线性代数论文——矩阵中不可用的规律与结论

合集下载

线性代数的应用论文

线性代数的应用论文

论文:线性代数的应用与心得体会班级:姓名:学号:指导老师:完成时间:2014年10月20日目录摘要 (2)关键词 (2)一、线性代数被广泛运用的原因 (2)二、线性代数在实际中的应用 (2)1. 用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 (2)2. 希尔密码 (2)3.在人们平常日常生活的应用——减肥配方的实现 (3)4、在城市人们出行的应用——交通流的分析 (4)5、马尔可夫链 (5)6、在人口迁移的应用人口迁徙模型 (5)三、心得与体会 (7)摘要我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛;下面就是看一些具体实例应用,和一些心得体会;关键词线性代数;实际生活;应用实例;心得体会;;一、线性代数被广泛运用的原因为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系;例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动;而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程;再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组;原因之二,之后随着科学的发展,我们不仅要研究单个之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用;原因之三,在数学中线性代数与几何和代数有着不可分割的联系;线性代数所体现的观念与代数方法之间的联系,从具体概念变为出来的,对于强化人们的,增强科学性是非常有用的;二、线性代数在实际中的应用1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体2.希尔密码希尔密码Hill Password是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明;每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果模26;注意用作加密的矩阵即密匙在\mathbb_^n必须是可逆的,否则就不可能译码;只有矩阵的行列式和26互质,才是可逆的;例题、设明文为HPFRPAHTNECL,密钥矩阵为:3.在人们平常日常生活的应用——减肥配方的实现大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规律,为了身体的健康就需要注意日常饮食中的营养;大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养它们的质量以适当的单位计量;设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了80年代美国流行的剑桥大学医学院的简捷营养处方;现在的问题是:如果用这三种食物作为每天 营养 每100g 食物所含营养g减肥所要求的每日营养量脱脂牛奶 大豆面粉 乳清 蛋白质 36 51 13 33 碳水化合物 52 34 74 45 脂肪73123个单位100g,表中的三个营养成分列向量为:12136511352,34,74,07 1.1a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则它们的组合所具有的营养为11223312336511352347407 1.1x a x a x a x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦使这个合成的营养与剑桥配方的要求相等,就可以得到以下的矩阵方程:123365113335234744507 1.13x x Ax b x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦用MA TLAB 解这个问题非常方便,列出程序ag763如下: A=36,51,13;52,34,74;0,7, b=33;45;3 x=A\b程序执行的结果为:0.2772 0.3919 0.2332x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦即脱脂牛奶的用量为,大豆面粉的用量为,乳清的用量为,就能保证所需的综合营养量;4、在城市人们出行的应用——交通流的分析某城市有两组单行道,构成了一个包含四个节点A,B,C,D 的十字路口如图所示;在交通繁忙时段的汽车从外部进出此十字路口的流量每小时的车流数标于图上;现要求计算每两个节点之间路段上的交通流量x 1,x 2,x 3,x 4;解:在每个节点上,进入和离开的车数应该相等,这就决定了四个流通的方程: 节点A: x 1+450=x 2+610 节点B: x 2+520=x 3+480 节点C: x 3+390=x 4+600 节点D: x 4+640=x 2+310将这组方程进行整理,写成矩阵形式:12233414= 160 = - 40 - = 210= -330x x x x x x x x ---其系数增广矩阵为:11 160 11 - 40 [,]1121011 -330A b -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦ 用消元法求其行阶梯形式,或者直接调用U0=rrefA,b,可以得出其精简行阶梯形式为1 0 0 -1330 0 1 0 -1 170 U0= 0 0 1 -1 210 0 0 0 00⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦注意这个系数矩阵所代表的意义,它的左边四列从左至右依次为变量x 1,x 2,x 3,x 4的系数,第五列则是在等式右边的常数项;把第四列移到等式右边,可以按行列写恢复为方程,其结果为:x 1=x 4+330, x 2=x 4+170, x 3=x 4+210图3 单行线交通流图0=0由于最后一行变为全零,这个精简行阶梯形式只有三行有效,也就是说四个方程中有一个是相依的,实际上只有三个有效方程;方程数比未知数的数目少,即没有给出足够的信息来唯一地确定x1,x2,x3,和x4;其原因也不难从物理上想象,题目给出的只是进入和离开这个十字路区的流量,如果有些车沿着这四方的单行道绕圈,那是不会影响总的输入输出流量的,但可以全面增加四条路上的流量;所以x4被称为自由变量,实际上它的取值也不能完全自由,因为规定了这些路段都是单行道,x1,x2,x3,和x4;都不能取负值;所以要准确了解这里的交通流情况,还应该在x1,x2,x3,和x4中,再检测一个变量;5、马尔可夫链马尔可夫链Markov Chain,描述了一种状态序列,其每个状态值取决于前面有限个状态;马尔可夫链是具有马尔可夫性质的随机变量的一个数列;这些变量的范围,即它们所有可能取值的集合,被称为“状态空间”,而的值则是在时间n的状态;如果对于过去状态的条件概率分布仅是的一个函数,则这里x为过程中的某个状态;上面这个恒等式可以被看作是马尔可夫性质;例题、6、在人口迁移的应用人口迁徙模型设在一个大城市中的总人口是固定的;人口的分布则因居民在市区和郊区之间迁徙而变化;每年有6%的市区居民搬到郊区去住,而有2%的郊区居民搬到市区;假如开始时有30%的居民住在市区,70%的居民住在郊区,问十年后市区和郊区的居民人口比例是多少30年、50年后又如何这个问题可以用矩阵乘法来描述;把人口变量用市区和郊区两个分量表示,即,ck k sk x x x ⎡⎤=⎢⎥⎣⎦其中x c 为市区人口所占比例,x s 为郊区人口所占比例,k 表示年份的次序;在k=0的初始状态:0000.30.7c s x x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦;一年以后,市区人口为x c1= x c0+,郊区人口x s1= + x s0,用矩阵乘法来描述,可写成:11010.940.020.3 0.29600.060.980.7 0.7040c s x x Ax x ⎡⎤⎡⎤⎡⎤⎡⎤==⋅==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 此关系可以从初始时间到k 年,扩展为2120k k k k x Ax A x A x --====,用下列MATLAB 程序进行计算:A=,;, x0=; x1=Ax0, x10=A^10x0 x30=A^30x0 x50=A^50x0程序运行的结果为:1103050 0.2960 0.2717 0.2541 0.2508,,,, 0.7040 0.7283 0.7459 0.7492x x x x ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦无限增加时间k,市区和郊区人口之比将趋向一组常数 ;为了弄清为什么这个过程趋向于一个稳态值,我们改变一下坐标系统;在这个坐标系统中可以更清楚地看到乘以矩阵A 的效果;选u 1为稳态向量,T 的任意一个倍数,令u 1=1,3T 和u 2=-1,1T ;可以看到,用A 乘以这两个向量的结果不过是改变向量的长度,不影响其相角方向:110.940.02110.060.9833Au u ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦220.940.0210.920.920.060.9810.92Au u --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦初始向量x0可以写成这两个基向量u1和u2的线性组合;0120.30110.250.050.250.050.7031x u u -⎡⎤⎡⎤⎡⎤==⋅-⋅=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦因此0120.250.05(0.82)k k k x A x u u ==-式中的第二项会随着k 的增大趋向于零;如果只取小数点后两位,则只要k>27,这第二项就可以忽略不计而得到01270.250.250.75k kk x A x u >⎡⎤===⎢⎥⎣⎦适当选择基向量可以使矩阵乘法结果等价于一个简单的实数乘子,避免相角项出现,使得问题简单化;这也是方阵求特征值的基本思想;这个应用问题实际上是所谓马尔可夫过程的一个类型;所得到的向量序列x1,x2,...,x k称为马尔可夫链;马尔可夫过程的特点是k时刻的系统状态x k完全可由其前一个时刻的状态x k-1所决定,与k-1时刻之前的系统状态无关;三、心得与体会没上线性代数的时候,心中还有点忐忑,怕自己学不好;但是当真的学时,用心听老师讲的每节课,还是感觉很轻松的;然后每章结束后的习题,自己认真完成,不会的再翻翻以前学过的知识点和笔记,自己就会豁然开朗,而且死死地记住题型,考试的时候不会紧张而且游刃有余;可以总结一下,线性代数主要研究三种对象:矩阵、方程组和向量;这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法;因此,熟练地从一种理论的叙述转移到另一种中去,是学习线性代数时应养成的一种重要习惯和素质;如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性;由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易;线性代数作为数学的一门,体现了数学的思想;数学上的方法是相通的;比如,考虑特殊情况这种思路;线性代数中行列式按行或列展开公式的证明就是从更简单的特殊情况开始证起;解线性方程组时先解对应的齐次方程组,这些都是先考虑特殊情况;高数上解二阶常系数线性微分方程时先解其对应的齐次方程,这用的也是这种思路;通过思想方法上的联系和内容上的关系,线性代数中的内容以及线性代数与高等数学甚至其它学科可以联系起来;只要建立了这种联系,线代就不会像原来那样琐碎了;在线性代数的学习中,注重知识点的衔接与转换,努力提高综合分析能力;线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对再问做得好不好只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了;现在我们可以在线完成过程考核,在电脑上登录,然后有不同的题型,说是考核其实也是一种练手和复习,加强知识的巩固;每一题解答过后都会有详解,可以看到自己到底错在哪,哪里学的不好;我觉得这是一种很好的学习工具,我们一定要好好利用,来学习线性代数;了解每种题型很关键,当然都离开不了矩阵、方程组和向量,掌握它们是关键;线性代数有很多在现实生活中的应用,我们要会运用线性代数来解决现实生活中的一些事或麻烦;我们的生活中到处都存在着数学,所以用心它的魅力吧;。

矩阵理论论文

矩阵理论论文

矩阵分解在信号和图像处理方面的应用矩阵理论是一门发展完善、理论严谨、方法独特的理论基础课程,它对培养学生的逻辑能力、推理能力具有重要作用,但它又能广泛应用于各个领域。

矩阵理论主要内容包括线性空间、线性变换、范数理论;矩阵分析;矩阵分解;广义逆矩阵;特征值的估计以及广义特征值等。

用矩阵的理论和方法来处理现代工程技术中的各种问题已经越来越普遍。

下面简单介绍一下矩阵的奇异值分解在信号和图像处理方面的简单应用。

此方法近年来在数据降维和压缩,滤波器设网络节点估计、小波变换结果的后续处理等很多领域都获得了重要的应用。

在滤波器设计方面,VOZALIS等将SVD 用于协同滤波,他们的研究结果表明,SVD提高了协同滤波过程中预测的质量和精度。

而在消噪方面,LEHTOLA等利用SVD和数学形态学相结合,对心电信号(Electrocardiogram,ECG)进行处理,消除了噪声的影响,提高了心电图诊断的准确性。

同时奇异值分解已用于从孕妇皮肤测量信号中提取胎儿心电信号。

在另一些研究中SVD则被利用来实现特征提取和弱信号分离,如LIU等利用SVD从背景噪声强烈的振动信号中提取周期性冲击信息。

SVD在神经网络中也获得了应用,如TEOH等利用SVD实现了对隐层空间中模式的线性独立性分析,进而决定了隐层神经元节点的数目。

SVD的正交化特性在对小波和小波包变换结果的后续处理中也得到了有效的应用,如XIE等利用SVD对小波包分解后的肌电信号进行正交化处理,以获得代表肢体运动模式的最优特征,进而对肌电信号进行分类,用于对假肢的控制。

小波多分辨分析的本质就是把信号在一系列不同层次的空间上进行分解,获得相应的近似和细节信号,从而以不同的层次显示信号的各种概貌和细节特征[9],这种多分辨思想使得小波分析在很多领域获得了极为广泛的应用。

基于这种多分辨分析思想的思考,赵学智在SVD中提出了一种矩阵二分递推构造方法,根据该方法得到的SVD分解结果将分属于不同层次的空间,而且下一层次空间的基矢量是利用上一层次的近似基矢量而获得的,实现了利用SVD以不同的层次来展现信号的概貌和细部特征。

矩阵对策定理

矩阵对策定理

a
j
ij
y j * v*
a
i
ij i
x *
(4)
或 E(i,y*) v* E ( x*, j ) 又由 E ( x*, y*) E (i, y*)xi * v * xi * v * E ( x*, y*) E ( x*, j ) y j * v * y j * v *
E (i, y*) E ( x*, y*) E ( x*, j ) 其中,E (i, y) a y E( x, j ) aij xi ij j
j i
Hale Waihona Puke (3)证明:设(x*,y*)是G的解,则由引理2可知
E ( x, y*) E ( x*, y*) E ( x*, y)
E ( x, y*) E (i, y*)xi E ( x*, y*) xi E ( x*, y*)
定理2 对任一矩阵对策G={S1,S2; A},一定存在混合策略意义下的解。 证明:由引理3,只要证明存在x*S1*,y*S2*,使得(3)式成立。为此, 考虑如下线性规划问题:
min v max w aij y j v i 1,2,...,m aij xi w j 1,2,...,n i j ( P) 和( D ) xi 1 y j 1 i j xi 0, i 1,2,...,m y j 0, j 1,2,...,n
j i j
ai* j* m ax aij* m in m ax aij
i j i
则由
i
m ax m in aij m in m ax aij ai* j*
i j j i j

线性代数论文(矩阵在自己专业中的应用及举例).

线性代数论文(矩阵在自己专业中的应用及举例).

矩阵在自己专业中的应用及举例摘要:I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。

II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等内容。

III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。

关键词:矩阵可逆矩阵图形学图形变换正文:第一部分引言在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的内容,而这些内容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。

因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。

在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。

在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。

在后面的文章中,我通过查询一些相关的资料,对其中一些内容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。

在线性代数中,矩阵也占据着一定的重要地位,与行列式、方程、向量、二次型等内容有着密切的联系,在解决一些问题的思想上是相同的。

尤其他们在作为处理一些实际问题的工具上的时候。

图形变换是计算机图形学领域内的主要内容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。

这些变换有着不同的作用,却又紧密联系在一起。

第二部分 研究问题及成果1. 矩阵的概念定义:由n m ⨯个数排列成的m 行n 列的矩阵数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a 212222111211 称为一个n m ⨯矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。

矩阵数学论文3000字_矩阵数学毕业论文范文模板

矩阵数学论文3000字_矩阵数学毕业论文范文模板

矩阵数学论文3000字_矩阵数学毕业论文范文模板矩阵数学论文3000字(一):Pre5G获GSMA双料大奖揭秘:竟是多维矩阵的数学创新论文最受评委认可的是Pre5G的高技术含量,它是通过高超、复杂的数学方法实现的,绝非技术的简单包装。

如果每一年巴塞罗那MWC展会都会树立几个风向标的话,那么“创新加速5G”无疑是本届MWC大会当仁不让的主题。

本届展会的第二天,中国的5G创新再次掀起了MWC的高潮,中兴通讯凭借Pre5GMassiveMIMO荣获全球移动大奖“最佳移动技术突破”(BestMobileTechnologyBreakthrough)以及CTO选择奖(OutstandingoverallMobileTechnology-TheCTO’sChoice2016),一时间被全球广泛关注。

由GSM协会主办的MWC是全球最具影响力的移动通信领域的盛会,全球移动大奖则是目前被业界认可的最高荣誉,被誉为“通信业的奥斯卡奖”。

而CTO选择奖的重量级在于,获奖技术是从6个移动专项获奖中再次选出最佳的一个“奖中奖”,该奖项的评委是由来自全球16家运营商的首席技术官组成的,他们非常看重入选内容的独到创新点,以及是否可以真正改善客户体验、降低成本,真正通过创新提升运营商商业价值。

而且,中兴通讯今年作为惟一的中国企业获此殊荣。

事实上,这也是5G领域第一次获得行业最高奖项并获得CTO的一致认可,两大奖项不仅奠定了中兴通讯在无线宽带领域的领军者形象,更意味着从3G的试探、4G的积极,到5G的超前,中国技术的不断创新已经获得全球认可。

颠覆式创新的核心GSMA大奖评委会给出的获奖点评是“Pre5GMassiveMIMO技术是移动宽带演进上的颠覆性创新”。

从技术上看,Pre5G最主要的技术MassiveMIMO通过128天线阵元,支持多达12到16流的动态beamforming,在不改变空口、不增加频点、不改变终端的前提下,快速实现了频谱效率倍增,三维立体覆盖能力超强,且Pre5G兼容4G终端,使得现网引入Pre5G更加从容。

线性代数论文《矩阵在实际中的应用》

线性代数论文《矩阵在实际中的应用》

######学院矩阵的实际应用课程题目:线性代数专业班级:成员组成:联系方式:2012年11月1 日矩阵的实际应用摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天,数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。

我们在学习数学知识的同时,不能忘记把数学知识应用于生活。

在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。

在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。

关键词:线性代数矩阵实际应用Abstract: From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform.Keywords: linear algebra matrix practical application正文:1、引言数学作为一门相当重要的学科,在人类发展历史中一直扮演着必不可少的角色,它凝聚了每一代聪明智慧的人们的结晶。

矩阵分析小论文

矩阵分析小论文

浅谈正交矩阵与酉矩阵矩阵是数学中重要的基本概念,是高等代数的重要研究对象之一,也是数学与其它领域研究与应用的一个重要工具.矩阵是线性代数中的核心内容 ,而正交矩阵是一种较常用的矩阵 ,正交矩阵在矩阵论中占有重要地位,有着广泛的应用.对其本身的研究来说是富有创造性的领域.正交矩阵不仅在线性代数中,而且在理工各学科领域的数学方法中,如优化理论、计算方法、信息分析中都有着举足轻重的位置。

对矩阵性质的概括、改进和推广,以及对正交矩阵在数值分析中、矩阵分解中和对方程求解、数理统计中的应用的研究,对矩阵的理论研究有重要意义。

本文列举了正交矩阵与酉矩阵的一些常见的性质与定理,并对其应用进行了一些列举。

首先认识什么是正交矩阵,什么是酉矩阵。

酉矩阵的定义:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基,则U 是酉矩阵(Unitary Matrix)。

即若n 阶复矩阵A 满足条件:E A A AA H H ==(E 为单位矩阵,H A 表示“矩阵A 的共轭转置矩阵,即TH A A =”),则此时矩阵A 称为酉矩阵。

此时,容易验证,当矩阵A 、B 为酉矩阵时,则有如下的结论成立:(1)H A A =-1也为酉矩阵(2)1det =A(3)n n T U A ⨯∈,即T A 为酉矩阵(4)AB,BA 也均为酉矩阵正交矩阵的定义:正交矩阵是实数特殊化的酉矩阵。

如果实数矩阵A 满足E A A AA T T ==(E 为单位矩阵,T A 表示“矩阵A 的转置矩阵”),则n 阶实矩阵 A 称为正交矩阵。

此时,容易验证,当A 、B 为正交矩阵时,则有如下结论成立:(1)n n T E A A ⨯-∈=1,即1-A 、T A 均为正交矩阵(2)1det ±=A(3)AB,BA 也均为正交矩阵正交变换的定义:设A 是欧氏空间V 的一个线性变换,若A 保持向量的内积不变,即对于任意的α,β∈V 都有(A α,A β) = (α,β),则称A 为V 的正交变换。

矩阵在解线性方程组中的应用毕业论文

矩阵在解线性方程组中的应用毕业论文

毕业论文(设计)题目: 矩阵在解线性方程组中的应用教学院: 理学院专业班级: 数学与应用数学(1)班完成时间:2014年04月25日毕节学院教务处制毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关键词:矩阵;运算规律;结论;不成立
英文题目
Abstract: Matrix algebra as an important tool in its history can be traced back to BC appears, however, to truly become an independent matrix concept was to study history began in the 1850s. Today, more and more rapid development of matrix theory, to the 19th century, matrix theory system has been basically formed. To the 20th century, matrix theory has been further developed. Currently, it has developed into physics, cybernetics, robotics, biology, economics and other disciplines have a lot of branches of mathematics applications.There are a lot of computing matrix operation rules and conclusions cannot be established. It may be misused in applying the usual rules of arithmetic calculations. This article lists the operation of such laws and conclusions which cannot be established in order to refer.
AB 是有意义的,而 BA 是无意义的 ii.倘使AB, BA都有意义,二者也未必相等. 1 1 1 −1 ,B = 2 2 −1 1 −1 −1 AB = O,BA = 1 1 1 1 a b 例 2:取 A = ,B = , 0 1 0 a a a+b 则 AB=BA= (a,b 为任意常数) 0 a 例 1:A = iii.根据矩阵乘积的基本要求,如果 A 的列数不等于 B 的行数,此时讲 AB 没有任何意 义。一般来说正是由于这个原因,,在实数中的某些运算不再适应,如(������ + ������)2 ≠ ������2 + 2������������ + ������2 , ������������
2.2 矩阵的乘法 运算规则 设 A=(aij )
m×s
,B=(bij )
s×n
,则 A 与 B 的乘积 C=AB 是这样一个矩阵:
m×n
(1) 行数与(左矩阵)A 相同,列数与(右矩阵)B 相同,即 C=(cij ) 取乘积之和. 运算性质 (1) 结合律(AB)C=A(BC) . (2) 分配律A(B ± C) = AB ± AC(左分配律) ; B ± C A = BA ± CA(右分配律) . (3) ⑴矩阵乘法不满足交换律 .
矩阵的计算有很多的应用,比如可以用来求矩阵的秩,是线性代数的基础。熟练掌 握矩阵的计算,在面对较复杂的矩阵时才能从容处理。矩阵的加法,矩阵的乘法,矩阵 的幂,矩阵的转置,矩阵的逆,矩阵的行列式,相关的计算都是矩阵的基本运算。 认真关注矩阵的运算规律的结论能让计算过程更加熟练,结果更加准确,但是同时 也要注意不适用的规律方法和结论,避免解题时进入误区。本文总结了部分会误用的规 律结论。 这门课程给我们的是一个工具的作用, 在学习的过程中要结合实际问题尤其是自己的 专业方向来想问题,把矩阵的思想和算法用到对专业问题的解决中,才是学习的目的。 参考文献 [1]王天泽.。线性代数[M].北京,科学出版社,2013-8. [2]李乃华,赵芬霞,赵俊英,李景焕[M]北京,高等教育出版社,2012-8 [3]张凯院,徐仲,陆全[M]西北工业大学出版社,2001-3
与通常的规律相反 2.7 方阵的行列式 运算性质 (1)|AT | = |A| (行列式的性质) (2) AB = A B (3) 设 A 为 n 阶方阵, ( 是常数,A 的阶数为 n) 的行列式 与 A 的行列式 之间的关系不是 ,而是
A = 3 结束语
a c
a b 2a 2b ,2A = c d 2c 2d b 2a 2b 2 a b ,而|2A|= =2 d 2c 2d c d A=
矩阵。矩阵的运算是数值分析领域的重要问题。掌握矩阵的运算及它们的运算规律是学 习矩阵知识的一个重要环节。 矩阵的计算中有许多规律和结论可利用, 但不是所有的运算规律都可以在矩阵的计 算汇总运用。以下诸条关于不可用规律与结论的总结提供一个参照,在矩阵的计算中便 于减少运算错误。 . 2.1 矩阵的加法与减法: 运算性质 :满足交换律和结合律 交换律 结合律
2.6 矩阵的转置 运算性质 (1)(AT )
T=A T
(2) (A + B) = AT + B T (3) (AB) = B T AT (4)
T T

是常数.
������
ቤተ መጻሕፍቲ ባይዱ
������ ������ T (AB) = B T AT ,(A������ ������������ … . ������������ ) = ������������ ������ ������������−������ … . ������������ A������等号左右矩阵的顺序是相反的,
1 −2 … . (1 − 1 2)=5n −1 A 1
设 g(x)是 x 的 m 次多项式,f(A)g(A)=g(A)f(A) 。但是,当 A,B 不可交换 时,f(A)g(B)≠g(B)f(A) 2.5 有零因子的情况 如: A≠0, B≠0 但可能有 AB=0. AB=A, 不能得出 B=E(单位矩阵)
A=B=B+A;
(A+B)+C=A+(B+C) .
只有同型矩阵才能相加(减) ,且其和(差)仍保持同型 例:
a b
与 c d e 不能相加或相减 2 3 −1 − 2 − 3 1 + −1 2 + + = 4 5 6 −4 − 5 − 6 4 + −4 5 + 10 5 3 −5 1 − = −1 5 9 4 2 −2 3 + −3 −5 6 + −6 2 −7 =O
Key words: Matrix; operation rules; conclusions; not established
正文: 1 引言 矩阵理论是高等代数的主要内容之一。 矩阵理论和方法对于图论的研究起了很重要 的推动作用,同时也是数学及许多科学领域中的重要工具,它有着广泛的应用。矩阵是 高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于 电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到
������
= ������������ ������������ 需 A,B 可交换
因此,矩阵乘法不满足交换律。 ⑵矩阵的乘法不满足消去律 如果AB = AC,并且A ≠ O,不能推出B = C 例:A = 1 2 1 −1 ,B = ,C = O, 1 2 −1 1 AB = O,AC = O,但是 B ≠ C 2.3 矩阵的幂 ⑴对于m × n矩阵 A,当m ≠ n时,Ak 是没有任何意义的 ⑵(������������)������ = ������������ B k ,A、B 可交换时成立 ⑶矩阵 A 为 n 阶方阵,A 的 k 次幂Ak ,k 为正整数 1 −1 2 例:A= −2 2 −4 ,求An 1 1 −1 2 1 注意到A = −2 (1 -1 2)因此An = −2 1 − 1 2 1 1 2.4 矩阵的多项式
华北水利水电大学
矩阵中不能成立的运算规律及结论
课程名称: 专业班级: 成员组成: 联系方式:
2015 年 1 月 8 日
摘要:矩阵作为一种重要的代数工具,其出现的历史可以追溯至公元前,然而矩阵真正 成为一个独立的概念并被加以研究的历史开始于 19 世纪 50 年代。如今,矩阵理论的发 展越来越迅速,到 19 世纪末,矩阵理论体系已基本形成。到 20 世纪,矩阵理论得到了 进一步的发展。目前,它己经发展成为在物理、控制论、机器人学、生物学、经济学等 学科有大量应用的数学分支。矩阵的计算中有很多不能成立的运算规律和结论,在运用 通常的运算规律计算时可能会误用。本文列举出此类不能成立的运算规律和结论,方便 运算时参照,以减少误用规律结论的情况出现。

(2) C 的第 i 行,第 j 列的元素Cij 由 A 的第 i 行元素与 B 的第 j 列元素对应相乘,再
i.只有当第一个矩阵A的列数等于第二个矩阵B的行数时,矩阵A与B的乘积AB才有意义。 否则A与 B 是不能相乘的。一般来讲即便AB有意义,BA也未必有意义。 4 1 0 1 0 3 −1 −1 1 3 例:对于A = ,B = 2 1 0 2 2 0 1 1 3 4
相关文档
最新文档