2020-2021学年浙江省数学高考模拟试题及答案

合集下载

2020-2021学年浙江省高考数学一模试卷(文科)及答案解析

2020-2021学年浙江省高考数学一模试卷(文科)及答案解析

浙江省高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<13.函数的一条对称轴是()A.B.C.D.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=______,数列{a n}通项公式a n=______.10.函数则f(﹣1)=______,若方程f(x)=m有两个不同的实数根,则m的取值范围为______.11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为______,x2+4y2+xy的最小值为______.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为______;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是______.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为______.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式lgx≥0=lg1,得到x≥1,即A={x|x≥1},由B中不等式变形得:2x≥=2,即x≥,∴B={x|x≥},则A∩B={x|x≥1},故选:A.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<1【考点】四种命题的真假关系.【分析】举例说明命题p为假命题,求出命题p的逆命题,否命题,逆否命题逐一判断即可得答案.【解答】解:已知命题p:若a<1,则a2<1,如a=﹣2,则(﹣2)2>1,命题p为假命题,∴A 不正确;命题p的逆命题是:若a2<1,则a<1,为真命题,∴B正确;命题p的否命题是:若a≥1,则a2≥1,∴C不正确;命题p的逆否命题是:若a2≥1,则a>1,∴D不正确.故选:B.3.函数的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】由三角函数公式化简可得f(x)=2sin(x+),由三角函数的对称性可得.【解答】解:由三角函数公式化简可得f(x)=sinx+sin(+x)=sinx+cosx=2(sinx+cosx)=2sin(x+),由x+=kπ+可x=kπ+,k∈Z.结合选项可得当k=0时,函数的一条对称轴为x=.故选:B.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β,知:在A中,若m,n是异面直线,则α与β相交或平行,故A错误;在B中,若m∥β,n∥α,则α与β相交或平行,故B错误;在C中,若m⊥n,则α与β相交或平行,故C错误;在D中,若m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定【考点】等差数列的性质.【分析】S n=na1+=+,利用二次函数的性质即可得出.【解答】解:S n=na1+=+,可知:a1>0,d<0,则唯一确定时n不一定唯一确定,可能有两个值,故选:D.6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增【考点】函数的图象.【分析】判断函数的奇偶性,求出函数的零点,利用导数判断单调性.【解答】解:∵f(﹣x)=(﹣x+)sin(﹣x)=(x﹣)•sinx=f(x).∴f(x)是偶函数.故A错误.令f(x)=0得x﹣=0或sinx=0,∵x∈[﹣π,π],∴x=±1或x=±π.∴f(x)有4个零点.故C正确.故选:C.7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【考点】平面向量数量积的运算.【分析】连结BC,CD,则=AB2,=AD2.于是•==.【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1= 1 ,数列{a n}通项公式a n= .【考点】等比数列的通项公式.【分析】由于3a2﹣4=2.利用等比数列的通项公式可得3a n﹣2n,即可得出.【解答】解:3a2﹣4=2.∴3a n﹣2n=2×2n﹣2=2n﹣1.∴3a1﹣2=1,解得a1=1.∴a n=.故答案分别为:1;.10.函数则f(﹣1)= 2﹣,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).【考点】函数的零点与方程根的关系;函数的值.【分析】根据分段函数的表达式代入求解即可,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=|﹣2|=2﹣,故答案为:2﹣,作出函数f(x)的图象如图:当x<0时,f(x)=2﹣e x∈(1,2),∴当x≤1时,f(x)∈[0,2),当x≥1时,f(x)≥0,若方程f(x)=m有两个不同的实数根,则0<m<2,即实数m的取值范围是(0,2),故答案为:2﹣,(0,2).11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为,x2+4y2+xy的最小值为.【考点】函数的最值及其几何意义.【分析】根据基本不等式进行转化求解得的最小值,利用换元法转化为一元二次函数,利用一元二次函数的性质即可求x2+4y2+xy的最小值.【解答】解:由x+2y=3得+=1,则=+=(+)×1=(+)(+)=2+++≥+2=+=,当且仅当=,即3x2=2y2取等号,即的最小值为.由x+2y=3得x=3﹣2y,由x=3﹣2y>0得0<y<,则x2+4y2+xy=(3﹣2y)2+4y2+(3﹣2y)y=6y2﹣9y+9=6(y﹣)2+,即当y=时,x2+4y2+xy的最小值为,故答案为:,.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为 5 ;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是1<a或a <.【考点】简单线性规划.【分析】(1)作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B (5,3)时,z最大,当直线过C时,z最小.(2)作出不等式组.表示的平面区域,从而解出.【解答】解:(1)画出不等式表示的平面区域:将目标函数变形为z=2x+y,作出目标函数对应的直线,,解得A(1,3),直线过A(1,3)时,直线的纵截距最大,z最小,最小值为5;则目标函数z=2x+y的最小值为:5.故答案为:5.(2).如下图:y=a(x﹣3)恒过(3,0),则若不等式组表示的平面区域是一个三角形,K AB==﹣,则实数a的取值范围,1<a或a<,故答案为:1<a或a<.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为1002 .【考点】数列与向量的综合;向量的模.【分析】根据题意,求出x n与y n的通项公式,计算的模长最小值即可.【解答】解:是按先后顺序排列的一列向量,且,,∴+(1,1),即(x n,y n)=(x n﹣1,y n﹣1)+(1,1)=(x n﹣1+1,y n﹣1+1);∴,∴,∴||===;∴当n==1002,即n=1002时,其模最小.故答案为:1002.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【考点】点、线、面间的距离计算.【分析】空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,且c=,b=,a=2.利用椭圆的性质:椭圆上点关于两焦点的张角在短轴的端点取得最大,即可得出.【解答】解:空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为.【考点】平行投影及平行投影作图法.【分析】根据题意,画出图形,找出与AC1垂直的平面去截正方体ABCD﹣A1B1C1D1所得的截面是什么,再求正方体在该平面上的投影面积.【解答】解:如图所示,连接BB1,DD1的中点MN,交AC1于点O,在对角面ACC1A1中,过点O作OP⊥AC,交AC1于点P,则平面MOP是对角线AC1的垂面;该平面截正方体ABCD﹣A1B1C1D1所得的截面是六边形MGHNFE;则正方体在该平面上的投影面积是MN•2OR=××2×=.故答案为:.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.【考点】正弦定理;两角和与差的正弦函数.【分析】(I)使用二倍角公式得出关于cosC的方程解出;(II)使用和角公式计算sinB,利用正弦定理和面积公式计算b.【解答】解:(I)∵cosA=cos2C=2cos2C﹣1=,∴cosC=±.∵A=2C,∴C是锐角,∴cosC=.(II)∵cosA=,cosC=,∴sinA=,sinC=.∴sinB=sin(A+C)=sinAcosC+cosAsinC=.由正弦定理得.∴a===5,∵S△ABC∴b=5.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式;等比数列的前n项和.【分析】(Ⅰ)当n≥2时,利用a n=S n﹣S n﹣1计算,进而可知a n=2n﹣7;通过b n+1=3b n可知数列{b n}为等比数列,利用b n=b2•3n﹣2计算即得结论;(Ⅱ)通过(I)可知c n=,进而分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)当n=1时,a1=S1=﹣5,当n≥2时,a n=S n﹣S n﹣1=2n﹣7,又∵当n=1时满足上式,∴a n=2n﹣7;∵b n+1=3b n,b2=3,∴数列{b n}为等比数列,故其通项公式b n=b2•3n﹣2=3n﹣1;(Ⅱ)由(I)可知c n=,当n为偶数是,T n=+=+;当n为奇数时,T n=+=+;综上所述,T n=.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连结BD,则E为BD的中点,利用中位线定理得出EF∥PD,故而EF∥面PCD;(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.则可证AP⊥平面BCH,于是AP⊥OB,结合OB⊥CH得出OB⊥平面PAC,于是∠BPO为PB与平面PAC所成的角.利用勾股定理计算BH,CH,OB,得出sin∠BPO=.【解答】证明:(I)连结BD,∵四边形ABCD是矩形,E是AC的中点,∴E是BD的中点.又F是BP的中点,∴EF∥PD,又EF⊄平面PCD,PD⊂平面PBD,∴EF∥平面PCD.(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.∵面ABCD⊥面PAB,面ABCD∩面PAB=AB,BC⊥AB,∴BC⊥平面PAB,∵AP⊂平面PAB,∴BC⊥AP,∵△PAB是等边三角形,∴AP⊥HB,又BC⊂平面BCH,BH⊂平面BCH,BC∩BH=B,∴AP⊥平面BCH,又OB⊂平面BCH,∴AP⊥OB,又OB⊥CH,CH⊂平面PAC,AP⊂平面PAC,CH∩AP=H,∴OB⊥平面PAC.∴∠BPO为PB与平面PAC所成的角.∵AB=2,BC=1,∴BH=,CH==2,∴BO==,∴sin∠BPO==.即直线BP与面PAC所成角的正弦值为.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(Ⅰ)设直线L的方程为y=kx+b,由点到直线距离公式和相切性质得k2+1=(1+b)2,联立,得x2﹣2kx﹣2b=0,由根的判别式得k2+2b=0,由此能求出直线L的方程.(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,由此利用根的判别式、弦长公式、点到直线距离公式,结合已知能求出的最小值.【解答】解:(Ⅰ)当P=1时,抛物线x2=2y,由题意直线L的斜率存在,设直线L的方程为y=kx+b,即kx﹣y+b=0,由题意得=1,即k2+1=(1+b)2,①联立,得x2﹣2kx﹣2b=0,由△=0,得k2+2b=0,②由①②得k=±2,b=﹣4,故直线L的方程为y=,(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,(*)由△=0,得pk2+2p=0,③∴b=﹣,代入(*)式,得x=pk,故点A(pk,),由①②得b=﹣,k2=,故A(pk,),∴|AB|===2•,点F到直线L的距离d==•=,∴S=|AB|•d==,∴==≥,当且仅当p=时,有最小值(2).20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得+a+1=0,解得a=﹣,检验满足△>0;综上所述,a的取值集合为{﹣,﹣2,2}.(Ⅱ)(1)若﹣≤0,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若0<﹣<1,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故y max=max{f(0),f(1)}=max{1,a+2}=,(3)若﹣≥1,即a≤﹣2时,此时f(1)=2+a≤0,y max=max{f(0),﹣f(1)}=max{1,﹣a﹣2}=,综上所述,y max=.。

2020-2021学年高考数学文科第二次模拟考试试题及答案解析高考模拟题

2020-2021学年高考数学文科第二次模拟考试试题及答案解析高考模拟题
3
③已知直线 l1:ax+3y-1=0 , l2:x+by+1=0,则 l1 l 2 的充要条件是 a
3;
b
④已知 a>0,b>0,函数 y
2ae x
b 的图象过点 ( 0,1),则 1
1
的最小值是
4
2 ,其中正确命题的序号是。
ab
三.解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。 17. (本小题满分 12 分)
( I) 求 a, b 的值;
(Ⅱ)若当 x∈ [0,+ ∞ )是,恒有 f x ≥ k g x 成立,求 k 的取值范围;
若要功夫深,铁杵磨成针!
(Ⅲ)若
5 =2.2361,试估计
5 ln 的值(精确到
0.001)
4
请考生在第 22、 23、 24 三题中任选一题作答,如果多做,则按所做的第一题记分。答题时用
若要功夫深,铁杵磨成针!
最新 高三第二次模 拟考试
数学试题(文)
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共
150 分,考试时间 120 分钟。
第 I 卷(选择题 共 60 分)
注意事项: 1. 答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 2. 每题选出答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在改涂
在其他答案标号。 一.选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题 目要求的。
1.集合 U= x Z | x( x 7) 0 , A={1,4,5} , B={2,3,5},则 A (CU B) =

2020-2021学年高考数学三轮复习冲刺模拟试题(19)有答案

2020-2021学年高考数学三轮复习冲刺模拟试题(19)有答案

高考数学三轮复习冲刺模拟试题19导数02三、解答题 1.已知函数(为自然对数的底数). (1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围 (3)已知,且,是否存在等差数列和首项为公比大于0的等比 数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.2.已知函数(). (1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围. (3)若,求的取值范围.3.已知函数()()()R a ax x x ax x f ∈--++=2312ln 23(Ⅰ)若2=x 为()x f 的极值点,求实数a 的值;(Ⅱ)若()x f y =在[)+∞,3上为增函数,求实数a 的取值范围;(Ⅲ)当21-=a 时,方程()()x b x x f +-=-3113有实根,求实数b 的最大值.4.已知函数f(x)=2lnx+ax 2-1(a ∈R)(1)求函数f(x)的单调区间;(2)若a=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)<m 对任意的0<x<1恒成立,求m 的取值范围; (ii)若x 1,x 2是两个不相等的正数,且f(x 1)+f(x 2)=0,求证x 1+x 2>2.5.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a .(1)求a 的值(2)若对任意的),0[+∞∈x ,有2)(kx x f ≤成立,求实数k 的最小值(3)证明∑=∈<+--ni N n n i 1*)(2)12ln(1226.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+L 都成立.7. (本小题满分14分)设函数2()=+(+1)f x x bln x ,其中b ≠0。

2020-2021学年高考数学文科一模试题及答案解析七

2020-2021学年高考数学文科一模试题及答案解析七

最新高考数学一模试卷(文科)一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣12.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B.圆锥C.棱锥D.棱柱4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+16.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数的单调递增区间是()A.B.C.D.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣211.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.912.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为_______.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2016=_______.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.20.已知椭圆C1:+=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.参考答案与试题解析一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣1【考点】复数的基本概念.【分析】直接由复数的基本概念得答案.【解答】解:∵复数3﹣i,∴复数3﹣i的虚部是:﹣1.故选:D.2.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]【考点】并集及其运算.【分析】先化简集合A,B,再根据并集的定义即可求出.【解答】解:集合A={x|x+2>0}=(﹣2,+∞),B={y|y=sinx,x∈R}=[﹣1,1],则A∪B=(﹣2,+∞),故选:A.3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B.圆锥C.棱锥D.棱柱【考点】由三视图求面积、体积.【分析】由于圆锥的三视图中一定不会出现正方形,即可得出结论.【解答】解:圆锥的三视图中一定不会出现正方形,∴该空间几何体不可能是圆锥.故选:B.4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的平行的条件以及两角和的余弦公式即可判断.【解答】解:向量=(cosα,sinβ),=(sinα,cosβ),若∥,∴cosαcosβ﹣sinαsinβ=0,即cos(α+β)=0,∴α+β=kπ+,k∈Z,对于A:α+β=0,不符合,对于B,α+β=π,不符合,对于C:α+β=﹣,符合,对于D,α+β=,不符合,故选:C.5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+1【考点】数列的概念及简单表示法.【分析】令n=1,2,3,4分别代入验证:即可得出答案.【解答】解:令n=1,2,3,4分别代入验证:可知C:a3=﹣2,因此不成立.故选:C.6.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)【考点】函数的值.【分析】由f(x+1)=﹣f(x),得到函数的周期是2,根据分段函数的表达式结合函数的周期性进行求解即可.【解答】解:由f(x+1)=﹣f(x),得f(x+2)=﹣f(x+1)=f(x),则函数的周期是2,则f(2.5)=f(2+0.5)=f(0.5)=﹣1,f(f(2.5))=f(﹣1)=f(﹣1+2)=f(1)=﹣1f(f(1.5))=f(f(2﹣0.5))=f(f(﹣0.5))=f(1)=﹣1,f(2)=f(0)=1,即列函数值为1的f(2),故选:D.7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响【考点】独立性检验的应用.【分析】根据观测值K2,对照数表,即可得出正确的结论.【解答】解:因为7.879<K2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响.故选:A.8.函数的单调递增区间是()A.B.C.D.【考点】复合三角函数的单调性.【分析】由2kπ﹣≤+≤2kπ+(k∈Z)与x∈[﹣2π,2π]即可求得答案.【解答】解:y=sin(+)的单调递增区间由2kπ﹣≤+≤2kπ+(k∈Z)得:4kπ﹣≤x≤4kπ+(k∈Z),∵x∈[﹣2π,2π],∴﹣≤x≤.即y=sin(+)的单调递增区间为[﹣,].故选A.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y【考点】直线与圆的位置关系.【分析】设动点P(x,y),由已知得|x+1|=﹣1,由此能求出点P的轨迹方程.【解答】解:设动点P(x,y),∵动点P到直线x=﹣1的距离等于它到圆:(x﹣2)2+y2=1的点的最小距离,∴|x+1|=﹣1,化简得:6x﹣2+2|x+1|=y2,当x≥﹣1时,y2=8x,当x<﹣1时,y2=4x﹣4<﹣8,不合题意.∴点P的轨迹方程为:y2=8x.故选:A.10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣2【考点】简单线性规划;对数函数的图象与性质.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:由题意得,作出不等式组对应的平面区域如图:设z=x﹣y,由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z最大,最大为z max=2﹣0=2当直线经过点A(0,2)时,此时直线y=x﹣z截距最大,z最小.此时z min=0﹣2=﹣2.故选:D.11.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.9【考点】程序框图.【分析】模拟执行程序,可得此程序框图的功能是计算并输出S=+的值,结合选项,只有当S的值为0.7时,n不是正整数,由此得解.【解答】解:模拟执行程序,可得此程序框图执行的是输入一个正整数n,求+的值S,并输出S,由于S=+=1+…+﹣=1﹣=,令S=0.7,解得n=,不是正整数,而n分别输入2,3,8时,可分别输出0.75,0.8,0.9.故选:A.12.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)【考点】命题的真假判断与应用.【分析】根据全称命题和特称命题的定义进行判断即可.【解答】解:设h(x)=f(x)﹣g(x),则h(x)=e x﹣x﹣1,则h′(x)=e x﹣1,当x<0时,h′(x)<0,h(x)单调递减,当x>0时,h′(x)>0,则h(x)单调递增,即当x=0时,函数h(x)取得极小值同时也是最小值h(0)=0,即h(x)≥0,即∀x∈R,f(x)>g(x)不一定成立,故A是假命题,故选:A二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为.【考点】空间两点间的距离公式.【分析】根据两点间的距离公式,进行计算即可.【解答】解:空间直角坐标系中,点A(1,0,1),B(﹣1,1,2),所以线段AB的长度为|AB|==.故答案为:.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2016= 2016 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d.∵S3=2a3,S5=15,∴d=2(a1+2d),d=15,解得a1=d=1.则a2016=1+×1=2016.故答案为:2016.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于 1 .【考点】正弦定理.【分析】利用正弦定理得出a,b,c和外接圆半径R的关系,根据周长列出方程解出R.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为 4 .【考点】双曲线的简单性质.【分析】根据向量数量积的定义结合双曲线的性质进行求解即可.【解答】解:由向量数量积的定义知•即向量在向量上的投影||模长的乘积,故求|•|的最小值,即求在x轴上的投影的绝对值的最小值,由双曲线的图象可知|•|的最小值为4,故答案为:4三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.【考点】三角函数中的恒等变换应用;弧度制的应用;三角函数的最值.【分析】(1)由面积公式即可得到S与θ的函数关系.(2)对三角函数化简,由θ的范围,得到S的最大值.【解答】解:(1)∵S=S△OPC+S△OQC=OP•0Csin∠POC+OQ•OCsin∠QOC=2sinθ+2sin(﹣θ)(θ∈(0,))(2)由(1)知,S=2sinθ+2sin(﹣θ)=sinθ+cosθ=2sin(θ+)∵θ∈(0,),∴θ+∈(,)∴当θ+=,即θ=时,S最大,为2.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由茎叶图可得样本中空气质量优良的天数,可得概率,用总天数乘以概率可得;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,列举可得总的基本事件共15个,其中空气质量等级恰好不同有9个,由概率公式可得的.【解答】解:(1)由茎叶图可发现样本中空气质量优的天数为1,空气质量为良的天数为3,故空气质量优良的概率为=,故利用该样本估计该地本月空气质量优良的天数为30×=12;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,则从中随机抽取2天的所有可能结果为:(a,b)(a,c)(a,d)(a,A)(A,α)(b,c)(b,d)(b,A)(b,α)(c,d)(c,A)(c,α)(d,A)(d,α)(A,α)共15个,其中空气质量等级恰好不同有(a,A)(A,α)(b,A)(b,α)(c,A)(c,α)(d,A)(d,α)(A,α)共9个,该两天的空气质量等级恰好不同的概率P==19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)由平面BDEF⊥平面ABCD得FB⊥平面ABCD,故FB⊥AB,又AB⊥BC,于是AB ⊥平面FBCG,即AB为棱锥A﹣FCG的高;(2)建立空间坐标系,分别求出平面AEF和平面EFG的法向量,证明他们的法向量垂直即可.【解答】解:(1)∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,FB⊥BD,FB⊂平面BDEF,∴FB⊥平面ABCD,∵AB⊂平面ABCD,∴AB⊥FB,又AB⊥BC,∴AB⊥平面BCGF,∴V A﹣FGC===.(2)以B为原点,AB,BC,BF为坐标轴建立空间直角坐标系,如图:则A(﹣2,0,0),E(﹣2,2,2),F(0,0,2),G(0,2,1),∴=(0,2,2),=(2,﹣2,0),=(0,2,﹣1).设平面AEF的法向量为=(x,y,z),平面EFG的法向量为=(a,b,c),则,,即,,令z=1得=(﹣1,﹣1,1),令c=1得=(,,1).∴=﹣=0.∴,∴平面AEF⊥平面EFG.20.已知椭圆C1:+=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由a>b,可设顶点(a,0)到直线y=x的距离为,又顶点(0,b)到直线y=x的距离为,运用点到直线的距离公式,计算可得a=2,b=1,进而得到椭圆方程;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,设A(x1,y1),B(x2,y2),运用韦达定理和判别式大于0,以及直径所对的圆周角为直角,由向量垂直的条件:数量积为0,化简整理,可得t,进而得到所求直线l的方程.【解答】解:(1)由a>b,可设顶点(a,0)到直线y=x的距离为,可得=,即a=2,又顶点(0,b)到直线y=x的距离为,可得=,即b=1,则椭圆方程为+y2=1;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,可得5x2+8tx+4t2﹣4=0,设A(x1,y1),B(x2,y2),即有△=64t2﹣20(4t2﹣4)>0,解得﹣<t<,且t≠0,x1+x2=﹣,x1x2=,y1y2=(x1+t)(x2+t)=x1x2+t2+t(x1+x2)=+t2﹣=,以AB为直径的圆恰好过坐标原点,可得OA⊥OB,即有•=0,即x1x2+y1y2=0,即为+=0,解得t=±,满足﹣<t<,且t≠0,则直线l的方程为y=x±.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出导数,由题意可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,求出右边函数的值域,即可得到a的范围;(2)不存在直线l与f(x)的图象有两个不同的切点.假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,运用导数和函数的解析式,化简整理,即可得到矛盾.【解答】解:(1)函数f(x)=x2+的导数为f′(x)=2x﹣=,由f(x)在(0,+∞)上单调递增,可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,由2x3在(0,+∞)上递增,可得2x3的值域为(0,+∞),则a≤0,即有a的取值范围为(﹣∞,0];(2)不存在直线l与f(x)的图象有两个不同的切点.证明:假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,由f′(x1)=f′(x2),可得2x1﹣=2x2﹣,即有2(x1﹣x2)=a•,显然x1+x2≠0,x1﹣x2≠0,即有a=﹣,而﹣f′(x1)=﹣2x1+=x1+x2﹣﹣2x1+=x2﹣x1+﹣=﹣≠0,即f′(x1)=f′(x2)≠,故不存在直线l与f(x)的图象有两个不同的切点.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.【考点】与圆有关的比例线段;弦切角.【分析】(1)证明:直线AC平分∠DAB,只要证明∠DAC=∠BAC,利用平行线的性质及等弧对等角即可;(2)作DE⊥AB交AC于E,证明:△ADE∽△ACD,即可证明CD2=AE•AC.【解答】证明:(1)∵CD∥AB,∴∠DCA=∠BAC,∵=,∴∠DAC=∠DCA,∴∠DAC=∠BAC,∴直线AC平分∠DAB;(2)∵DE⊥AB,∴∠ADE+∠DAB=90°,∵AB为直径,∴∠DBA+∠DAB=90°,∴∠ADE=∠ABD,∵∠ABD=∠DCA,∴∠ADE=∠ACD,∴△ADE∽△ACD,∴AD2=AE•AC,∵AD=DC,∴CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程可得直角坐标方程.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).分别代入C1的极坐标方程即可得出.【解答】解:(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程ρ2﹣4ρcosθ+3=0,θ∈[0,2π],可得:x2+y2﹣4x+3=0,配方为:(x﹣2)2+y2=1.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).将代入C1可得:ρ2﹣2ρ+3=0,解得ρ=.将代入C1可得:ρ2+2ρ+3=0,解得ρ=﹣,舍去.故C1与C2的公共点的极坐标为.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.【考点】绝对值三角不等式.【分析】(1)利用和的余弦、正弦公式,结合三角不等式,即可证明结论;(2)由(1)可得|cos[α+(β+γ]=|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,即可证明结论.【解答】证明:(1)|cos(α+β)|=|cosαcosβ﹣sinαsinβ|≤|cosαcosβ|+|sinαsinβ|≤|cos α|+|sinβ|;|sin(α+β)|=|sinαcosβ﹣cosαsinβ|≤|sinαcosβ|+|cosαsinβ|≤|cosα|+|cosβ|.(2)由(1)可得|cos[α+(β+γ)]≤|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,∵α+β+γ=0,∴|cos[α+β+γ]=1∴|cosα|+|cosβ|+|cosγ|≥1.2016年9月12日。

第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)

第四关  以立体几何为背景的新颖问题为背景的填空题-(原卷版)

压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

2020-2021学年高考总复习数学(文)三校联考模拟试题及答案解析一

2020-2021学年高考总复习数学(文)三校联考模拟试题及答案解析一

最新三校联考高考数学模拟试卷(文科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁U A)∩B=()A.{2,4} B.{3} C.{2,4,6} D.{1,2,3,4,5}2.设z=1+i(是虚数单位),则=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i3.化简的结果是()A.cos160° B.﹣cos160°C.±cos160°D.±|cos160°|4.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元5.已知向量,其中,且,则向量和的夹角是()A.B.C.D.6.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.17.若实数x,y满足条件,则z=x﹣2y的最小值为()A.﹣1 B.﹣2 C.﹣D.﹣8.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.169.若函数,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,则ω的值为()A.B.C.D.210.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是()A.8 B.C.12 D.1611.已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P 与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.212.已知函数f(x)=若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2015) B.(1,2016) C.(2,2016) D.[2,2016]二.填空题:本大题共4小题,每小题5分.13.已知函数f(x)=,则f(ln3)= .14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .15.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为,则取得最大值时,内角A的值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且S n=n2+2n,(n∈N*)求:(1)数列{a n}的通项公式a n;(2)若b n=a n•3n,求数列{b n}的前n项和T n.18.某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族人数占本组的频率第一组[25,30)120 0.6第二组[30,35)195 p第三组[35,40)100 0.5第四组[40,45) a 0.4第五组[45,50)30 0.3第六组[50,55)15 0.3(1)补全频率分布直方图并求n、a、p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.19.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面ABD⊥平面EFC;(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C﹣ABD的体积.20.已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(Ⅰ)求圆M的方程;(Ⅱ)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.21.已知函数,且曲线y=f(x)在点(1,f(1))处的切线与y 轴垂直.(Ⅰ)求b的值;(Ⅱ)设g(x)=x2,求证g(x)>f(x)﹣2ln2.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.[选修4-4:坐标系与参数方程]23.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.[选修4-5:不等式选讲]24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.高考数学模拟试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁U A)∩B=()A.{2,4} B.{3} C.{2,4,6} D.{1,2,3,4,5}【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】根据补集的定义先求出∁U A,再计算(∁U A)∩B.【解答】解:∵U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},∴∁U A={2,4,6},∴(∁U A)∩B={2,4}.故选:A.【点评】本题考查了集合的简单运算问题,是基础题目.2.设z=1+i(是虚数单位),则=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i【考点】复数代数形式的乘除运算.【专题】计算题.【分析】把复数z=1+i代入后直接运用复数的除法运算.【解答】解:因为z=1+i,所以.故选B.【点评】本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,此题是基础题.3.化简的结果是()A.cos160° B.﹣cos160°C.±cos160°D.±|cos160°|【考点】同角三角函数基本关系的运用;三角函数值的符号.【专题】计算题.【分析】确定角的象限,然后确定cos160°的符号,即可得到正确选项.【解答】解:160°是钝角,所以=|cos160°|=﹣cos160°故选B【点评】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.4.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元【考点】用样本的频率分布估计总体分布.【专题】计算题;图表型.【分析】设11时到12时的销售额为x万元,因为组距相等,所以对应的销售额之比等于之比,也可以说是频率之比,解等式即可求得11时到12时的销售额.【解答】解:设11时到12时的销售额为x万元,依题意有,故选C.【点评】本题考查频率分布直方图的应用问题.在频率分布直方图中,每一个小矩形的面积代表各组的频率.5.已知向量,其中,且,则向量和的夹角是()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】方程思想;综合法;平面向量及应用.【分析】由题意和垂直关系可得向量夹角余弦值的方程,解方程结合夹角的范围可得.【解答】解:∵,且,∴•(﹣)=﹣=1﹣1×2×cos<,>=0,解得cos<,>=,∴向量和的夹角<,>=,故选:B.【点评】本题考查向量的数量积和夹角以及垂直关系,属基础题.6.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.1【考点】等比数列的性质.【专题】计算题;等差数列与等比数列.【分析】利用a4•a14=(a9)2,各项为正,可得a9=2,然后利用对数的运算性质,即可得出结论.【解答】解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故答案为:3.【点评】本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.7.若实数x,y满足条件,则z=x﹣2y的最小值为()A.﹣1 B.﹣2 C.﹣D.﹣【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(,),化目标函数z=x﹣2y为,由图可知,当直线过A时,最小在y轴上的截距最大,z有最小值为.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【考点】循环结构.【专题】算法和程序框图.【分析】列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.9.若函数,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,则ω的值为()A.B.C.D.2【考点】三角函数的最值.【专题】计算题;函数思想;数学模型法;三角函数的求值.【分析】利用辅助角公式化积,结合已知得到函数的最小正周期,再由周期公式求得ω.【解答】解:=,∵函数f(x)的最大值为2,∵f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,∴函数f(x)的周期T=4×=6π,由周期公式可得T==6π,解得ω=,故选:A.【点评】本题考查三角函数的最值,考查了三角函数的图象和性质,是基础题.10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是()A.8 B.C.12 D.16【考点】由三视图求面积、体积.【专题】计算题;函数思想;转化思想;空间位置关系与距离.【分析】根据三视图得出该几何体是在棱长为4的正方体中的三棱锥,画出图形,求出各个面积即可.【解答】解:根据题意,得;该几何体是如图所示的三棱锥A﹣BCD,且该三棱锥是放在棱长为4的正方体中,所以,在三棱锥A﹣BCD中,BD=4,AC=AB==,AD==6,S△ABC=×4×4=8.S△ADC==4,S△DBC=×4×4=8,在三角形ABC中,作CE ⊥E,连结DE,则CE==,DE==,S△ABD==12.故选:C.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是由三视图还原为几何体,是中档题.11.已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P 与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出过焦点F2且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入方程结合a2+b2=c2,解出e即得.【解答】解:过焦点F2且垂直渐近线的直线方程为:y﹣0=﹣(x﹣c),联立渐近线方程y=与y﹣0=﹣(x﹣c),解之可得x=,y=故对称中心的点坐标为(,),由中点坐标公式可得对称点的坐标为(﹣c,),将其代入双曲线的方程可得,结合a2+b2=c2,化简可得c2=5a2,故可得e==.故选:B.【点评】本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.12.已知函数f(x)=若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2015) B.(1,2016) C.(2,2016) D.[2,2016]【考点】分段函数的应用.【专题】函数的性质及应用.【分析】0≤x≤1,可得sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增;x∈时,函数f(x)=sinπx单调递减.x>1,log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,利用f(a)=f(b)=f(c),可得a+b=1,2015>c>1,即可得出.【解答】解:∵0≤x≤1,∴sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增,函数值由0增加到1;x∈时,函数f(x)=sinπx单调递减,函数值由1减少到0;x>1,∴log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,∵f(a)=f(b)=f(c),∴a+b=1,2015>c>1,∴a+b+c的取值范围是(2,2016).故选:C.【点评】本题考查了函数的单调性与值域,考查了数形结合的思想方法、推理能力与计算能力,属于难题.二.填空题:本大题共4小题,每小题5分.13.已知函数f(x)=,则f(ln3)= e .【考点】函数的值.【专题】函数的性质及应用.【分析】根据分段函数的表达式直接代入即可得到结论.【解答】解:∵1<ln3<2,∴2<ln3+1<3,由分段函数的表达式可知,f(ln3)=f(1+ln3)=f(ln3e)=,故答案为:e.【点评】本题主要考查函数值的计算,利用分段函数的表达式直接代入即可,比较基础.14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= 1 .【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】求出函数的导数,利用切线的方程经过的点求解即可.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为12π.【考点】球的体积和表面积.【专题】计算题;数形结合法;空间位置关系与距离;球.【分析】证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的表面积.【解答】解:∵三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,∴△PAB≌△PAC≌△PBC.∵PA⊥PB,∴PA⊥PC,PB⊥PC.以PA、PB、PC为过同一顶点的三条棱,作长方体如图:则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×=12π.故答案为:12π.【点评】本题考查了长方体对角线公式和球的表面积计算等知识,属于基础题.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为,则取得最大值时,内角A的值为.【考点】余弦定理.【专题】计算题;转化思想;数形结合法;解三角形.【分析】利用三角形面积公式和余弦定理可得,由三角函数恒等变换的应用化简可得,利用正弦函数的图象和性质即可求解.【解答】解:在△ABC中,由题意得:,由余弦定理得:,所以,即,所以当时,取得最大值.故答案为:.【点评】本题主要考查了三角形面积公式和余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且S n=n2+2n,(n∈N*)求:(1)数列{a n}的通项公式a n;(2)若b n=a n•3n,求数列{b n}的前n项和T n.【考点】数列的求和.【专题】等差数列与等比数列.【分析】(1)由,当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1,即可得出.(2)由(1)可得,.再利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵,∴当n=1时,a1=S1=3.(*),显然,当n=1时也满足(*)式,综上所述,.(2)由(1)可得,.其前n项和①则②①﹣②得,==﹣2n•3n+1,∴.【点评】本题考查了递推关系、“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.18.某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族人数占本组的频率第一组[25,30)120 0.6第二组[30,35)195 p第三组[35,40)100 0.5第四组[40,45) a 0.4第五组[45,50)30 0.3第六组[50,55)15 0.3(1)补全频率分布直方图并求n、a、p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【考点】古典概型及其概率计算公式;频率分布直方图;用样本的频率分布估计总体分布.【专题】计算题.【分析】(1)由题意及统计图表,利用图表性质得第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为=0.06,在有频率分布直方图会全图形即可.(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【解答】解:(1)第一组的人数为=200,频率为0.04×5=0.2,所以n==1000.由题可知,第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以第二组的人数为1000×0.3=300,所以p==0.65,第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.频率直方图如下:(2)∵[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人.设[40,45)岁中的4人为a、b、c、d,[45,50)岁中的2人为m、n,则选取2人作为领队的有(a,b)、(a,c)、(a,d)、(a,m)、(a,n)、(b,c)、(b,d)、(b,m)、(b,n)、(c,d)、(c,m)、(c,n)、(d,m)、(d,n)、(m,n),共15种;其中恰有1人年龄在[40,45)岁的有(a,m)、(a,n)、(b,m)、(b,n)、(c,m)、(c,n)、(d,m)、(d,n),共8种.∴选取的2名领队中恰有1人年龄在[40,45)岁的概率为P=.【点评】本题考查频率分步直方图,考查频数,频率和样本容量之间的关系,考查等可能事件的概率,考查利用列举法来得到题目要求的事件数,本题是一个概率与统计的综合题目.19.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面ABD⊥平面EFC;(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C﹣ABD的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(I)由CB=CD得CF⊥BD,由AD⊥BD,AD∥EF得EF⊥BD,故BD⊥平面CEF,于是平面ABD⊥平面EFC;(II)由CF⊥BD,CF⊥EF得CF⊥平面ABD,即CF为棱锥的高.底面为直角△ABD,代入体积公式计算即可.【解答】(Ⅰ)证明:∵E,F分别是AB,BD的中点,∴EF∥AD,∵AD⊥BD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD.又∵CF∩EF=F,CF⊂平面CEF,EF⊂平面CEF,∴BD⊥面EFC,∵BD⊂平面ABD,∴平面ABD⊥平面EFC.(Ⅱ)解:∵CF⊥BD,EF⊥CF,EF∩BD=F,BD⊂平面ABD,EF⊂平面ABD,∴CF⊥平面ABD,∵CB=CD=BD=1,∴,∵AD=BD=1,AD⊥BD,∴,∴.【点评】本题考查了线面垂直,面面垂直的判定,棱锥的体积计算,属于中档题.20.已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(Ⅰ)求圆M的方程;(Ⅱ)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.【考点】直线与圆相交的性质.【专题】综合题;直线与圆.【分析】(1)设出圆的标准方程,利用圆M过两点C(1,﹣1)、D(﹣1,1)且圆心M在直线x+y﹣2=0上,建立方程组,即可求圆M的方程;(2)四边形PAMB的面积为S=2,因此要求S的最小值,只需求|PM|的最小值即可,在直线3x+4y+8=0上找一点P,使得|PM|的值最小,利用点到直线的距离公式,即可求得结论.【解答】解:(1)设圆M的方程为:(x﹣a)2+(y﹣b)2=r2(r>0),根据题意得,解得:a=b=1,r=2,故所求圆M的方程为:(x﹣1)2+(y﹣1)2=4;(2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=(|AM||PA|+|BM||PB|).又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,而|PA|2=|PM|2﹣|AM|2=|PM|2﹣4,即S=2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min==3,所以四边形PAMB面积的最小值为2=2.【点评】本题考查圆的标准方程,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.21.已知函数,且曲线y=f(x)在点(1,f(1))处的切线与y 轴垂直.(Ⅰ)求b的值;(Ⅱ)设g(x)=x2,求证g(x)>f(x)﹣2ln2.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】(Ⅰ)根据导数的几何意义,求出函数的切线,建立方程关系即可求b的值;(Ⅱ)求函数的导数,构造函数,利用函数最值和导数之间的关系进行证明即可.【解答】解:(Ⅰ),所以…由题设知f'(1)=2﹣b=0,∴b=2…(Ⅱ)由(Ⅰ)可得,故只需证,设,…F′(x)=2x﹣1﹣+==令F′(x)=0,得…当时,F′(x)<0,当时,F'(x)>0,所以,…所以,g(x)>f(x)﹣2ln2…【点评】本题主要考查导数的综合应用,根据导数的几何意义建立方程关系,以及构造函数利用函数单调性最值和导数之间的关系是解决本题的关键.综合性较强,有一定的难度.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.【考点】相似三角形的判定;与圆有关的比例线段.【专题】计算题;直线与圆.【分析】(1)由BE是⊙O的切线,可得∠EBD=∠BAD,又∠CBD=∠CAD,∠BAD=∠CAD,从而可求∠EBD=∠CBD,即可得解.(2)先证明△BDE∽△ABE,可得,又可求∠BCD=∠DBC,BD=CD,从而可得,即可得解.【解答】解:(1)因为BE是⊙O的切线,所以∠EBD=∠BAD…又因为∠CBD=∠CAD,∠BAD=∠CAD…所以∠EBD=∠CBD,即BD平分∠EBC.…(2)由(1)可知∠EBD=∠BAD,且∠BED=∠BED,有△BDE∽△ABE,所以,…又因为∠BCD=∠BAE=∠DBE=∠DBC,所以∠BCD=∠DBC,BD=CD…所以,…所以AE•DC=AB•BE…【点评】本题主要考查了相似三角形的判定,与圆有关的比例线段的应用,解题时要认真审题,注意圆的切线的性质的灵活运用,属于中档题.[选修4-4:坐标系与参数方程]23.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.【考点】参数方程化成普通方程;点的极坐标和直角坐标的互化.【专题】计算题.【分析】(1)把曲线C1的极坐标方程化为直角坐标方程是x2+y2=2,把曲线C2的参数方程化为普通方程是.(2)结合图象,根据直线和圆的位置关系可得,当且仅当时,C1,C2没有公共点,由此求得t的取值范围.【解答】解:(1)曲线C1的直角坐标方程是x2+y2=2,表示以原点(0,0)为圆心,半径等于的圆.曲线C2的普通方程是,表示一条垂直于x轴的线段,包括端点.…(2)结合图象,根据直线和圆的位置关系可得,当且仅当时,C1,C2没有公共点,解得,即t的取值范围为(0,)∪(,+∞).…【点评】本题主要考查把参数方程化为普通方程、把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系的应用,属于基础题.[选修4-5:不等式选讲]24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.【考点】绝对值不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)对x讨论,分当x≥4时,当﹣≤x<4时,当x<﹣时,分别解一次不等式,再求并集即可;(2)运用绝对值不等式的性质,求得F(x)=f(x)+3|x﹣4|的最小值,即可得到m的范围.【解答】解:(1)当x≥4时,f(x)=2x+1﹣(x﹣4)=x+5>0,得x>﹣5,所以x≥4成立;当﹣≤x<4时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以1<x<4成立;当x<﹣时,f(x)=﹣x﹣5>0,得x<﹣5,所以x<﹣5成立.综上,原不等式的解集为{x|x>1或x<﹣5};(2)令F(x)=f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当﹣时等号成立.即有F(x)的最小值为9,所以m≤9.即m的取值范围为(﹣∞,9].【点评】本题考查绝对值不等式的解法,以及不等式恒成立思想转化为求函数的最值问题,运用分类讨论的思想方法和绝对值不等式的性质是解题的关键.。

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

∴CD⊥平面
ABD,∴CD
是三棱锥
C
­
ABD
的高,∴VC
­
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前普通高等学校招生全国统一考试(浙江卷)数 学一、 选择题:本大题共10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}x -1<x Q x =<<<1,=0x 2P ,那么P Q U =A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)2.椭圆x y +=22194的离心率是 A.133B. 5C. 23D. 593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A. π+12B.π+32C.π3+12D. π3+32 4.若x,y 满足约束条件x 0x y 30x 2y 0⎧≥⎪≥=+⎨⎪≤⎩+-,则z 2-x y 的取值范围是A.[0,6]B. [0,4]C.[6, +∞)D.[4, +∞) 5.若函数()2f x =++x ax b在区间[0,1]上的最大值是M,最小值是m,则M-mA. 与a 有关,且与b 有关B. 与a 有关,但与b 无关C. 与a 无关,且与b 无关D. 与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d,前n 项和为n S ,则“d>0”是465"+2"S S S >的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件7.函数y (x)y (x)f f ==,的导函数的图像如图所示,则函数y (x)f =的图像可能是8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i=1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D . I 2<I 1<I 3非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

祖冲之继承并发展了“割圆术”,将π的学科.网值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=。

12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab=。

13.已知多项式()31x +()2x +2=5432112345x a x a x a x a x a +++++,则4a =________________,5a =________.14.已知△ABC ,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC的面积是___________,cos ∠BDC=__________.15.已知向量a,b 满足1,2==a b ,则+-a +b a b 的最小值是,最大值是。

16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.已知∈a R ,函数()4=+-+f x x a a x在区间[1,4]上的最大值是5,则a 的取值范围是 三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)已知函数()()22sin cos 23sin cos =--∈f x x x x x x R (I )求23π⎛⎫⎪⎝⎭f 的值 (II )求()f x 的最小正周期及单调递增区间.19. (本题满分15分)如图,已知四棱锥P-ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC=AD=2DC=2CB,E 为PD 的中点. (I )证明:CE ∥平面PAB ;(II )求直线CE 与平面PBC 所成角的正弦值20. (本题满分15分)已知函数()(12-1e 2-⎛⎫=≥⎪⎝⎭x f x x x x (I )求()f x 的导函数(II )求()f x 在区间1,+2⎡⎫∞⎪⎢⎣⎭上的取值范围 21. (本题满分15分)如图,已知抛物线2=x y .点A 1139-,,,2424B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,抛物线上的点P (x,y )13-<<22⎛⎫ ⎪⎝⎭x ,过点B 作直线AP 的垂线,垂足为Q (I )求直线AP 斜率的取值范围; (II )求PA PQ g 的最大值22. (本题满分15分)已知数列{}n x 满足:()()*111=1,ln 1++=++∈n n n x x x x n N 证明:当*∈n N 时 (I )10<<+n n x x ; (II )112-2++≤n n n nx x x x ;(III) 1-21122-≤≤n n n x普通高等学校招生全国统一考试(浙江卷)数学参考答案一、选择题:本题考查基本知识和基本运算。

每小题4分,满分40分。

1.A 2.B 3.A 4.D 5.B 6.C 7.D 8.A 9.B 10.C二、填空题:本题考查基本知识和基本运算。

多空题每题6分,单空题每题4分,满分36分。

11. 212.5,2 13.16.4 14.,2415. 4, 16.66017. 9-,2⎛⎤∞ ⎥⎝⎦三、解答题:本大题共5小题,共74分。

18.本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力。

满分14分。

(I )由221sin,cos 332ππ==-, 22211322f π⎛⎫⎛⎫⎛⎫=---⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得223f π⎛⎫= ⎪⎝⎭(II )由22cos 2cos sin =-x x x 与sin 22sin cos =x x x 得()2cos 2sin 2sin 26f π⎛⎫=--+⎪⎝⎭x x x =-x所以()f x 的最小正周期是π由正弦函数的性质得 3+22+2,262πππππ≤+≤∈k x k k Z 解得2++,63ππππ≤≤∈k x k k Z 所以()f x 的单调递增区间是2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z19.本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力。

满分15分。

(Ⅰ)如图,设PA 中点为F ,连结EF ,FB.因为E ,F 分别为PD ,PA 中点,所以EF ∥AD 且,又因为BC ∥AD ,,所以EF ∥BC 且EF=BC ,即四边形BCEF 为平行四边形,所以CE ∥BF , 因此CE ∥平面PAB.(Ⅱ)分别取BC ,AD 的中点为M ,N.连结PN 交EF 于点Q ,连结MQ. 因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ ∥CE. 由△PAD 为等腰学科&网直角三角形得 PN ⊥AD.由DC ⊥AD ,N 是AD 的中点得 BN ⊥AD.所以 AD ⊥平面PBN ,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连结MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin∠QMH=,所以,直线CE与平面PBC所成角的正弦值是.20.本题主要考查函数的最大(小)值,导数的运算及其应用,同时考查分析问题和解决问题的能力。

满分15分。

(Ⅰ)因为所以=.(Ⅱ)由解得或.因为x()1 ()()- 0 + 0 - f (x )↘↗↘又,所以f (x )在区间[)上的取值范围是.21. 本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。

满分15分。

(Ⅰ)设直线AP 的斜率为k,k=21-14122x x x =-+,因为1322x -<<,所以直线AP 斜率的取值范围是(-1,1)。

(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Qk k xk -++=+因为211()2k x ++21(1)k kx ++)Qx x-=2(1)k -,所以|PA|g |PQ|=-(k-1)(k+1)3令f(k)= -(k-1)(k+1)3, 因为f ’(k)=2(42)(1)k k --+,所以f(k)在区间(-1,12)上单调递增,(12,1)上单调递减, 因此当k=12时,|PA|g |PQ|取得最大值271622. 本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力。

满分15分。

(Ⅰ)用数学归纳法证明:nx>0当n=1时,x 1=1>0 假设n=k 时,x k >0,那么n=k+1时,若xk+1≤0,则110In(1)0kk k x xx ++<=++≤,矛盾,故1k x +>0。

因此0()n x n N *〉∈所以111ln(1)n n n n x x x x +++=++〉 因此10()n n x x n N *+〈〈∈(Ⅱ)由111ln(1)n n n n x x x x +++=++〉得2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥函数f(x)在[0,+∞)上单调递增,所以()(0)f x f ≥=0, 因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥112(N )2n n n n x x x x n *++-≤∈(Ⅲ)因为1111ln(1)n n n n n x x x x x ++++=++≤+所以112n n x -≥得 1122n n n n x x x x ++≥- 111112()022n n x x +-≥-〉 12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅-= 故212n n x -≤1211(N )22n n n x n *--≤≤∈。

相关文档
最新文档