齿轮模态分析步骤
ANSYS循环对称结构的模态分析

循环对称结构的模态分析主要用在如齿轮,涡轮,叶轮等的具有循环对称结构物体的模态分析。
它通过模拟结构的一个扇区,通过分析这个扇区,从而扩展到整个模型。
它的步骤主要有6个。
1,建立基本扇区模型,也就是只建1/n的模型,一个齿活一个叶片的模型。
2,确定循环对称面(可以自动确定,也可以手动选择)。
3,施加边界条件。
4,制定分析类型和分析选项。
5,通过cycop命令指定循环求解选项,并用solve求解。
6,通过/cyexpand将振型扩展到全部360度范围,观察整个结果。
由于选择的谐波指数的关系,固有频率在排列上会有一些凌乱。
以前的ansys版本把谐波指数这个概念叫做节径,现在的都叫做谐波指数了。
按照整体结构分析,系统会把频率按照从小到大排列。
而用谐波指数这样计算出来的频率,他在排列的时候是按照谐波指数的增加而排列的,因此,相对应的固有频率有大有小,不规则(但是数值一样,就是排列不同)。
解决的办法是,你把这个结果提取出来,自己把它按照从小到大排列一下就可以了。
另外求解这个过程有一些注意的地方。
a在建立基本扇区的时候要在柱坐标系,你把csys置1就可以,b另外,扇区角选择能被360整除的。
c选择循环对称面时选择节点,好像其他特征不行(原因别人和我讲了,忘了)。
ac比较重要,b稍微注意一下就好。
然后就是求解方面了。
循环对称模态分析结果提取一般的结构模态分析完成后,要提取相应阶次结果,就用下面命令*GET,PARA,MODE,i,FREQ对于循环对称结构,取单个扇区进行分析,指定谐波指数The harmonic index,数值上谐波指数可以通过下面计算得到,The harmonic index= N/2 (N为偶数)The harmonic index=(N-1)/2 (N为奇数)上式中,N为总体模型分成的扇区总数。
然后对每次谐波设定提取模态阶次,分析的时候,ansys在原来扇区有限元模型的基础上,叠加一个完全相同的模型,通过谐波指数控制不同的傅里叶级数展开,从而扩展得到全模型的结果,对于这样计算的模态结果,ansys计算的时候,默认从0谐波开始计算,每次谐波按照一个载荷步(LSstep)进行,对应每次谐波下提取的固有频率按照子步substep给出,要提取所有谐波指数下的模态解,可采用下面命令/POST1*dim,frq_0,,7,10*do,i,1,7*do,j,1,10SET,i,j*GET,frq_0(i,j),ACTIVE,,SET,FREQ*enddo*enddo解释:按照谐波指数提取结构固有频率到数组frq_0中,i代表计算的LSstep,循环对称结构模态分析中,其最大值在数值上等于谐波指数+1,比如说,提取6次谐波,就需要7步计算;j代表每次谐波提取的固有频率个数。
基于Romax的变速箱建模及模态分析

基于Romax的变速箱建模及模态分析Romax是著名的机械设计软件,该软件可以用来进行机械系统的建模、仿真和分析,其中包括变速箱的建模及模态分析。
本文将详细介绍Romax的变速箱建模及模态分析流程。
一、变速箱建模在Romax中,变速箱的建模分为三个步骤:建立齿轮、建立轴承和连接齿轮。
1.建立齿轮首先,需要选择相应的齿轮进行建模,可以根据实际情况选择不同类型的齿轮。
进入Romax Gear模块,选择“New Gear”,然后从“Model Library”中选择相应的齿轮。
通常情况下需要填写参数,例如模数、齿轮宽度等,以确保齿轮的正确性。
2.建立轴承建立完齿轮之后,需要对其进行支撑。
在Romax Bearing模块中选择“New Bearing”,然后选择合适的轴承类型,如球轴承、滚子轴承等。
填写相应的参数后,可以将轴承放置在相应的位置上。
3.连接齿轮在将齿轮连接起来之前,需要在Romax Gears模块中选择“New Shaft Assembly”,然后选择正确的轴承类型。
然后在“New Gear”中选择齿轮并放置到相应的位置上,最后将齿轮进行连接。
二、模态分析在建立完变速箱的三维模型之后,就可以进入模态分析。
Romax使用有限元方法来预测变速箱的固有频率和固有振型,以便确定变速箱的可靠性和稳定性。
1.建立模态分析模型模态分析模型需要包括整个变速箱的结构,包括轴、齿轮、轴承、支撑等所有部分。
在Romax中,可以使用“Create New Model”来建立模态分析模型。
在建立模型时需要将齿轮和轴承等等加入到模型中。
2.设置分析参数确定好模态分析模型之后,需要设置一些分析参数,如边界条件、网格密度、模型尺寸和接触范围等等。
设置完这些参数后,可以使用FEA技术进行模态分析。
3.模态分析结果模态分析结果可以得到变速箱的固有频率和固有振型,这些结果可以用来判断变速箱的稳定性和可靠性。
同时,也可以进一步优化设计,以提高变速箱的实际性能。
基于abaqus的齿轮模态分析

基于ABAQUS 的直齿圆柱齿轮模态分析余西伟(上海大学 机电工程与自动化学院,上海 200072)摘要:齿轮是最常用的零部件之一,起到了传递扭矩的作用。
为了研究齿轮固有频率和振型的影响因素,改善齿轮的动态特性,本文运用SolidWorks 三维建模软件建立齿轮建模,并运用ABAQUS 和振动分析理论对模型进行模态分析,用Lanczos 算法提取固有频率,得到齿轮的模态和振型,为优化齿轮的结构设计提供支持。
关键词:模态分析;ABAQUS;固有频率;振型Modal Analysis of Spur Gear Based on ABAQUS(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: T he gear is one of the most common parts, transferring the torque effect. In order to research the factors affecting the gear’s natural frequency and vibration mode and improving the dynamic characteristics.The gear model established by 3D model software SolidWorks was carried on modal analysis by the software ABAQUS and the vibration analysis theory. The modal andvibration model was extracted by using Lanczos algorithm ,providing support for the optimization design of gear.Key words: modal analysis; ABAQUS; natural frequency; vibration mode0引言齿轮是依靠齿的啮合传递扭矩的轮状机械零件。
ANSYS循环对称结构模态分析实例-简化齿轮的模态分析

循环对称结构模态分析实例-简化齿轮的模态分析一、问题描述该实例是对一个简化的齿轮模型的模态分析。
齿轮在几何形状上具有循环对称的特征,因此在对其做模态分析时可以采用循环对称结构模态分析的方法。
要求确定齿轮的低阶固有频率。
已知的几何数据参见分析过程中的定义,材料特性数据如下:杨氏模量=2×108N/m2泊松比=0.3密度=7.8×10-6N/m3二、GUI方式分析过程第1 步:指定分析标题1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a Gear”,然后单击OK。
第2 步:定义单元类型1.选取菜单途径Main Menu>Preprocessor>Element Type>Add/Edit/Delete。
Element Types对话框将出现。
2.单击Add。
Library of Element Types对话框将出现。
3.在左边的滚动框中单击“Structural Shell”。
4.在右边的滚动框中单击“Elastic4node63”。
5.单击Apply。
6.在左边的滚动框中单击“Structural Solid”。
7.在右边的滚动框中单击“Brick8node45”。
8.单击OK。
9.单击Element Types对话框中的Close按钮。
第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>Material Props>-Constant-Isotropic。
Isotropic Material Properties对话框将出现。
2.在OK上单击以指定材料号为1。
第二个对话框将出现。
3.输入EX为2E8。
4.输入DENS为7.8e-6。
5.输入NUXY为0.3。
6.单击OK。
第4 步:定义建模所需的参数1.选取菜单途径Utility Menu>Parameters>Scalar Parameters。
齿轮箱模态分析和结构优化方法研究

齿轮箱模态分析和结构优化方法研究齿轮箱模态分析和结构优化方法研究摘要:齿轮箱作为一种重要的传动装置,在机械工程中应用广泛。
为了提高齿轮箱的工作性能和可靠性,对其进行模态分析和结构优化是非常必要的。
本文主要探讨了齿轮箱的模态分析方法和结构优化方法,并通过数值模拟和实验验证了这些方法的有效性。
1. 引言齿轮箱作为传动装置的核心组成部分,承担着传递动力和扭矩的重要任务。
在工作过程中,齿轮箱会受到一系列的载荷作用并产生振动。
为了确保齿轮箱的正常运行和延长其使用寿命,需要对其模态进行分析,并通过结构优化提高其工作性能。
2. 齿轮箱模态分析方法齿轮箱的模态分析是通过求解其固有频率和振动模态来了解其振动性能的方法。
常用的模态分析方法包括有限元法、模态实验法和解析法等。
2.1 有限元法有限元法是目前使用最广泛的齿轮箱模态分析方法之一。
该方法将齿轮箱划分为有限个小单元,并在每个单元上建立数学模型,采用数值计算方法求解其固有频率。
通过有限元法,可以快速获得齿轮箱的振动模态,并了解其受力情况和固有频率。
2.2 模态实验法模态实验法是通过实际的振动测试来求解齿轮箱的振动模态。
该方法需要在实际装置上进行加速度传感器的布置和振动测试,通过测量、分析和处理振动信号,得到齿轮箱的固有频率。
模态实验法可以直接反映出齿轮箱在实际工作中的振动情况,具有较高的准确性。
2.3 解析法解析法是通过建立齿轮箱的数学模型,采用解析的方法求解其固有频率和模态。
该方法需要分析齿轮箱的几何形状、材料特性和载荷条件等,通过解析计算得到振动模态。
解析法可以提供精确的解析结果,但对模型的假设和简化要求较高。
3. 齿轮箱结构优化方法针对齿轮箱在模态分析过程中产生的问题,可以通过结构优化方法对其进行优化,提高其工作性能和可靠性。
3.1 结构材料优化结构材料的选择对齿轮箱的模态和振动特性有重要影响。
通过优化选择齿轮箱的结构材料,可以改善其载荷传递性能和抗振动能力。
基于UG的某行星齿轮流量计齿轮系统的模态分析

基于UG的某行星齿轮流量计齿轮系统的模态分析UG软件作为广泛应用于机械设计和制造领域的软件平台,为工程师提供了全面的设计、分析和仿真功能。
本文将基于UG软件对某行星齿轮流量计齿轮系统进行模态分析,并深入探讨齿轮系统的性能。
行星齿轮流量计是一种常用于测量液体或气体体积流量的装置,而齿轮系统是其核心部件之一。
本设计采用了行星齿轮系统,由一组内啮合于齿轮挂架周边的小齿轮与一组密合外啮合的大齿轮构成,并通过转动传递动力。
齿轮系统的稳定性和运行效率对流量计的性能有着至关重要的影响。
在基于UG软件进行模态分析前,首先需要建立模型。
采用Solid Edge软件建立了整个行星齿轮流量计的三维模型,并将该模型导入到UG平台进行分析。
在建立模型时,需要注意每个齿轮之间的啮合配合尺寸与公差要求,以保证齿轮系统的运转稳定。
模态分析主要是对齿轮系统的振动响应情况进行分析。
在UG的求解过程中,将根据齿轮系统的自由度及其几何结构、材料属性、质量等因素,计算系统在某一特定条件下的固有频率和固有振型。
通常情况下,系统的前几个固有频率相对最低的自然频率决定了某些环节的构建机件的准则。
根据计算结果,可以对设计进行优化和改进,从而提高齿轮系统的稳定性和运行效率。
该行星齿轮流量计齿轮系统经模态分析计算,得到了其前三阶模态振型和频率。
在分析过程中,发现齿轮系统存在较为明显的固有频率,并且共振振动趋势明显,震荡范围也比较广泛。
在实际应用中,如果行星齿轮流量计的齿轮系统运转时发现存在这样的问题,就需要对设计加以优化,以避免共振引起的机械故障。
在行星齿轮流量计齿轮系统中,行星齿轮是一个重要的组件,其优化设计将对系统的动力学性能产生显著影响。
通过调整行星齿轮半径、齿轮数和轴向距等参数,可以改变系统的自振频率和响应性能,从而优化齿轮系统的作用性能。
总之,基于UG软件进行的行星齿轮流量计齿轮系统模态分析极大地提升了该系统的稳定性和运行效率,为其在实际工程应用中提供了强有力的保障。
汽车变速器齿轮轴的模态特性分析

10.16638/ki.1671-7988.2018.17.014汽车变速器齿轮轴的模态特性分析吴智慧,姜洪远(武昌首义学院机电与自动化学院,湖北武汉430064 )摘要:变速器是汽车传动系统的一个重要组成部分,它分为手动变速器和自动变速器,输入轴与发动机相连,输出轴与传动轴相连,承受车辆在各种复杂工况下的载荷和振动。
变速器内部零部件的振动会产生一定的噪声,通过介质传播出去,另外内部零件产生共振时会使零件产生疲劳破坏,因此研究变速器齿轮轴的模态显得尤为重要,是变速器零部件结构设计和噪声控制的依据。
关键词:变速器;模态;振动中图分类号:U467.3 文献标识码:B 文章编号:1671-7988(2018)17-39-02Modal analysis of gear shaft on automobile transmissionWu Zhihui, Jiang Hongyuan( Wuchang Shouyi College Institute of Electromechanical and Automation, Hubei Wuhan 430064 )Abstract:The transmission is an important part of the automobile transmission system, it can be divided into manual transmission and automatic transmission, the input shaft connected to the engine, output shaft connected to the drive shaft, withstand a load of vehicle under various complex conditions and vibration. Transmission of the internal parts will produce a certain amount of noise, vibration spread through the medium, the other internal components resonate worsened fatigue damage parts, so the mode of transmission gear shaft is particularly important,it is the basis of the transmission parts structure design and noise control.Keywords: transmission; modal; vibrationCLC NO.: U467.3 Document Code: B Article ID: 1671-7988(2018)17-39-02前言随着科学技术的发展,变速器的型号越来越多,可以适应不同车辆的行驶,变速器安全可靠的工作,是整个车辆正常行驶的基础。
齿轮系统的接触模态分析

轴向位移,保留圆周方向的自由度;输入轮
是驱动轮,施加绕中心轴线旋转的角速度
-338.98rad/s;太阳轮安装孔的节点上同样约 束径向和轴向位移,同时在节点上施加切线
方向的节点力 Fy:
Fy=-
输入转矩
=
内圈节点数 ×中心孔半径
-531.2N
(5)
Fy 为负值,即太阳轮的负载转矩是顺
时针方向,加载后的效果如图 1 所示
行星齿轮传动被广泛应用于装甲车 先是在考虑接触特性的情况下做静态非线
辆,一般在高速重载、频繁启动工况下工作, 性分析,获得在静态载荷作用下的应力,然
在此工作环境下,有必要分析齿轮系统的固 后把得到的应力以附加刚度的形式叠加到
有振动频率。在设计齿轮系统时不但要考虑 系统的刚度矩阵上,在不考虑接触的条件下
[2] 吴志强,陈予恕.非线性模态的 分类和新的求解方法.力学学 报.1996.28
[3] 陈予恕,吴志强.非线性模态理 论的研究进展.力学进 展.1997.27
[4] 李欣业,陈予恕,吴志强.非线 性模态理论及其研究进展.河北 工业大学学报.2004.33
[5] 白润波,曹平周,曹茂森,陈建锋. 基于优化—反分析法的接触刚 度因子的确定. 建筑科 学.2008.1
discussed. Considering the non-linear contact,the static stress analysis is done the stress above
is imposed on the system rigid matrix as additional stiffness.Finally,the gear system modal
3 行星齿轮系统有限元模型建立