers recommend using brass screws to mount the circuit board. Unlike steel screws, brass screws will not interact with the magnetic fields of the crossover network components.CapacitorsGenerally speaking there are two kinds of capacitors used in crossover network construction: electrolytic and solid dielectric. Electrolytic capacitors must be the nonpolarized variety because audio signals have alternating current. Electrolytics are the most common and the cheapest capacitors. Unfortunately they are considered the least favorable because they tend to have more resistance (ESR)and inductance (both undesirable qualities in capacitors) and because they do not age well. Electrolytic capacitors usually have greater manufacturing variations, resulting in higher tolerance values. And their resistive and inductive attributes are usually worse at higher frequencies.Solid dielectric capacitors are usually considered much better choices because they have less resistance and inductance and are more stable as they age. However, they are also more expensive and are not usually available in the larger values. Examples of solid dielectric capacitors include polypropylene, polyester and Mylar.When large capacitance values are needed, high-voltage oil-filled (motor-run) capacitors are sometimes used.Use high quality capacitors in critical areasThe most important capacitors in a crossover network are the ones that are wired in series with the drivers. Whenever possible use higher quality capacitors for these locations. It is also a good idea to avoid the use of electrolytic capacitors for high-pass filters because they do not pass high frequency signals as well as solid dielectric capacitors. However there are solutions for this problem discussed below.The most forgiving location for cheap capacitors is in the low-pass filter where they are used at lower frequencies and are wired in parallel with the driver to serve as shunts.Improving capacitor performanceSome of the resistance and inductance problems of cheaper capacitors can be overcome with the addition of a high-quality bypass capacitor. These are usually small 0.1 to 2.0 礔Mylar capacitors that are paralleled with the cheaper capacitor. This can improve the high-frequency transient response considerably. Because the bypass capacitor is small it does not add much to the cost.Another way to improve the sound quality of cheaper capacitors is to parallel several smaller ones in place of a single larger one. For example, use three parallel 50 礔capacitors in place of a single 150 礔capacitor. By paralleling them, the capacitance adds, but the bad resistive and inductive qualities becomes smaller. The corollary to this is to avoid wiring two or more cheaper capacitors in series with each other because this increases their undesirable qualities.InductorsGenerally speaking there are two kinds of inductors used in crossover network construction: inductors with an air core and inductors with a metal core. Air core inductors are usually considered the best because they do not become saturated as quickly at higher power levels as comparable metal core inductors. This results in lower distortion and greater power handling for air core inductors. And, with a little patience, they can be made at home.Metal core inductors offer the advantage of higher inductance with lower resistance (DCR) compared to comparable air core inductors. This is because the metal core increases the amount of inductance per turn of wire, causing them to need fewer turns for a given inductance value. This also makes them smaller than air core inductors梐nother advantage.MountingInductors generate their own magnetic fields and they are susceptible to the effects of external magnetic fields. To minimize magnetic coupling between inductors, it is generally recommended thatthey be mounted at 90?angles to each other and that they be at least 3 inches (76 mm) apart. This is shown below:To minimize interference from external magnetic fields, they should not be located close to drivers, whose magnets can generate strong external magnetic fields (unless they are shielded).Keep resistance lowThe number one problem of inductors is excessive resistance. As a general rule, their DC resistance (DCR) should be no higher than 5% (1/20th) of the driver impedance (Z). This means that an inductor that is connected to an 8 ohm driver should have a DCR no higher than 0.4 ohms.To keep the DCR low, you can use a metal core inductor. However, if you can tolerate the larger size, a better solution might be to use an air core inductor that is made with a larger gauge of wire. The heavier the wire, the better. 16 gauge is a good starting point for low-pass inductors and 18 gauge is a good starting point for midrange drivers and tweeters.Note: The smaller the gauge number, the larger the wire and the smaller the resistance.Homemade inductorsIf you wind your own air core inductors, it is important to wind them tightly and to secure the windings so they cannot vibrate. Some claim that vibrating windings will create audible distortion. The windings can be secured with nylon wire ties or they can be dipped in either potting compound or a wire varnish.To reduce DCR when making your own inductor, use more than one strand of wire and parallel the ends. This has the same effect as using a single larger-gauge strand.ResistorsResistor quality usually has less effect on a crossover network than capacitor or inductor quality. One of the principal concerns of a resistor is that it have adequate power handling. This will be discussed in the next section.It is easy to find capacitors and inductors with more than enough power handling for most crossover networks. However, typical carbon resistors can only handle a few watts. Often wirewound resistors are selected because high-power versions are available. But care should be taken because wirewound resistors can sometimes have significant inductance.Finally, resistors should not be allowed to touch each other when they are mounted.Power HandlingThe most conservative approach to power handling is to use components in the crossover network that can handle the maximum continuous power that the amplifier is capable of delivering to the speaker. This should insure that no components will fail under heavy use with a continuous signal. However, if your crossover network design uses one or more resistors, this can force you to use some really huge and expensive resistors梕specially if you are designing a speaker that will be connected to a high-power professional amplifier. (Many professional amplifiers can output over 1000 watts per channel!)Many components can handle brief transient signals at high power levels as long as the average power level is much lower. Knowing the intended use of the speaker can help you determine what theaverage power level might be. With this in mind, many designers safely use components with much lower power handling limits.The power handling limit of capacitors is usually rated in volts rather than watts. The following equation can estimate the peak-to-peak voltage for a desired power level:Vpp = 2.828 x ( P x Z )?In this equation Vpp is the peak-to-peak voltage in volts, P = the power level in watts and Z = the load impedance on the amplifier at the specified power level in ohms. For example, 100 watts into an 8 ohm load would produce 80 peak-to-peak volts.A very rough guideline employed by some designers is to use capacitors that can handle a minimum of50 V and resistors that can handle at least 50 W.Calculating the maximum power handling capability of an inductor is more difficult. It depends on the length and gauge of wire and the type of insulation on it. Generally, if 18 gauge wire is used for band-pass and high-pass inductors, there should be no problem with power handling. 16 gauge wire or larger should be adequate for most low-pass inductors.We strongly recommend that you test your crossover network under maximum power conditions to make sure that none of its components become too hot. Crossover networks have been known to ignite a fire if they cannot handle the power.Copyright 1992-2000 by Harris Technologies, Inc.。

AWG-标准线径对照表

AWG-标准线径对照表

AWG 标准线径对照表
线径的粗细是以号数(xxAWG)来表示的,数目越小表示线径愈粗,所能承载的电流就越大,反之则线径越细,耐电流量越小。

例如说:12号的耐电流量是20安培,最大承受功率是2200瓦,而18号线的耐电流量则是7安培,最大承受功率是770瓦。

为什么AWG号数越小直径反而越大?如这么解释你就会明白,固定的截面积下能塞相同的AWG线的数量,如11#AWG号数可塞11根而15#AWG号数可塞15根,自然的15#AWG的单位线径就较小。

美规线径值单一导体或群导体【各正值或负值】的线径值(Gauge)是以圆或平方厘米(mm2) 量测而得,平方厘米不常用在量测线径值,由于牵涉到不正确,因一般大部份的导体形体,包含长方形及其他怪异形状。

因此我们拿全部的量测以圆平方厘米(c/m)为参考值
群导体计算的方法或公式:
加上单一导体的线径值总和,并比较上表求得。

如果值落入两者之间,取比较少的值。

40股群导体线的线径值为,如每一芯为24 Guage = 40 x 405 c/m = 16,200 c/m = 9 AWG(得出值落入12960c/m和16440c/m之间)
快速求得线径值的方法:
两条(AWG)相加时,该单一线径值减3. ex. 2 x 18 AWG = (18-3=) 15 AWG
三条(AWG)相加时,该单一线径值减5. ex. 3 x 24 AWG = (24-5=) 19 AWG
四条(AWG)相加时,该单一线径值减6. ex. 4 x 10 AWG = (10-6=) 04 AWG 请记得“快速求得线径值的方法”一些案例也许边际会不正确,只采用此方式为大原则
AWG 标准线径规格对照表。

美标awg电线对应的电流

美标awg电线对应的电流

美标awg电线对应的电流在电力工程中,电线的选择是非常重要的。

电线的质量和规格会直接影响到电路的稳定性和安全性。

在美国,电线的规格是按照美国线规(American Wire Gauge,简称AWG)来制定的。

AWG规格是一种数字化的规格,数字越小,电线的直径越大。

在选择电线时,我们需要了解不同AWG规格对应的电流,以便选用合适的电线。

一、AWG规格与电线的直径AWG规格是一种数字化的规格,数字越小,电线的直径越大。

AWG 规格的编号范围是从0000到40,其中0000号电线直径最大,40号电线直径最小。

下表列出了常用的AWG规格和相应的电线直径。

| AWG规格 | 直径(英寸) | 直径(毫米) ||----|----|----|| 0000 | 0.46 | 11.684 || 000 | 0.4096 | 10.404 || 00 | 0.3648 | 9.266 || 0 | 0.3249 | 8.252 || 1 | 0.2893 | 7.348 || 2 | 0.2576 | 6.544 || 3 | 0.2294 | 5.827 || 4 | 0.2043 | 5.189 || 5 | 0.1819 | 4.621 || 6 | 0.162 | 4.115 || 8 | 0.1285 | 3.264 | | 9 | 0.1144 | 2.906 | | 10 | 0.1019 | 2.588 | | 11 | 0.0907 | 2.305 | | 12 | 0.0808 | 2.053 | | 13 | 0.072 | 1.828 | | 14 | 0.0641 | 1.628 | | 15 | 0.0571 | 1.45 | | 16 | 0.0508 | 1.291 | | 17 | 0.0453 | 1.15 | | 18 | 0.0403 | 1.024 | | 19 | 0.0359 | 0.912 | | 20 | 0.032 | 0.812 | | 21 | 0.0285 | 0.723 | | 22 | 0.0254 | 0.644 | | 23 | 0.0226 | 0.573 | | 24 | 0.0201 | 0.511 | | 25 | 0.0179 | 0.455 | | 26 | 0.0159 | 0.404 | | 27 | 0.0142 | 0.361 | | 28 | 0.0126 | 0.321 || 30 | 0.01 | 0.254 || 31 | 0.0089 | 0.226 || 32 | 0.008 | 0.203 || 33 | 0.0071 | 0.18 || 34 | 0.0063 | 0.16 || 35 | 0.0056 | 0.142 || 36 | 0.005 | 0.127 || 37 | 0.0045 | 0.114 || 38 | 0.004 | 0.102 || 39 | 0.0035 | 0.089 || 40 | 0.0031 | 0.079 |二、AWG规格与电流的关系不同AWG规格的电线所能承受的电流也是不同的。

AWG美国线规及标准

AWG美国线规及标准
38 0.0040 0.102 0.0060 0.152
39 0.0035 0.089 0.0052 0.132
40 0.0031 0.079 0.0048 0.122
SWG (British) Standard Wire Gage (英制线规)
20 0.0320 0.813 0.036 0.914
21 0.0285 0.724 0.032 0.813
22 0.0253 0.643 0.028 0.711
5 0.1819 4.62 0.212 5.38
6 0.1620 4.11 0.192 4.88
7 0.1443 3.67 0.176 4.47
29 0.0113 0.287 0.0136 0.345
30 0.0100 0.254 0.0124 0.315
31 0.0089 0.226 0.0118 0.295
26 0.0159 0.404 253.0 0.1288 1.145
上表的尺寸是一百多年前确定的,而随着技术发展,现在导线性能不断提高。对于导线,更重要的是它的性能,特别是以欧姆作为单位的阻抗。所以导线的世纪尺寸可以比规格实际稍大或者稍小一些(通常是稍小一些)。
44 0.0020 0.051 0.0032 0.081
45 0.0018 0.046 0.0028 0.0717
AWG American Wire Gage (美制线规)
17 0.0453 1.15 0.056 1.42
18 0.0403 1.02 0.048 1.22
19 0.0359 0.912 0.040 1.02
2 0.2576 6.54 0.276 7.01
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电线规格北美线材的线规与国内的表示方法不同,是以“AWG”为单位。

这里列出一些常用的线材线规对照表供参考:电线电缆的标志上会出现很多字符,各自都代表不同的意思。

在此列举一些常用的字符简介如下:电源线:SPT = Service Parallel Thermoplastic(服务性平行的热塑性塑料)HPN = Heater Parallel Neoprene(加热器平行的橡胶)S = Service 服务性 (SO, SOW, ST, STW) O - Oil 油性 W C Wet 湿 T CThermoplastic 热塑性塑料SJ = Service Junior 小型服务性(SJO, SJOW, SJT, SJTW) O - Oil 油性 W C Wet湿 T C Thermoplastic热塑性塑料SV = Service Vacuum Cleaner 吸尘器(SVT, SVO) O - Oil 油性 T C Thermoplastic热塑性塑料电子线:Class I 内部使用;Class II 外部使用Group A 不承受机械磨损;Group B 承受机械磨损W:潮态环境使用;O:防油;F:防燃料油FT1:垂直燃烧测试;FT2:水平燃烧测试;FT4:垂直燃烧测试(Cable in Cable tray);FT6:水平燃烧和烟熏测试。

vw-1是电线的防火等级Ul,VW-1测试标准,实验规定试样保持垂直,用试验用的喷灯(火焰高度125mm,热功率500W)燃烧15秒钟,然后停止15秒钟,反复5次。

合格标准为:1、余火焰不可超过60秒钟2、试样不可烧损25%以上,3、垫在底部的外科用棉不可被落下物引燃。

例如:“CSA AWM I A 90 C 300 V FT1”表示AWM电子线,内部使用,不承受机械损坏,耐温90 C,额定电压:300 V,燃烧等级为FT-1。

工厂测试的要求2005-10-8 15:27在以太网和xDSL接入网设计中,经常会碰到诸如24AWG、26AWG等等表示电缆直径的方法。

其实AWG(American Wire Gauge)是美制电线标准的简称,AWG值是导线厚度(以英寸计)的函数。

下表是AWG与公制、英制单位的对照表。

其中,4/0表示0000,3/0表示000,2/0表示00,1/0表示0。

例如,常用的电话线直径为26AWG,约为0.4mm。

AW G外径截面积(mm2)电阻值(/km)AWG外径截面积(mm2)电阻值(/km)公制mm英制inch公制mm英制inch4/011.680.46107.220.17220.6430.02530.324754.33/010.400.409685.010.21230.5740.02260.258848.52/09.270.364867.430.26240.5110.02010.204789.41/08.250.324953.490.33250.440.01790.162479.617.350.289342.410.42260.4040.01590.128114326.540.257633.620.53270.3610.01420.102112835.830.229426.670.66280.320.01260.08042274 5.10.221.0.8290.20.00.0289由表中归纳出的AWG与英寸的关系如下:AWG = A lg inch - B其中,A=-19.93156857,B=9.73724。

AWG14 ------ 2.0平方AWG12 ------ 3.5平方2.5平方---- AWG13 (实际上13号线换算过来是2.6平方)================================美国佬的线号AWG是按线的直径来编写的,和ISO的按线截面面积编写有所不同.但AWG显然并不是直接用线的直径来表示电线的数据,这个AWG是一个关于线的直径的函数如果一个电线的直径(当然是说的导体直径,和外面的绝缘层厚度无关)为A,那么它的AWG就是AWG = -19.93156857*log(A) - 9.73724有2点说明:(1)上式的log是以10为底的对数,结果取整即为对应的AWG号数。

(2)A的单位是英寸,而不是毫米。

比如一个2平方的导线,那它的直径就是1.596mm,也就是0.06284inch将这个0.06284带入上面的A处,得AWG=14.2156取整得,AWG=14============另外,1/0,2/0,3/0,4/0这几个AWG值是另规定的:1/0 -- 53.5 平方2/0 -- 67.5 平方3/0 -- 85.2 平方4/0 -- 107.3平方(3/0其实代表"三个0",就是"000"的意思,其他同样,为了避免写好多0,所以有了"3/0"这种写法) HPN产品信息产品说说明·额定电压:300V明:·额定温度:90℃/105℃·通过UL VW-1垂直及CSA水平型耐燃测试·祼软铜绞线·CPE或CSM材质绝缘·地线绝缘材质:乙丙膠EP、氯化聚乙烯CPE应用:电热器用线,广泛用于吹风机、电熨斗、烤面包机、电锅、电暧器、微波炉等家庭电器之平等电源线SJT.SJTO SJTW.SJTOW产品信息产品说明:说明:·导体:绞祼铜线·绝缘材质:PVC·包带:填充后包纸带·被覆:PVC特性:·额定温度:60℃或105℃·额定电压:300Volt·可通过UL VW-1及CSA FT2耐燃测试·可提供耐油性SJTO型电线·可提供户外用SJTW型电线·可通过-40℃低温测试及防水测试·可通过CSA低温测试应用:·适用于手动工具,洗衣机,震动机,灯具,洗碗机,医疗仪器或事务机器Type 型号Conductor导体InsulationThickness绝缘厚度BraidShield编机隔离JacketThickness被覆厚度OverallDiameter完成外径StandardLength标准长度线号线数/线径mm mm mm mm英尺公尺A WGNo./mmFt/coilM/coilSJT.SJT OSJTW.SJ TOW[unshiel ded].SJTOO W[unshiel ded]无遮蔽型18×2c41/0.1600.76-0.767.30±0.151000305 16×2c26/0.254-8.00±0.1514×2c41/0.254-8.70±0.1512×2c65/0.254- 1.149.90±0.1510×2c65/0.3201.14- 1.5213.70±0.2018×3c41/0.1600.76-0.767.80±0.1516×3c26/0.254-8.50±0.1514×3c41/0.254-9.30±0.1512×3c65/0.254- 1.1410.80±0.1510×3c105/0.2541.14- 1.5214.4±0.20SPT-1 SPT-2 SPT-3 UL20288产品信息产品编号:产品型号:UL/CSA SPT产品规格:技术指标:产品说明:说明:·导体:绞祼铜线·绝缘材质:PVC特征:·额定温度:60℃或105℃·额定电压:300Volt·可通过UL VW-1及CSA FT2耐燃测试应用:·SPT-1&SPT-2:适用于电视、收音机及一般电器设备·SPT-3:适用于高负载电器设备,尤其适用于冰箱及空调冷气.。

相关文档
最新文档