第24届国际数学家大会会标
数学分类汇编(12)三角函数的化简与求值(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。
(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。
【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。
数学文化与三角函数(解析版)

五、数学文化与三角函数例54. 第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么tan ⎝⎛⎭⎫θ+π4=________.【解析】 依题意得大、小正方形的边长分别是1,5,于是有5sin θ-5cos θ=1⎝⎛⎭⎫0<θ<π2, 即有sin θ-cos θ=15.从而(sin θ+cos θ)2=2-(sin θ-cos θ)2=4925,则sin θ+cos θ=75,因此sin θ=45,cos θ=35,tan θ=43,故tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=-7例55. 秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是S =,,a b c 是ABC 的内角,,A B C 的对边为.若sin 2sin cos C A B =,且222b c +=,则ABC 面积S 的最大值为________.【解析】sin 2sin cos C A B = ,222222cos 22a c b c a B a a b a b ac+−∴==⋅⇒=⇒=又222b c +=,222a c ∴=−,S ∴==245c ∴=时,ABC ∆面积S. 故答案为:例56. “数摺聚清风,一捻生秋意”是宋朝朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图是折扇的示意图,A 为OB 的中点,若在整个扇形区域内随机取一点,则此点取自扇面(扇环)部分的概率是( )A .14B .12C .34D .58【解析】设AB r =,圆心角为α,则整个折扇的面积为212S r α=,扇面的面积为2221132228r s r r ααα⎛⎫=−= ⎪⎝⎭, 若在整个扇形区域内随机取一点,记此点取自扇面(扇环)部分为事件M ,则根据几何概型的概率公式得()22338142r P M r αα==故选:C例57. 《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦1AB =尺,弓形高1CD =寸,估算该木材镶嵌在墙中的体积约为( )(注:1丈10=尺100=寸, 3.14π≈,5sin22.513≈)A .600立方寸B .610立方寸C .620立方寸D .633立方寸【解析】连接,,OA OB OD ,设⊙O 的半径为R ,则()22215R R −+=,所以13R =.由于5sin 13AD AOD R ∠==,所以22.5AOD ∠=︒,即45AOB ∠=︒.所以OAB ACB OACB S S S ∆=−弓形扇形 2451311012 6.333602π⨯=−⨯⨯≈平方寸. ∴该木材镶嵌在墙中的体积为100633ACB V S =⨯≈弓形立方寸, 故选D .例58. 赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【解析】设1AF =,则3,1AD BD AF ===,如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+−⋅⋅∠,所以AB =AC AB ==),B C ⎝⎭,()0,0A又sin sin sin BD AB BAD BAD ADB =⇒∠=∠∠,所以cos BAD ∠=所以()cos ,sin BAD BAD D AD AD ∠∠,即D ⎝⎭所以()2113339,13,02626,AD AB ⎛⎫==⎪ ⎪⎝⎭,1322AC ⎛ ⎝⎭=,又AD AB AC λμ=+所以913313λμ⎧=+=⎪⎪⇒⎨⎪==⎪⎩,所以1213λμ+=,故答案为:1213例59. 干支纪年历法(农历),是屹立于世界民族之林的科学历法之一,与国际公历历法并存.黄帝时期,就有了使用六十花甲子的干支纪年历法.干支是天干和地支的总称,把干支顺序相配正好六十为一周期,周而复始,循环记录.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.受此周期律的启发,可以求得函数2()sincos33x f x x =+的最小正周期为( )A .15πB .12πC .6πD .3π【解析】由天干为10个,地支为12个,其周期为其公倍数:60 故可得:2sin 3x y =的周期13T π=, cos3y x =的周期223T π=, 12T T 、的最小公倍数为6π,故()f x 的最小正周期为6π.故选:C.例60. 我国南宋著名数学家秦九韶发现了由三角形三边长求三角形的面积的“三斜求积”公式:设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,则△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.3 B .2 C .3 D.6【解析】 根据正弦定理,由a 2sin C =4sin A ,得ac =4.再结合(a +c )2=12+b 2,得a 2+c 2-b 2=4,则S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222= 16-44=3,故选A.例61. 公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它表现了恰到好处的和谐,其比值为5-12≈0.618,这一比值也可以表示为m =2sin 18°.若m 2+n =4,则m n 2cos 27°-1=( ) A .1 B .2 C .4 D .8【解析】由题设n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,m n 2cos 227°-1=2sin 18°4cos 218°2cos 227°-1=2(2sin 18°cos 18°)cos 54°=2sin 36°sin 36°=2.故选B .例62. 《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2π3,半径为6米的弧田,按照上述经验公式计算所得弧田面积是________平方米.(结果保留根号)【解析】如图,由题意可得∠AOB =2π3,OA =6.所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×6=3,可得CD =6-3=3.由AD =AO ·sin π3=6×3=33,可得AB =2AD=2×33=6 3.所以弧田面积S =12(弦×矢+矢2)=12×(63×3+32)=93+92(平方米).。
数学文化1-2(勾股定理)

△KAB≌△CAD
S S △KAB =
△CAD
1AK•AC1AD•AM
G
A•K A C A•D AM
2
2
H
S S 正方形KACH = 四边形
C
F
S S 同理: ADNM 正方形BCGF =
四边形BENM
K
b
a
c
S S S S 正方形KACH + 正方形BCGF = 四边形ADNM + 四边形
A
M
朱出
朱方 青入
青入
朱入
青方
青出
青出
(三)毕达哥拉斯证法(割补法)
b
a c
(a + b)2 = c2 + 4(½ab) a2 + 2ab + b2 = c2 + 2ab
a2 + b2 = c2
(四)欧几里得证法
❖欧几里得的《几何原本》是
古希腊数学成果、思想、方 法和精神的结晶。是整个科 学史上发行最广使用时间最 长的书,成为数学的“圣 经”。
中国数学史上最先完成 勾股定理证明的是三国时 期的赵爽(公元3世纪)。 赵爽在《周髀算经注》中, 采用证明几何问题的割补 原理,利用“弦图”,证 明了勾股定理。
中国最著名、最优秀的数学经典
《九章算术》 中国传统数学的代表作
中国古代数学文献的典范
《九章算术》是一部问题集 形式的算书,共246个问题, 采用“问、答、术”的形式 进行编排,共202术,按不同 算法的类型,分为九章。
B
BENM
S S S 正方形KACH + 正方形BCGF = 四边形
ADEB
∴ a2b2 c2
D
(典型题)高中数学必修三第三章《概率》测试题(包含答案解析)(1)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B .13C .35D .233.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .344.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-5.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4136.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5127.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35 C .34D .128.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .239.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .5810.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+11.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为26,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为20,现从1、2、3、4、5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )A .310B .15C .110D .32012.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()3323π- B ()323π-C ()323π+ D ()23323ππ-+二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.15.一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.16.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.17.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.18.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 .19.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.20.在边长为2的正△ABC 所在平面内,以A 3AB ,AC 于D ,E.若在△ABC 内任丢一粒豆子,则豆子落在扇形ADE 内的概率是________.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时30,40上的概率.间均落在[)22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)24.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.25.手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:(1)求直方图中a 的值,并由频率分布直方图估计该单位职工一天步行数的中位数; (2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数; (3)在(2)的条件下,该单位从行走步数大于15000的3组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间150,(170]的概率.26.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-.故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.5.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.6.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
3.4基本不等式

6
1 12
上题中只将条件改为0<x<1/8,即:
已知:0<x
解: ∵0<x≤1 ∴1-3x>0
1 8
,求函数y=x(1-3x)的最大值
1 3x 1 3x 2 1 1 ) 12 ∴y=x(1-3x)= 3x(1-3x)≤ ( 3 3 2
8
ymax
1 12
如此解答行吗?
1 1 例6、已知正数x、y满足2x+y=1,求 的最小值 x y
(3)三相等:求最值时一定要考虑不等式是否能取“=”,
1 2 有最大值 S 4
否则会出现错误
1 的最小值为 2 ,此时x= 1 1、当x>0时, x x
2、已知 2 x 3 y 2( x 0, y 0) 则x y 的最大值是
1 6
。
。
x, y ,且 x y 5,则 3 x 3 y的最小 3、若实数
值是( D ) A、10 B、 6 3 C、4 6 D、18 3
4、在下列函数中,最小值为2的是( C)
1 (1 x 10) A、 x 5 B、y lg x lg x y ( x R , x 0) 5 x 1 x x (0 x ) C、y 3 3 ( x R) D、y sin x sin x 2
C
B
B
基本不等式1: 一般地,对于任意实数a、b, 我们有 2 2
a b 2ab
当且仅当a=b时,等号成立。 用 a和 b代替a、b 会得到什么?
如何证明?
基本不等式2:
ab ab (a 0, b 0) 2
当且仅当a=b时,等号成立。
注意: 1、两个不等式的适用范围不同,而等号成立的条件相
第二章-2.2-基本不等式高中数学必修第一册人教A版

≥
1
(13
5
+2
12
⋅
3
)
=
3 + 4
12
5,当且仅当
1
+ = 5,(变形确定常数)则3
1
12
= (9 + 4 +
+
5
=
3
,
+ 3 = 5,即 = 1, =
+ 4 =
1
时取等号.
2
故3 + 4的最小值为5.
(方法二思路清晰,过程简单易上手,对思维有较高要求,适合变形后等式一边为
1
1
4
≥ ,故A,B错误;
1
1
+
≥ 1,故C恒成立;
+ 2
1
1
2
≥
= 8,∴ 2 2 ≤ ,故D恒成立.
2
+
8
∵ ≤ 4 = + ,∴ + =
∵
+ 2
2
≤
2 +2
,∴
2
2 +
方法帮丨关键能力构建
题型1 利用基本不等式求最值的常见题型及求解技巧
例5(1) 函数 = 5 − 2 0 < < 2 的最大值是
常数的情况)
【学会了吗|变式题】
4.(2024·浙江省杭州二中期末)已知 > 0, >
值为( A
2
0,且
1
+
= 1,则2 +
)
A.5 + 4 2
基本不等式1

换元法
如果用 a , b
去替换a、b,前提 是什么?能得到什么结论?
若a>0 b>0 若a∈R,b∈R
2+b2≥2 那么a + b ≥2 那么a
a b a b
(当且仅当a=b时,取“=”号)
(当且仅当a=b时,取“=”号)
ab 若a 0, b 0, 那么 ab 2
ab 若a 0, b 0, 那么 ab 2
得 2 x y 40,当且仅当 x y 10
时取等号,故长、宽均为10m 时,所用的篱笆最短。
例1.(2)一段长为36m的篱笆围成一个矩形菜园,问这 个矩形的长、宽各为多少时,菜园的面积最大.最大 面积是多少?
解:(2)设矩形的长、宽各为 x , ym ,由题意可得
2( x y) 36, x y 18, 且 x 0, y 0.
公式中等号成立的条件是什么? 是否当且仅当a=b时等号才成立?
形的角度 数的角度
2+b2≥2ab a
a=b
当a=b时 a2+b2-2ab =(a-b)2=0
若a,b∈R,那么a2+b2≥2ab (当且仅当a=b时,取“=”号)
以下不等式是否成立?
2+b2≥-2ab, a
a2+b2≥2|ab|
例1.(1)用篱笆围成一个面积为100平方米的矩形菜园, 问这个矩形的长、宽各为多少时所用的篱笆最短.最 短的篱笆是多少?
解:(1)设矩形的长、宽各为 x , ym ,由题意可得 xy 100 且 x 0, y 0。则篱笆的长可表示为 2 x y m ,根据
xy x y ( x 0, y 0) 2
高中数学必修三期末试题(附答案)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课件3 第24届国际数学家大会会标
课件编号:ABⅤ-3-4-1.
课件名称:第24届国际数学家大会会标.
课件运行环境:几何画板4.0以上版本.
课件主要功能:配合教科书“3. 4 基本不等式:
2b
a a
b +
≤”的教学.
课件制作过程:
(1)新建画板窗口,选择【线段】工具,画一条水平线段,选择线段两端点,按Ctrl+K,加注标签并用【文本】工具改为A1、A2.
(2)选择点A1,单击【Transform】(变换)菜单的【Mark Center】(标记中心),选择线段A1A2和点A2,单击【Transform】菜单的【Rotate】(旋转),弹出“Rotate”对话框,如图1,把“Fixed Angle”栏改为90º,单击【Rotate】,选择旋转所得点,按Ctrl+K,加注标签并用【文本】工具改为A4.选择点A2,单击【Transform】菜单的【Mark Center】,选择线段A1A2和点A1,单击【Transform】菜单的【Rotate】,弹出“Rotate”对话框,把“Fixed Angle”栏改为-90º,单击【Rotate】,选择旋转所得点,按Ctrl+K,加注标签并用【文本】工具改为A3.选择点A3、A4,按Ctrl+L连成线段.
(3)选择线段A1B4,单击【Construct】(构造)菜单中的【Point On Segment】(线段上的点),为所构造点加注标签并用【文本】工具改为A.选择点A1,单击【Transform】菜单的【Mark Center】,选择点A,单击【Transform】菜单的【Rotate】,弹出“Rotate”对话框,把“Fixed Angle”栏改为-90º,单击【Rotate】,选择旋转所得点,加注标签A′.
(4)依次选择点A、A4,单击【Transform】菜单的【Mark Vector】(标记向量),选择点A2,单击【Transform】菜单的【Translate】(平移),弹出“Translate”对话框,如图2,单击【Translate】完成,选择平移所得点,加注标签并改为C.(5)依次选择点A2、A′,单击【Transform】菜单的【Mark Vector】,选择点A3,单击【Transform】菜单的【Translate】,弹出“Translate”对话框,单击【Translate】完成,选择平移所得点,加注标签并改为D.
(6)依次选择点A′、A2,单击【Transform】菜单的【Mark Vector】,选择点A1,单击【Transform】菜单的【Translate】,弹出“Translate”对话框,单
击【Translate】完成,选择平移所得点,加注标签并改为B.选择点A′,按Ctrl+H,隐藏点.
图1 图2
(7)选择点A、C和线段A1A2,单击【Construct】菜单中的【Parallel Line】(平行线),选择点B、D和线段A1A4,单击【Construct】菜单中的【Parallel Line】.(8)选择过点A和B的两直线,按Ctrl+I,构造交点,并为交点加注标签E,如此构造交点F、G、H.选择四条直线,按Ctrl+H隐藏,结果如图3.(9)选择点A、B、E,按Ctrl+L连成三角形,重新选择点A、B、E,单击【Construct】菜单的【Triangle Interior】(三角形内部),选择三角形内部(即阴影部分),单击右键,再单击“Color”(颜色),选择合适的颜色.
图3 图4
(10)选择点B、C、F,重复步骤(9);选择点C、D、G,重复步骤(9);选择点D、A、H,重复步骤(9);如图4.
(11)选择图4中除正方形A1A2 A3A4外的所有元素,单击【Transform】菜单的【Translate】,弹出“Translate”对话框,如图5,将“Fixed Distance”改为10,“Fixed Angle”改为0,单击【Translate】完成.
图5
课件使用说明:
1.在几何画板4.0以上版本环境下,打开课件“第24届国际数学家大会会标.gsp”.
2.“第24届国际数学家大会会标.gsp”由2页组成.
第1页是使用说明,主要是如何操作;
第2页为“第24届国际数学家大会会标”的演示.
3.课件使用方法.
本课件主要用于“基本不等式”的教学.
拖动点A,以观察右图中正方形ABCD面积与阴影部分面积的关系,引导学
生得出基本不等式222
+≥.
a b ab
(浙江省衢州二中刘宗良)。