线性代数课件 第三章 矩阵的初等变换与线性方程组——习题课
线性代数课件 矩阵的初等变换与线性方程组.

定理 2 方阵 A 可逆的充分必要条件是存在有限个初等矩阵 P1 P2 Pl 使AP1P2 Pl
推论1 方阵A可逆的充分必要条件是A ~ E
推论2 mn矩阵A与B等价的充分必要条件是存在 m阶可逆矩阵 P及n阶可逆矩阵Q 使PAQB 若矩阵A可逆 则矩阵(A E)经初等行变换可化为(E A1)
8
基本题型
求矩阵的秩和极大无关组
基本方法 : 用初等列(行)变换将矩阵变 为列(行)阶梯阵。讨论矩阵的秩.
与求向量组的秩和极大无关x=0 有非零解 R(A)<n.
Ax 0
线 性 方 程 组
求 解
1.化系数矩阵为最简形. 2.找等价的方程组.
3.写通解. Ax=b 有解 R(A)=R(B).
Ax b
求 解
1.把增广矩阵B化为最简形. 2. 找等价的方程组. 3.写通解.
10
定理4 n元线性方程组Axb (1)无解的充分必要条件是R(A)R(A b) (2)有唯一解的充分必要条件是R(A)R(A b)n (3)有无限多解的充分必要条件是R(A)R(A b)n 定理5 线性方程组Axb有解的充分必要条件是R(A)R(A b) 定理6 n元齐次线性方程组Ax0有非零解的充分必要条件是 R(A)n
3
初等矩阵
由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵 初等矩阵都是可逆的 并且 E(i j)1E(i j) E (i ( k )) 1 E (i ( 1 )) E(ij(k))1E(ij(k)) k
• 初等阵与初等变换的关系 • 左乘------行变换 • 右乘------列变换
r
5
解矩阵方程:基本方法是初等变换.
E, X , (2)AX=B 用(A,B)
第三章 矩阵的初等变换与线性方程组.

显然 把B的第2行乘以(2)加到第1行即得B3.
第三章 矩阵的初等变换与线性方程组
方程组的同解变换与增广矩阵的关系
在解线性方程组的过程中 我们可以把一个方程变为另一个同 解的方程 这种变换过程称为同解变换.
同解变换有 交换两个方程的位置 把某个方程乘以一个非零数 某个方程的非零倍加到另一个方程上.
为行阶梯形矩阵和行最简形矩阵.
第三章 矩阵的初等变换与线性方程组
矩阵初等变换举例
~ ~ 21
1 1
1 2
1 1
42
43
6 6
2 9
2 7
94
r
01
1 1
2 1
1 1
04
00
0 0
0 0
1 0
03
r
0001
0 1 0 0
1 1 0 0
第三章 矩阵的初等变换与线性方程组
§3.1 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的 运算 它在解线性方程组、求逆阵及矩阵理论的 探讨中都可起重要的作用.
第三章 矩阵的初等变换与线性方程组
方程组的同解变换与增广矩阵的关系
在解线性方程组的过程中 我们可以把一个方程变为另一个同
解的方程 这种变换过程称为同解变换.
线性方程组与其增广矩阵相互对应 对方程组的变换完全可以 转换为对方程组的增广矩阵的变换.
把方程组的上述三种同解变换移植到矩阵上 就得到矩阵的三种 初等变换.
第三章 矩阵的初等变换与线性方程组
矩阵的初等变换
下面三种变换称为矩阵的初等行(列)变换 (i)对调两行(列) (ii)以非零数k乘某一行(列)中的所有元素 (3)把某一行(列)的k倍加到另一行(列)上去.
矩阵的初等变换与线性方程组习题PPT讲稿

解 E ; E[i, j(2k)] ; E[i(k 2 )] .
3 0 0
1 0 0
【例3】设矩阵
A
1
4
0
,E
0
1
0 ,则逆矩阵 ( A 2E) 1
.
0 0 3
0 0 1
分析 本题可利用初等行变换法求逆矩阵.
解
1 1 2
0 12
0 0
.
0 0 1
互为逆矩阵,所以 E(1, 2(6))E(1, 2(6))A EA A , 故应选(B) .
解 选 (B) .
【例2】设
F
1 0
2 1
3 4
,E3(2)
是3
阶初等方阵,则
E3(2)F等于
2 3 0
(A)
1 0
4
2 1 6
3 4 0
.
(B)
1 2 0
2 3 1
3 0
.
(C)
1 0
(第 j 行的 k 倍加到第 i 行上,记作 ri krj ).
注 (1)将定义中“行”改为“列”,称为矩阵的初等列变
换;
(“记”号:)“r ”换为c
(2)初等行变换与初等列变换统称为初等变换.
定义2 若矩阵 A经过有限次初等行变换变成矩阵 B ,则称
r
矩阵 A与 B 行等价;记作 A ~ B;
矩阵的初等变换与线性方程组 习题课件
第三章 矩阵的初等变 换与线性方程组
一、内容提要
(一)初等变换
定义1 下面三种变换称为矩阵的初等行变换: (i)对调两行(对调两行 i, j,记作 ri rj ); (ii)以数 k 0乘某一行中的所有元素(第i 行乘 k ,记作ri k )
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
0831矩阵的初等变换PPT课件

程 学
其中行最简形矩阵所对应的线性方程组是
院 最简单的 而且是最容易求解的.
③2
③2
2x1 x2 x3 x4 2
23xxx111
x2 3x2 6x2
2x3 x3 9x3
7
x4 x4 x4
4 2 9
增广矩阵的比较
B 4231
1 1
6 6
1 2
2 9
1 1 2 7
9442
1 1 2 1 4
B2
2 2 3
1 3
6
1 1
9
1 1 7
922
显然 把B的第3行乘以(1/2)即得B2.
矩阵A与B行等价 记作 A ~r B.
生 物
如果矩阵A经有限次初等列变换变成矩阵B 就称
医 学
矩阵A与B列等价 记作 A ~c B.
工
如果矩阵A经有限次初等变换变成矩阵B 就称矩
程
学 阵A与B等价 记作 A ~ B.
院 ❖等价关系的性质
(i)反身性 A~A
(ii)对称性 若A~B 则B~A
(iii)传递性 若A~B B~C 则A~C .
一个元素为非零元,即非零行的第一个非零
元.
第三章 矩阵的初等变换与线性方程组
行阶梯形矩阵:
•各非零行首非零元素分布在不同列
生
物 医
•当有零行时,零行在矩阵的最下端
学
工 程 学 院
3 2
2 0
5 1
131
1 4 9
0 5
0 0
3 1 2 5
0 1 6 7
0 0
5 0
3 2
4 1
0 2 6 0 0 3
物
《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
线性代数课件第三章矩阵的初等变换与线性方程组习题课

R( AT ) R( A);
定理 若A ~ B, 则R( A) R( B );
行阶梯形矩阵的秩等于非零行的行数.
2018/11/12
线性代数课件
若A为n阶可逆矩阵, 则
(1) ( 2) ( 3) ( 4)
A的最高阶非零子式为 A ; R( A) n; A的标准形为单位矩阵 E ; A ~ E.
0 1 0
~
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
线性代数课件
任何一个m n矩阵, 总可以经过初等变换(行变 换和列变换 ), 化为标准形 Er O F O O mn 此标准形由m , n, r三个数完全确定, 其中r就是行阶 梯形矩阵中非零行的行 数.
2018/11/12
线性代数课件
(3)消法变换:以数 k 乘某行(列)加到另 一行(列)上去,得初等矩阵 E ( ij ( k )) .
以 E m ( ij ( k ))左乘矩阵A, 相当于把A的第j行乘 以k加到第i行上( r i k r j ); 以 E n ( ij ( k ))右乘矩阵A, 相当于把A的第i列乘 以k加到第j列上(c j k c i ).
令自由未知量 x 4 k , 可得方程组(1)的通解是 x1 1 6 56 x2 1 6 7 6 x k , 16 56 x3 0 1 x4 k取任意常数.
2018/11/12
线性代数课件
(2)用初等变换.即用矩阵的初等行(或 列)变换,把所给矩阵化为阶梯形矩阵,由于阶 梯形矩阵的秩就是其非零行(或列)的个数,而 初等变换不改变矩阵的秩,所以化得的阶梯形矩 阵中非零行(或列)的个数就是原矩阵的秩.
免费第3章课件 线性代数 矩阵的初等变换与线性方程组

什么?
A B , 如何把它们用等号联系起来?
-17-
T 回顾 ei A ? Ae j ?
a11 a12 A a 21 a 22 a 31 a 32
a13 r1 r3 a 23 a 33
a 31 a 32 a 21 a 22 a11 a12
( 2) kci ( k 0) ( 3) ci kc j
以上六种变换统称为矩阵的初等变换
-6-
初等变换的逆变换仍为初等变换, 且变换类型相同.
ri rj 逆变换 ri rj ; 1 kri ri 逆变换 k ri krj 逆变换 ri kr j
初等列变换也有类似的结果
-7-
B [ Ae1 , Ae2 , A( ke3 )] A[e1 , e2 , ke3 ]
a11 a12 a 21 a 22 a 31 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
把单位矩阵作同样变换得 到的矩阵放在A的右边!
方程组与增广矩阵是一一对应关系, 我们用增广 矩阵来写求解过程
2 1 2 4 ~ A 1 1 2 1 4 1 4 2
-2-
首先搞清一个概念:什么是同解方程组?同解方程
组也称等价方程组.(注:等价与同解有点小区别,这里
就不区分了)
2 1 2 4 ~ r1 r2 A 1 1 2 1 4 1 4 2
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0 ~ 0 0
2 6
0 2
0 4
9 3 6 21 7 14
10 15 35
1
1 0 ~ 0 0
2 0 0 1 3 1 2 5 B, 0 0 0 0 0 0 0 0
因此, R( A) R( B ) 2.
令自由未知量 x 4 k , 可得方程组(1)的通解是 x1 1 6 56 x2 1 6 7 6 x k , 16 56 x3 0 1 x4 k取任意常数.
11 初等矩阵与初等变换的关系
定理 设 A是一个 m n矩阵, 对A施行一次初等行
变换, 相当于在A左边乘以相应的 阶初等矩阵; m 对A施行一次初等列变换 相当于在A的右边乘以 , 相应的n阶初等矩阵.
定理 设A为可逆矩阵, 则存在有限个初等矩阵P 1 ,
P 2 , , P l , 使A P 1 P 2 P l . 推论 m n矩阵A ~ B的充分必要条件是: 存在m
(2)用初等变换.即用矩阵的初等行(或 列)变换,把所给矩阵化为阶梯形矩阵,由于阶 梯形矩阵的秩就是其非零行(或列)的个数,而 初等变换不改变矩阵的秩,所以化得的阶梯形矩 阵中非零行(或列)的个数就是原矩阵的秩.
第一种方法当矩阵的行数与列数较高时,计 算量很大,第二种方法则较为简单实用.
例1
求下列矩阵的秩
解法一 系数矩阵 A 的行列式为
1
1
1
1
1
1
1
1
1 2 1 2 0 1 0 1 A 1 1 a 1 0 2 a 1 2 3 2 3 a 0 5 0 a3 1 1 1 1 0 1 0 1 (a 1)( a 2) 0 0 a1 0 0 0 0 a2
当a 1或者a 2时, A 0, 方程组有非零解 . 当a 1时, 把系数矩阵A化成最简形 : 1 1 1 1 0 1 0 1 2 1 2 0 1 0 0 1 1 1 1 1 ~ 0 0 0 0 3 2 0 0 0 1 3 1 x1 1 从而得到方 x2 0 x k , k为任意常数. 程组的通解 1 x3 0 x4
(1)
解 对方程组的增广矩阵 B 进行初等行变换,使 其成为行最简单形.
1 3 B 2 2 5 2 5 r2 r1 ~ 2 r4r2 1 0
2 3 1 1 3 2 1 1 1 r1 r 3 5 r2 r3 3 1 1 1 ~ 2 r 4 r 3 2 2 1 1 r5r2 4 0 5 2 0 2 0 2 0 0 1 2 5 2 0 2 r1 1 r 2 2r 3 3 1 1 1 ~ 2 0 1 0 0 r 4 r1 0 0 0 0 0 0
0 1 0 0 1 1 2 0 0 6 5 1 0 0 0 0 0 0 0 0 0 5 6 1 6 0 7 6 1 6 1 5 6 1 6 0 0 0 0 0 0
பைடு நூலகம்
由此可知 R( A) R( B ) 3 ,而方程组(1)中未知 量的个数是 n 4,故有一个自由未知量.
2 0 0 1 1 6 2 4 10 0 A . 1 11 3 6 16 1 19 7 14 34
解 对 A 施行初等行变换化为阶梯形矩阵
2 0 0 1 1 6 2 4 10 0 A 1 11 3 6 16 1 19 7 14 34
定理 n元齐次线性方程组Am n x 0有非零解的
充分必要条件是系数矩 阵的秩R( A) n.
定理 n元非齐次线性方程组Am n x b有解的充
分必要条件是系数矩阵 的秩等于增广矩阵 A B ( A, b )的秩.
10 线性方程组的解法
齐次线性方程组:把系数矩阵化成行最简形 矩阵,写出通解. 非齐次线性方程组:把增广矩阵化成行阶梯 形矩阵,根据有解判别定理判断是否有解,若有 解,把增广矩阵进一步化成行最简形矩阵,写出 通解.
例3 当 a 取何值时,下述齐次线性方程组有非 零解,并且求出它的通解.
x 1 x 2 x 3 x 4 0, x 1 2 x 2 x 3 2 x 4 0, x 1 x 2 a x 3 x 4 0, 3 x1 2 x 2 3 x 3 a x 4 0.
R( AT ) R( A);
定理 若A ~ B, 则R( A) R( B );
行阶梯形矩阵的秩等于非零行的行数.
若A为n阶可逆矩阵, 则
(1) ( 2) ( 3) ( 4)
A的最高阶非零子式为A ; R( A) n; A的标准形为单位矩阵 ; E A ~ E.
9 线性方程组有解判别定理
注意 在求矩阵的秩时,初等行、列变换可 以同时兼用,但一般多用初等行变换把矩阵化成 阶梯形.
二、求解线性方程组
当方程的个数与未知数的个数不相同时,一 般用初等行变换求方程的解. 当方程的个数与未知数的个数相同时,求线 性方程组的解,一般都有两种方法:初等行变换 法和克莱姆法则.
例2
求非齐次线性方程组的通解.
r i k (c i k )
r i k r j (c i k c j )
2 矩阵的等价
如果矩阵A经有限次初等变换变成 矩阵B , 就 称矩阵A与B等价, 记作A ~ B .
反身性
对称性
A ~ A;
若A ~ B, 则B ~ A; 若A ~ B, B ~ C , 则A ~ C .
传递性
对应的元素上去 记作 r i k r j (c i k c j ). ,
三种初等变换都是可逆的,且其逆变换是 同一类型的初等变换.
初 等 变 换 逆 变 换
r i r j (c i c j )
r i r j (c i c j )
1 1 r i (c i ) k k r i ( k ) r j (c i ( k ) c j )
且所有r 1阶子式(如果存在的话)全等于0, 那么 D称为矩阵A的最高阶非零子式 数r称为矩阵A , 的秩, 记作R( A).并规定零矩阵的秩等于 . 0
8 矩阵秩的性质及定理
如果A中有一个非零的 阶子式, 则R( A) r; r 如果A中所有r 1阶子式都为零, 则R( A) r;
x1 2 x 2 3 x 3 x 4 1, 3 2 1, x2 x 3 x4 x1 2 x1 3 x 2 x 3 x 4 1, 2 x1 2 x 2 2 x 3 x 4 1, 2. 5 x1 5 x 2 2 x 3
0 1 0
~
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
任何一个m n矩阵, 总可以经过初等变换行变 ( 换和列变换), 化为标准形 Er O F O O mn 此标准形由m , n, r三个数完全确定 其中r就是行阶 , 梯形矩阵中非零行的行 . 数
所有与A等价的矩阵组成的一个集合,称为一 个等价类,标准形 F 是这个等价类中形状最简单的 矩阵.
7 矩阵的秩
定义 在m n矩阵A中, 任取k行和k列, 位于这些
行列交叉处的k 2 个元素, 不改变它们在A中所处 的位置次序而得到的 阶行列式, 称为矩阵A的 k k阶子式. 定义 设在矩阵A中有一个不等于 的r阶子式D, 0
对行阶梯形矩阵再进行初等列变换,可得到 矩阵的标准形,其特点是:左上角是一个单位矩 阵,其余元素都为0. 例如
1 0 0 0
4 1 c 4 c3 1 1 0 3 c 4 c 1 c 2 0 0 0 1 3 4 3 3 0 c 5 c 1 c 2 c 3 0 0 0 0 0
4 行阶梯形矩阵
经过初等行变换,可把矩阵化为行阶梯形矩 阵,其特点是:可画出一条阶梯线,线的下方全 为0;每个台阶只有一行,台阶数即是非零行的 行数,阶梯线的竖线(每段竖线的长度为一行) 后面的第一个元素为非零元,也就是非零行的第 一个非零元. 1 1 2 1 4 例如 0 1 1 1 0 0 0 0 1 3 0 0 0 0 0
5 4 0 2 5 2 0 2 3 1 1 1 5 3 0 2 0 0 0 0 0 1 0 1 0 2 3 0 0 1 0 0 1 0 0
0 0 1 0 0
1 0 r 2 r1 ~ 3 0 r 3 2r1 r 2 0 0 0 ( 1 ) r 3 1 r1 6 r 1 ( 1 ) 3 0 r2 6 ~6 0 0 r3 0 0 0 0
阶可逆矩阵P及n阶可逆矩阵Q , 使得PAQ B .
典 型 例 题
一、求矩阵的秩
二、求解线性方程组
三、求逆矩阵的初等变换法 四、解矩阵方程的初等变换法
一、求矩阵的秩
求矩阵的秩有下列基本方法 (1)计算矩阵的各阶子式,从阶数最高的 子式开始,找到不等于零的子式中阶数最大的一 个子式,则这个子式的阶数就是矩阵的秩.
类似地, 用n阶初等矩阵E n ( i , j )右乘矩阵A, 相当于对矩阵A施行第一种初等列变换: 把A的 第i列与第j列对调(c i c j ).
(2)倍法变换:以数 k (非零)乘某行( 列),得初等矩阵E ( i ( k )).
以 E m ( i ( k ))左乘矩阵A, 相当于以数k乘A的 第i行( r i k ); 以 E n ( i ( k ))右乘矩阵A, 相当于以数k乘A的 第i列(c i k ).