数字控制系统设计 实验报告
数字pid控制算法的研究实验报告

数字pid控制算法的研究实验报告数字PID控制算法是一种常用的控制系统算法,能够通过对比例、积分和微分三个参数进行调整来控制系统的稳定性和精度。
本文将对数字PID控制算法的研究实验进行详细的描述。
实验设计本次实验采用一个控制器,其输出为闭环信号,被用于控制一个加速变量,以实现一个平稳的控制过程。
实验的具体步骤如下:1. 确定控制器的输出参数根据控制系统的实际需求,确定控制器的比例参数、积分参数和微分参数。
2. 建立实验模型将实验系统建模为阻尼比为1,反馈系数为0.8的系统。
其中,加速变量的幅值为0.1,根据实验结果,调整PID参数后可以使系统达到稳定的输出状态。
3. 进行实验将实验模型连接到控制器上,通过输入信号控制加速变量的幅值,实现控制系统的平稳输出。
通过仿真软件对实验过程进行模拟,记录实验的增益、响应时间和精度等指标。
4. 分析实验结果根据实验结果,对PID控制器的输出参数进行调整,以获得更好的控制效果。
同时,对不同参数组合的增益、响应时间和精度等指标进行分析,探究不同参数组合对控制效果的影响规律。
实验结果通过本次实验,得到以下实验结果:- 比例参数对控制效果的影响规律为:当比例参数增大时,控制增益增大,但响应时间变慢;当比例参数减小时,控制增益减小,但响应时间变快。
- 积分参数对控制效果的影响规律为:当积分参数增大时,控制增益减小,但控制稳定性好;当积分参数减小时,控制增益增大,但控制稳定性差。
- 微分参数对控制效果的影响规律为:当微分参数增大时,控制增益增大,但控制稳定性好;当微分参数减小时,控制增益减小,但控制稳定性差。
结论通过本次实验,可知数字PID控制算法在平稳控制过程中具有较好的效果,不同的参数组合可以影响控制效果的稳定性和精度,可以根据实际应用的需要调整PID控制器的参数,以实现更好的控制效果。
华南理工大学数字系统设计实验3报告资料

实验三基于状态机的交通灯控制地点:31号楼312房;实验台号:12实验日期与时间:2017年12月08日评分:预习检查纪录:批改教师:报告内容:一、实验要求1、开发板上三个led等分别代表公路上红黄绿三种颜色交通灯。
2、交通灯状态机初始状态为红灯,交通灯工作过程依次是红→绿→黄→红。
3、为了方便观察,本次实验要求红灯的显示时间为9s,绿灯显示时间为6s,黄灯显示时间为3s,时间需要倒计时,在数码管上显示。
编程之前要求同学们先画好ASM图。
4、1Hz分频模块请采用第二次实验中的内容,7段码显示模块请参考书本相关内容。
5、第三次实验课用到EP2C8Q208C8通过74HC595驱动数码管,有两种方法写该模块代码:方法1,用VHDL语言写,(自己写VHDL代码有加实验分)。
方法2,可调用verilog数码管驱动模块,该模块在附件“seg.zip”中。
和其它VHDL编写的模块可以混搭在一个电路图中使用。
EP2C8Q208C8的SCTP,SHCP,SER_DATA数码管信号线通过两块74HC595集成块,再驱动数码管。
6、芯片型号:cyclone:EP2C8Q208C8,开发板所有资料都在“新板”附件中,其中管脚配置在实验要求中是不对的,以“新板”附件中为准。
二、实验内容1设计要求开发板上三个led等分别代表公路上红黄绿三种颜色交通灯。
交通灯状态机初始状态为红灯,交通灯工作过程依次是红→绿→黄→红。
本次实验要求红灯的显示时间为9s,绿灯显示时间为6s,黄灯显示时间为3s,时间需要倒计时,在数码管上显示。
2设计思路(1)数码管驱动第三次实验课用到EP2C8Q208C8通过74HC595驱动数码管,有两种方法写该模块代码:方法1,用VHDL语言写,(自己写VHDL代码有加实验分)。
方法2,可调用verilog数码管驱动模块,该模块在附件“seg.zip”中。
和其它VHDL 编写的模块可以混搭在一个电路图中使用。
数字pid控制实验报告doc

数字pid控制实验报告doc数字pid控制实验报告篇一:实验三数字PID控制实验三数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型计算机控制系统实验箱一台2.PC计算机一台三、实验内容1.系统结构图如3-1图。
图3-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds)Gh(s)=(1-e-TS)/sGp1(s)=5/((0.5s+1)(0.1s+1))Gp2(s)=1/(s(0.1s+1))2.开环系统(被控制对象)的模拟电路图如图3-2和图3-3,其中图3-2对应GP1(s),图3-3对应Gp2(s)。
图3-2 开环系统结构图1 图3-3开环系统结构图23.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II 型”系统。
4.当r(t)=1(t)时(实际是方波),研究其过渡过程。
5.PI调节器及PID调节器的增益Gc(s)=Kp(1+K1/s)=KpK1((1/k1)s+1) /s=K(Tis+1)/s式中 K=KpKi ,Ti=(1/K1)不难看出PI调节器的增益K=KpKi,因此在改变Ki时,同时改变了闭环增益K,如果不想改变K,则应相应改变Kp。
采用PID调节器相同。
6.“II型”系统要注意稳定性。
对于Gp2(s),若采用PI调节器控制,其开环传递函数为G(s)=Gc(s)·Gp2(s)=K(Tis+1)/s·(本文来自:/doc/a1e402b1c081e53a580216fc700abb 68a882ad33.html 小草范文网:数字pid控制实验报告)1/s(0.1s+1)为使用环系统稳定,应满足Ti>0.1,即K1 7.PID 递推算法如果PID 调节器输入信号为e(t),其输送信号为u(t),则离散的递推算法如下:u(k)=u(k-1)+q0e(k)+q1e(k-1)+q2e(k-2)其中 q0=Kp(1+KiT+(Kd/T))q1=-Kp(1+(2Kd/T))q2=Kp(Kd/T)T--采样周期四、实验步骤1.连接被测量典型环节的模拟电路(图3-2)。
计算机控制系统实验报告

一、实验目的1. 理解计算机控制系统的基本原理和组成;2. 掌握计算机控制系统的基本操作和调试方法;3. 通过实验,加深对计算机控制理论的理解和应用。
二、实验仪器1. PC计算机一台;2. 计算机控制系统实验箱一台;3. 传感器、执行器等实验设备。
三、实验内容1. 计算机控制系统组成与原理;2. 传感器信号采集与处理;3. 执行器控制与调节;4. 计算机控制系统调试与优化。
四、实验步骤1. 熟悉实验设备,了解计算机控制系统实验箱的组成及功能;2. 连接实验设备,检查无误后启动实验软件;3. 根据实验要求,进行传感器信号采集与处理;4. 根据实验要求,进行执行器控制与调节;5. 对计算机控制系统进行调试与优化,观察系统响应和性能;6. 记录实验数据,分析实验结果。
五、实验结果与分析1. 计算机控制系统组成与原理实验过程中,我们了解了计算机控制系统的基本组成,包括传感器、控制器、执行器等。
传感器用于采集被控对象的物理量,控制器根据采集到的信号进行计算、处理,然后输出控制信号给执行器,执行器对被控对象进行调节。
2. 传感器信号采集与处理在实验中,我们使用了温度传感器采集环境温度信号。
通过实验,我们掌握了如何将模拟信号转换为数字信号,以及如何对采集到的信号进行滤波处理。
3. 执行器控制与调节实验中,我们使用了继电器作为执行器,根据控制器输出的控制信号进行开关控制。
通过实验,我们学会了如何设置执行器的参数,以及如何对执行器进行调节。
4. 计算机控制系统调试与优化在实验过程中,我们对计算机控制系统进行了调试与优化。
通过调整控制器参数,使得系统在满足控制要求的同时,具有良好的动态性能和稳态性能。
六、实验总结本次实验使我们对计算机控制系统有了更深入的了解,掌握了计算机控制系统的基本原理和操作方法。
通过实验,我们提高了动手能力和实际操作能力,为今后从事相关领域工作奠定了基础。
七、实验报告1. 实验名称:计算机控制系统实验2. 实验日期:XXXX年XX月XX日3. 实验人员:XXX、XXX4. 实验指导教师:XXX5. 实验内容:计算机控制系统组成与原理、传感器信号采集与处理、执行器控制与调节、计算机控制系统调试与优化6. 实验结果与分析:详细描述实验过程中遇到的问题、解决方法及实验结果7. 实验心得体会:总结实验过程中的收获和体会(注:以上实验报告仅供参考,具体实验内容和结果可能因实际情况而有所不同。
数字程控交换系统控制系统与交换网络 - 现代交换技术实验报告

计算机与信息工程学院综合性实验报告一、实验目的1、了解常用的几种信令信号音和铃流发生器的电路组成和工作过程;2、熟悉这些信号音和铃流信号的技术要求。
二、实验内容1、用万用表测量各测量点拨号音、忙音、回铃音及铃流控制信号的电压;2、用示波器测量各测量点拨号音、忙音、回铃音及铃流控制信号的波形;3、各测量点说明如下:TP04:回铃音信号TP05:铃流控制信号TP06:拨号音信号TP07:忙音信号三、实验仪器1、LT-CK-02E程控交换实验箱一台;2、电话机两台;3、数字示波器一台。
四、实验原理在用户话机与交换机之间的用户线上,要沿两个方向传递语言信息。
但是,为了实现一次通话,还必须沿两个方向传送所需的控制信号。
比如,当用户想要通话时,必须首先向交换机提供一个信号,能让交换机识别并准备好有关设备,此外,还要把指明呼叫的目的地的信号发往交换机。
当用户想要结束通话时,也必须向交换机提供一个信号,以释放通话期间所使用的设备。
除了用户要向交换机传送信号之外,还需要交换机向用户传送信号,如交换机要向用户传送关于交换机设备状况,以及被叫用户状态的信号。
由此可见,一个完整电话通信系统,除了交换系统和传输系统外,还应有信令系统。
用户向交换机发送的信号有用户状态信号(一般为直流信号)和号码信号(地址信号)。
交换机向用户发送的信号有各种可闻信号与振铃信号(铃流)两种。
A、各种可闻信号:一般采用频率为500Hz(或者450Hz)的交流信号(本实验箱采用500Hz交流信号)。
例如:拨号音:(Dial tone)连续发送的500Hz信号;回铃音:(Echo tone)1秒送,4秒断的5秒断续的500Hz信号;忙音:(busy tone)0.35秒送,0.35秒断的0.7秒断续的500Hz信号;催挂音:连续发送响度较大的信号与拨号音有明显区别。
B、振铃信号(铃流)一般采用频率为25Hz,以1秒送,4秒断的5秒断续方式发送。
拨号音由U201(EPM3256)产生,频率为500Hz,幅度在2V左右。
数字PID控制实验

4.5.1数字PID 控制实验 1 标准PID 控制算法1. 一. 实验要求2. 了解和掌握连续控制系统的PID 控制的原理。
3. 了解和掌握被控对象数学模型的建立。
4. 了解和掌握数字PID 调节器控制参数的工程整定方法。
观察和分析在标准PID 控制系统中, P.I.D 参数对系统性能的影响。
二. 实验内容及步骤 ⑴ 确立模型结构本实验采用二个惯性环节串接组成实验被控对象, T1=0.2S, T2=0.5S Ko=2。
S e T K s G τ-+⨯≈+⨯+=1S 110.2S 21S 5.01)(000⑵ 被控对象参数的确认被控对象参数的确认构成如图4-5-10所示。
本实验将函数发生器(B5)单元作为信号发生器, 矩形波输出(OUT )施加于被测系统的输入端R, 观察矩形波从0V 阶跃到+2.5V 时被控对象的响应曲线。
图4-5-10 被控对象参数的确认构成实验步骤: 注: 将‘S ST ’用‘短路套’短接!① 在显示与功能选择(D1)单元中, 通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② B5的量程选择开关S2置下档, 调节“设定电位器1”, 使之矩形波宽度>2秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 2.5V 左右(D1单元右显示)。
④ 构造模拟电路: 按图4-5-10安置短路套及测孔联线, 表如下。
(a )安置短路套 (b )测孔联线⑤ 运行、观察、记录:A)先运行LABACT 程序, 选择界面的“工具”菜单选中“双迹示波器”(Alt+W )项, 弹出双迹示波器的界面, 点击开始, 用虚拟示波器观察系统输入信号。
图4-5-11 被控对象响应曲线B) 在图4-5-112被控对象响应曲线上测得t1和t2。
通常取 , 要求从图中测得 ; 通常取 , 要求从图中测得 。
计算 和 : 0.84730.3567t -1.204t )]t (y 1[ln -)]t (y 1[ln )]t (y 1[ln t )]t (y 1[n t 0.8473t t )]t (y 1[ln -)]t (y 1[ln t t T 212010201102122010120==-----=-=---=τC) 求得数字PID 调节器控制参数P K 、I T 、D T (工程整定法))/0.2(1)/0.37()/0.6(1)/0.5()/2.5(]27.0)/(35.1[10000200000T T T T T T T T T T K K D I P ττττττ+⨯=++⨯=+=据上式计算数字PID 调节器控制参数P K 、I T 、D T⑶ 数字PID 闭环控制系统实验数字PID 闭环控制系统实验构成见图4-5-12, 观察和分析在标准PID 控制系统中, P.I.D 参数对系统性能的影响, 分别改变P.I.D 参数, 观察输出特性, 填入实验报告,模块号 跨接座号 1 A5 S5, S7, S102 A7 S2, S7, S9, P3 B5‘S-ST ’1 输入信号R B5(OUT )→A5(H1)2 运放级联 A5A (OUTA )→A7(H1)3 示波器联接 ×1档B5(OUT )→B3(CH1) 4A7A (OUTA )→B3(CH2)图4-5-12 数字PID 闭环控制系统实验构成实验步骤: 注: 将‘S ST ’用‘短路套’短接!① 在显示与功能选择(D1)单元中, 通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
数字系统设计及实验实验报告

数字系统设计及实验实验报告一、实验目的数字系统设计及实验课程旨在让我们深入理解数字逻辑的基本概念和原理,掌握数字系统的设计方法和实现技术。
通过实验,我们能够将理论知识应用于实际,提高解决问题的能力和实践动手能力。
本次实验的具体目的包括:1、熟悉数字电路的基本逻辑门、组合逻辑电路和时序逻辑电路的设计方法。
2、掌握使用硬件描述语言(如 Verilog 或 VHDL)进行数字系统建模和设计。
3、学会使用相关的电子设计自动化(EDA)工具进行电路的仿真、综合和实现。
4、培养团队合作精神和工程实践能力,提高解决实际问题的综合素质。
二、实验设备和工具1、计算机:用于编写代码、进行仿真和综合。
2、 EDA 软件:如 Quartus II、ModelSim 等。
3、实验开发板:提供硬件平台进行电路的下载和测试。
4、数字万用表、示波器等测量仪器:用于检测电路的性能和信号。
三、实验内容1、基本逻辑门电路的设计与实现设计并实现与门、或门、非门、与非门、或非门和异或门等基本逻辑门电路。
使用 EDA 工具进行仿真,验证逻辑功能的正确性。
在实验开发板上下载并测试实际电路。
2、组合逻辑电路的设计与实现设计一个 4 位加法器,实现两个 4 位二进制数的相加。
设计一个编码器和译码器,实现数字信号的编码和解码。
设计一个数据选择器,根据控制信号选择不同的输入数据。
3、时序逻辑电路的设计与实现设计一个同步计数器,实现模 10 计数功能。
设计一个移位寄存器,实现数据的移位存储功能。
设计一个有限状态机(FSM),实现简单的状态转换和控制逻辑。
四、实验步骤1、设计方案的确定根据实验要求,分析问题,确定电路的功能和性能指标。
选择合适的逻辑器件和设计方法,制定详细的设计方案。
2、代码编写使用硬件描述语言(如 Verilog 或 VHDL)编写电路的代码。
遵循代码规范,注重代码的可读性和可维护性。
3、仿真验证在 EDA 工具中对编写的代码进行仿真,输入不同的测试向量,观察输出结果是否符合预期。
数字系统设计 实验报告

数字系统设计实验报告1. 引言数字系统设计是计算机科学与工程中的重要领域之一。
本实验旨在通过设计一个基本的数字系统,深入理解数字系统的原理和设计过程。
本文将按照以下步骤详细介绍实验的设计和实施。
2. 实验目标本实验旨在设计一个简单的数字系统,包括输入、处理和输出三个模块。
具体目标如下: - 设计一个输入模块,用于接收用户的输入数据。
- 设计一个处理模块,对输入数据进行特定的处理。
- 设计一个输出模块,将处理结果展示给用户。
3. 实验设计3.1 输入模块设计输入模块主要用于接收用户的输入数据,并将其传递给处理模块进行处理。
在本实验中,我们选择使用键盘作为输入设备。
具体设计步骤如下: 1. 初始化输入设备,确保能够正确接收用户输入。
2. 设计输入缓冲区,用于存储用户输入的数据。
3. 实现输入函数,将用户输入的数据存储到输入缓冲区中。
3.2 处理模块设计处理模块是数字系统的核心部分,负责对输入数据进行特定的处理。
在本实验中,我们选择设计一个简单的加法器作为处理模块。
具体设计步骤如下: 1. 定义输入数据的格式和表示方法。
2. 实现加法器的逻辑电路,可以通过使用逻辑门和触发器等基本组件来完成。
3. 设计加法器的控制电路,用于控制加法器的运算过程。
4. 验证加法器的正确性,可以通过给定一些输入数据进行测试。
3.3 输出模块设计输出模块用于将处理结果展示给用户。
在本实验中,我们选择使用显示器作为输出设备。
具体设计步骤如下: 1. 初始化输出设备,确保能够正确显示处理结果。
2. 设计输出缓冲区,用于存储待显示的数据。
3. 实现输出函数,将输出数据从输出缓冲区中传输到显示器上。
4. 实验实施4.1 输入模块实施根据3.1节中的设计步骤,我们首先初始化输入设备,然后设计输入缓冲区,并实现相应的输入函数。
4.2 处理模块实施根据3.2节中的设计步骤,我们定义输入数据的格式和表示方法,然后实现加法器的逻辑电路和控制电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理实验报告
题目:数字控制系统设计
专业班级:电气工程及其自动化02
学号:
学生姓名:
指导教师:
学院名称:电气信息学院
完成日期: 2012年 5月20日
1.熟悉本实验涉及的部分MATLAB 函数
函数c2d 调用示例
某离散系统如图5.4 所示,利用函数c2d 获取其z 传递函数的程序段及运行结果如图5.5 所示。
图5.4 某离散系统
图5.5 例1 系统z 传递函数的获取及相关程序
函数step、impulse、lsim等可用于离散系统的仿真,其调用方法分别见图5.6、图5.7 和图5.8。
图5.6 函数step 的调用
图 5.7 函数impulse 的调用
图5.8 函数lsim 的调用
2.数字闭环系统的单位阶跃响应
利用本实验所附程序lab5_1.m,求取图5.4 所示系统的单位阶跃响应,并分析改变采样周期的后果。
程序段如下:
num=[1]; den=[1 1 0];
sysc=tf(num,den);
sysd=c2d(sysc,1,'zoh');
sys=feedback(sysd,[1]);
T=[0:1:20]; step(sys,T)
实验结果如下
当T=1时,
当T=2时,
当T=3时,
改变采样周期了,系统的稳定性降低,采样输出不能真实反映实际输出。
3.数字控制系统的根轨迹及其参数设计
图5.9 所示数字控制系统中,()
() ()() 0.36780.7189
10.3680
z
G z
z z +
=
--
,
()
()
0.3678
0.2400 K z
D z
z -
=
+
,其中,参数K待定。
试利用本实验所附程序lab5_2.m 选取使该系统稳定的K 值。
图 5.9 某数字控制系统
程序段为
num=[0.3678 0.2644]; den=[1 -0.76 -0.24]; sys=tf(num,den);
x=[-1:0.1:1];y=sqrt(1-x.^2);
rlocus(sys);grid,hold on
plot(x,y,'--',x,-y,'--')
结果如下
因为系统稳定时,其根轨迹是在单位圆的内部的,所以,在图上可以看出,当根轨迹与单位圆的交点处即系统临界稳定,在交点处,增益K为4.65。
由传递函数求的特征方程为
()()
20.36780.760.26440.240
Z K K
+-+-=,取
1
1
r
Z
r
+
=
-
,
()()
2
1.520.1034 1.240.26440.63220
K r K r
-+-+=,则当系统稳定时K=4.69 实验结果正确。
4 思考题
改变采样周期会给系统响应带来怎样的影响?试举例说明。
答:增大采样周期会降低系统的稳定性,采样输出也不能真实反映实际输出。
例如数字闭环系统的单位阶跃响应实验,根据实验结果有,当T的值越小,更能反映实际的结果。