线性代数矩阵习题课
(优选)线性代数矩阵的秩习题

矩阵A的秩,记作 r(A) 或 R(A)或 rank(A)或 秩(A) .
例1和例2综合 求矩阵A和B的秩 其中
A 421
2 3 7
531
B
2 0 0 0
1 3 0 0
0 1 0 0
3 2
4 0
0253 .
解 在A中 容易看出一个 B是一个有3个非零行的
x y ... 0 0
0 y ... 0 0
原式=x (1)11 ... ... ... ... ... y (1)12 ... ... ... ... ...
0 0 ... x y
0 0 ... x y
0 0 ... 0 x n-1 y ... 0 0
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 x
P67:31
练习题 P67:31,32
x 1 1 31.设三阶矩阵A 1 x 1,试求矩阵A的秩.
1 1 0 4
2 0 2 5
P21 ,2
解:D (1) (1)13 5 2 (1)23 3 0 1 (1)43 4
15
a11 a12 -1 a14
D= a21 a22 2 a24 a31 a32 0 a34
a41 a42 1 a44
(-1)1+1
P21 ,5(3)
P21 ,5(3)
解答:可能有 .
例如
A100
0 1 0
(精选)线性代数矩阵习题

(精选)线性代数矩阵习题习题课一.单项选择题1. 设A 为n 阶可逆矩阵,λ为A 的一个特征根,则A 的伴随矩阵的特征根之一为( )A.n A ||1-λB. ||1A -λC. ||A λD. n A ||λ2.设λ为非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值为( )A.34B.43C.21D.413.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( )A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 4.设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ) A. B E A E -=-λλB. A 与B 有相同的特征值与特征向量C. A 与B 都相似于一对角矩阵D. 对任意常数t ,有A tE -与B tE -相似二.填空题1.若四阶矩阵A 与B 相似,矩阵A 的特征值为51,41,31,21,则行列式=--||1E B 2.设n 阶方阵A 伴随矩阵为*A ,且,0||≠A 若A 有特征值λ,则E A +2*)(的特征值为3.矩阵=1111111111111111A 的非零特征值为 4.n 阶矩阵A 的元素全是1,则A 的n 个特征值为三、计算题1.设=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件. 2.设三阶实对称矩阵A 的特征值为1,2,3;矩阵A 的属于特征值1,2,的特征向量分别为,)1,2,1(,)1,1,1(21T T --=--=αα(1)求A 的属于特征值3的特征向量; (2)求矩阵A .3.设T)1,1,1(-=ξ为---=2135112b a A 的一特征向量. (1)求b a ,及特征值ξ; (2) A 可否对角化?4.设三阶矩阵 A 满足),3,2,1(==i i A i i αα其中,)2,1,2(,)1,2,2(,)2,2,1(321TT T --=-==ααα 试求矩阵A .5.设矩阵,3241223----=k k A 问k 为何值时,存在可逆矩阵P ,使得AP P 1-为对角矩阵?并求出P 和相应的对角矩阵.答案一.单项选择题 1、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则ξλξ**A A A =,即ξλξ*||A A =, 从而ξλξ|)|(1*A A -=.注:一般地,我们有:若λ为A 的一个特征根,则 (1)T A 的特征根为λ;(2)k A 的特征根为kλ; (3)aA 的特征根为λa ;(4)若A 可逆,则1-A 的特征根为λ1; (5)若0≠λ,则*A 的特征根为||1A -λ; (6)kE A +的特征根为k +λ.2、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则,,2222ξλξξλξa aA A ==(a 为实数), 所以, 12)31(-A 的一个特征值为12)231(-?=43. 3、解: B. 4、解: D. 二.填空题 1、解: 24.设ξλξξ(=A 为A 的属于λ的一个特征向量), A 可逆, 则ξλξ1 1--=A ,ξλξ)1()(11-=---E A ,即 E A--1的特征值为1-λ-1, 从而=--||1E A (2-1)(3-1)(4-1)(5-1)=24.另一方面, A 与B 相似,所以,存在可逆矩阵P 使得 B AP P =-1 , 即P A P B111---=,P E A P EP P P A P E B )(111111-=-=-------,所以E B--1与E A --1相似,相似矩阵有相同的行列式,因此, =--||1E B 24.2、解:.1||22+λA若A 的特征值为λ,则*A 的特征值为λ||A ,2*)(A 的特征值为22||λA ,所以, E A +2*)(的特征值为.1||22+λA3、解: 4.计算特征行列式λλλλλλλλλ01010010001)4(1111111111111111||-=----------------=-A E 0)4(3=-=λλ .所以,非零特征值为4.4、解:n,0,其中0为n-1重根.(计算方法如上)。
《线性代数》第二章矩阵(习题课)

13
8. 用初等变换法求矩阵的逆矩阵
定理: 可逆矩阵可以经过若干次初等行变换化为单位矩阵. 推论1: 可逆矩阵可以表示为若干个初等矩阵的乘积
第二章 矩阵习题课
一. 主要内容 二. 典型例题 三. 测验题
1
一. 主要内容
1. 矩阵的定义
由m n个数 aij (i 1,2,,m; j 1,2,,n)
排成的m行n列的数表, a11 a12 a1n
简称m n矩阵.
记作
A
a 21
a 22
a 2n
例1:设矩阵
A
1 0
1
1
,
求与A可交换的所有矩阵。
分析:根据乘法定义及矩阵相等定义求
解:设所求矩阵为 X 由 AX XA,
a
c
b
d
,
得
ac
c
b
d
d
a c
a b
c
d
c 0,a d
X
a 0
矩阵加(减)法:两个同型矩阵,对应元素相加(减)
加法满足
1 交换律:A B B A.
2 结合律:A B C A B C . 3 A 0 A,其中A与O是同型矩阵. 4 A A O.
3
线性代数-矩阵及其运算习题

设
D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D
⋅
D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n
−
1
n
n
n n n×n
解
n − 1 − 1 − 1 2
n −1
n n−1
−
n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.
解
X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,
线性代数第五章习题课

1. 求下列矩阵的特征值与特征向量. 求下列矩阵的特征值与特征向量.
0 2 2 (1) A = 2 4 2 ; 2 2 0
解
4 10 0 (2) A = 1 3 0 . 3 6 1
解
2. 判定下列矩阵是否相似于对角矩阵, 若 判定下列矩阵是否相似于对角矩阵, 相似, 相似, 则求出可逆矩阵 P , 使 P-1AP 是对角矩阵. 是对角矩阵.
解
(2) x1 x2 + x2 x3 + x3 x4 + x4 x1 2 12 x3 +
12 x1 x2 24 x1 x3 + 8 x2 x3 .
13. 判断下列二次型是否正定. 判断下列二次型是否正定.
二次型的正定性的常用判定法
2 2 (1) 3 x12 + 4 x2 + 5 x3 + 4 x1 x2 4 x2 x3 ;
解
5. 设三阶方阵 A 的特征值为
λ1 =1, λ2 = 2, λ3 = 3,
对应的特征向量依次为
1 1 1 p1 = 1, p2 = 2, p3 = 3 , 1 4 9
又向量 b= (1 , 1 , 3)T . (1) 求 A; (2) 将 b 用 p1, p2, p3 线性表示; 线性表示; (3) 求 Anb;(4)求 A100 . ;(4
�
解
0 0 1 3. 设 A = x 1 y 相似于对角矩阵, 相似于对角矩阵, 1 0 0
求 x 与 y 应满足的条件. 应满足的条件.
解
4. 已知矩阵
2 0 0 A = 0 0 1 0 1 x
与矩阵
2 0 0 相似. B = 0 y 0 相似 0 0 1
第六章习题课线性代数 (3)

性指数, 并且秩相同.应选(B).
例 8 用正交变换化二次型 f (x1, x2 , x3 ) x12 2x22 3x32 4x1x2 4x2 x3 为标准形, 并求
出该正交变换.
1
解
二次型的对应矩阵为
A
2
2 2
0 2
.则由
A
的特征方程
0 2 3
解得 a 3.于是
5 A 1
1 5
3 3 .
3 3 3
5 1 3 I A 1 5 3 ( 4)( 9) ,
3 3 3
所以 A 的特征值为 1 0, 2 4, 3 9 .
(2)由(1)知存在正交矩阵 P , 使得
注 用正交变换 X PY 化二次型为标准形, 这类题若要求写出正交变换 X UY , 计
5
算量大.若只要求知道结果, 即仅需知道标准形, 则计算量不大.在解答中要注意区分和判 断.
例 12 已知二次曲面方程 x2 ay2 z2 2bxy 2xz 2yz 4 可以经过正交变换
绕 y 轴旋转而成的空间曲面的性质, 可以得到该曲面可
y2
由
4
z2
1绕 y 轴旋转而成,
也可由
x2
y2 4
1绕 y 轴旋转而成.
x 0
z 0
例6
空间曲线
x2 y2 4
所属曲线类型是
.
z c
解 该曲线可由平行与 xoy 平面的一平面 z c 截双曲柱面 x2 y2 4 所得, 为双曲线.
解
二次型
f
《线性代数》课后习题集与答案第一章B组题

《线性代数》课后习题集与答案第一章B组题基础课程教学资料第1章矩阵习题一(B)1、证明:矩阵A 与所有n 阶对角矩阵可交换的充分必要条件是A 为n 阶对角矩阵. 证明:先证明必要性。
若矩阵A 为n 阶对角矩阵. 即令n 阶对角矩阵为:A =??n a a a 00000021,任何对角矩阵B 设为n b b b0000021,则AB=??n n b a b a b a000002211,而BA =??n n a b a b a b000002211,所以矩阵A 与所有n 阶对角矩阵可交换。
再证充分性,设 A =??nn n n n n b b b b b b b b b 212222111211,与B 可交换,则由AB=BA ,得:nn n n n n n n n b a b a b a b a b a b a b a b a b a 221122222111122111=nn n n n n n n n b a b a b a b a b a b a b a b a b a 212222221211121111,比较对应元素,得0)(=-ij j i b a a ,)(j i ≠。
又j i a a ≠,)(j i ≠,所以0=ij b ,)(j i ≠,即A 为对角矩阵。
2、证明:对任意n m ?矩阵A ,T AA 和A A T均为对称矩阵. 证明:(TAA )T =(A T )T A T =AA T,所以,TAA 为对称矩阵。
(A A T)T =A T (A T )T =A T A ,所以,A A T 为对称矩阵。
3、证明:如果A 是实数域上的一个对称矩阵,且满足O A =2 ,则A =O . 证明:设A =??nn n n n n a a a a a a a a a 212222111211,其中,ij a 均为实数,而且ji ij a a =。
由于O A =2,故A 2=AA T =nn n n n n a a a a a a a a a 212222111211nn nnn n a a a a a a a a a 212221212111=0。
矩阵及其运算习题

1 2 1
A 3 4 5 14
201
4 2 6
A1
1 A
A*
1 14
13 8
3 4
2 2
例7:设
2
A
1 0
0 1 0
0 0 1
0
0
4
0 0 1 2
求 A1
把A分块为
A
A1 0
1n 2 3 1n 6
例5:设
(1, 2,3),
(1,
1 2
,
1 3
),
A
T,
其中
T
为 的转置,求 An
解:
1
A
T
2
1
1 2
3
1
1 2
1 3
1
3
2
1
2 3
3
3 2
1
1
1 2
1 3
2 1
A21 0
2, 1
1 1
A22 0
3, 1
1 2
A23 2
4, 0
2 1
1 1
A31 4
6, 5
A32 3
2, 5
1 2
A33 3
2, 4
4 2 6
A*
13
3
2
8 4 2
第二章 矩阵及其运算习题课 术洪亮
矩阵是线性代数中非常重要理论 之一,它贯穿线性代数内容的始终, 在本章中首先介绍了矩阵的一些基础 知识,其主要内容可概括为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0 1 而 A 2E 1 1 0,
0 1 2
又
1 0 1 1 0 0 ( A 2E | A) 1 1 0 0 1 0
0 1 2 0 0 1
线性代数习题课(一)
1 0 0 5 2 2
初等行变等
~ 0 1 0 4 3 2,
-7 10 4 3 1 -7 1 x 求f(x)中常数项的值。 解:观察f(x)的结构可知,常数项的值为
d =-1×(-1)1+2×3×(-1)2+3×(2-3)
=3
线性代数习题课(一)
9、设 A
1 2
1 3
,求A213014。
解:注意到A3=-E , A6=E,
故 A2014=(A6)335A3A
线性代数习题课(一)
14、设n阶矩阵 A、B、A+B可逆,
试证明:A-1+B-1可逆,并求其逆矩阵。 证明:∵A+B=A(A-1+B-1)B,
∴|A+B|=|A|·|A-1+B-1|·|B|,
又因为 A、B、A+B可逆,
线性代数习题课(一)
证(1): 当A = 0时, 则 | A |的所有代数余子式 均为0, 从而A* = 0, 故| A* | = 0. 当 A O且| A | = 0时, 用反证法证明. 假设| A* | 0, 则有A*(A*)–1 = E, 故 A = AE = A[A*(A*)–1] = AA*(A*)–1
故 An=(λE+H)n=λ n E +λn-1H+λn-2H2
λn nλn-1 n(n-1) λn-2/2
= 0 λn
nλn-1
00
λn
线性代数习题课(一)
7、设矩阵
1 1 1 2
A 3 1 2 5 3 6
且r(A)=2,求 λ 和 μ 的值。
线性代数习题课(一)
1 -1 1 2 解:A r2↔r3 5 3 μ 6
线性代数习题课(一)
13、设矩阵A,B满足A*BA=2BA-E,其中 A=diag(1,-2,1), A*为A的伴随矩阵,求矩阵B
解:|A|=-2,故A可逆,且 A-1=diag(1,-1/2,1), 又 A*=|A|A-1=-2A-1=diag(-2,1,-2) 故2(E+A-1)BA=E , 即B=(E+A-1)-1A-1/2 又 (E+A-1)-1=diag(-1 , 1/2 , -1) 故B=diag(-1,1/2,-1)
=-A
线性代数习题课(一)
1122
10、计算行列式
D=
3 2
-1 2
-1 1 1 -1
1230
5 5 4 0 5 5 4 -20 5 4
解:D=
5 2
1 2
00
1 -1 =
1230
5 1
1 2
0=
3
0 -9
10 23
-20 4
= -9 3 =24
线性代数习题课(一)
11、设n阶矩阵A的伴随矩阵为A*, 证明: (1) 若| A | = 0, 则| A* | = 0; (2) |A*| = | A | n–1.
线性代数习题课(一)
12、设A为可逆矩阵,证明其伴随矩阵A*也是
可逆的,且(A*)=(A-1)*。
证: A为可逆矩阵,则|A* |=|A|n-1≠0, 故A*是可逆的。又 A*=|A|A-1, 故(A-1)*=|A-1|(A-1)-1 =|A-1|A
显然 A*(A-1)*=E,故(A*)=(A-1)*。
0 0 1 2 3
5 2 2 所以 X 4 3 2
2 2 3
线性代数习题课(一)
1 1
6、设 A 0 1
0 0
求 An
线性代数习题课(一)
解:设 A=λE+H,其中
01 1
00 1
H= 0 0 1 , 则H2= 0 0 0
00 0
00 0
Hn=0(n≧3),
线性代数习题课(一)
101
1、设 A= 0 2 0 ,求 An –2An-1 (n≥2)。
101
解:An –2An-1 =(A-2E )An-1
-1 0 1
-1 0 1
= 0 0 0 An-1 = 0 0 0 A An-2
1 0 -1
1 0 -1
-1 0 1 1 0 1
= 0 0 0 0 2 0 An-2 =0
= | A |E(A*)–1 = O, 这与A 0矛盾, 故当| A | = 0时, | A* | = 0.
线性代数习题课(一)
(2) 当| A | = 0时, 则由(1)得| A* | = 0, 从而| A* | = | A |n–1成立. 当| A | 0时, 由 AA* = | A | E 得, | A | | A* | = | AA* | = || A | E | = | A |n, 由| A | 0得, | A* | = | A |n–1.
1 0 -1 1 0 1
线性代数习题课(一)
2、设n 维向量α =(a , 0 , … , 0 , a)T(a<0), A=E-ααT , B=E-ααT/a ,
其中A的逆矩阵为B,求a的值。
解:AB=E+(1-1/a-2a)ααT,
AB=E 1-1/a-2a =0 a=-1/2 ( a =1舍去)
其中α,β,r2, r3, r4均为4维向量,
且已知|A|=4 , |B|=1 , 求|A+B|。
|A+B|=|α+β,2r2, 2r3, 2r4|
=8(|A|+|B|) =40
线性代数习题课(一)
3 0 1 5、设 A 1 1 0
0 1 4
且 AX=A+2X, 求矩阵X.
线性代数习题课(一)
线性代数习题课(一)
3、设A与A+E均可逆,G=E-(A+E)-1 ,求 G-1。 G =E-(A+E)-1 =(A+E)(A+E) -1-(A+E)-1 =A(A+E) -1 由A与A+E均可逆可知G也可逆,且 G -1=(A(A+E) -1)-1=(A+E)A-1
线性代数习题课(一)
4、设四阶矩阵A=(α , r2, r3, r4), B=(β, r2, r3, r4),
3 λ -1 2
r2-5r1 1 -1 1 2 0 r3-3r1 8 μ-5 -4
0 λ+3 -4 -4
r3-r2 1 -1 1 2 0 8 μ-5 -4
0 λ-5 μ +1 0
又 r(A)=2, 故 λ = 5 , μ = -1
线性代数习题课(一)
x -1 0 x 8、多项式 f(x)= 2 2 3 x ,