ZPW-2000A无绝缘轨道电路室内故障分析及处理
ZPW-2000A型无绝缘轨道电路

ZPW-2000A型无绝缘轨道电路摘要:ZPW - 2000A 型无绝缘轨道电路是铁路信号的一个重要的组成部分。
该系统保持UM71无绝缘轨道电路整体结构上的优势,解决调谐区内断轨的检查,且减少调谐区的分路死区长度,并在系统中发送器采用“N + 1”冗余,接收器采用成对双机并联运用,提高系统可靠性。
本文将主要讲述一下ZPW - 2000A 型无绝缘轨道电路的技术特点,相关原理及一些常见故障的现象及处理。
关键词:ZPW - 2000A;型无绝缘轨道电路;故障一、ZPW-2000A型无绝缘轨道电路系统特征1. ZPW-2000A型无绝缘轨道电路主要技术特点ZPW-2000A型无绝缘轨道电路系统,采用1700Hz-2600Hz载频段、FSK制式轨道电路传输特性、主要参数及计算机技术,满足机车信号为主体信号的自动闭塞及列车超速防护系统要求。
其主要技术特点是:充分肯定、保持UM71无绝缘轨道电路的技术特点和优势;解决调谐区断轨检查,实现轨道电路全程电气折断检查;减少调谐区分路死区;实现对调谐单元断线故障的检查;实现对拍频干扰的防护;通过系统参数优化,提高轨道电路传输长度;提高机械绝缘节轨道电路传输长度;实现与电气绝缘节轨道电路等长传输;轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行提高一般轨道电路系统工作稳定性;采用国产信号数字电缆代替法国ZC03电缆,减小铜芯线经,减少备用芯组,加大传输距离,提高轨道电路系统技术性能价格比;采用长钢包铜引接线取代70mm2,铜引接线,利于防护和维修;发送、接收设备四种载频频率通用,减少电码化器材种类,减少运转备用数量,既有利于维护,又可降低工程造价;发送、接收设备有比较完善的检测功能,发送器可以实现“N+1”冗余,接收器可以实现双机互为冗余。
2. ZPW-2000A型无绝缘轨道电路系统构成ZPW-2000A型无绝缘轨道电路系统,采用电气绝缘节来实现相邻轨道电路区段的隔离。
ZPW-2000A无绝缘轨道电路室内故障分析及处理

ZPW-2000A无绝缘轨道电路室内故障分析及处理摘要: 介绍了 ZPW-2000A 轨道电路室内故障的分析及处理方法,通过这些方法能够有效判断ZPW-2000A 室内设备故障发生的处所及可能原因。
关键词: ZPW-2000A轨道电路; 室内故障分析ZPW-2000A无绝缘轨道电路室内主要有接收器、发送器、衰耗盘、模拟网络等设备组成。
按其故障发生处所可分为发送器故障,发送通道故障,接收通道故障,接收器故障及小轨通道故障五大部分。
常见故障现象可分为发送器表示灯灭灯,接收器表示灯灭灯及轨道电路红光带三种。
下面主要按故障现象分析故障范围。
一、发送器灭灯发送器灭灯说明发送器故障,停止工作,但由于有+1的接替工作,发送器灭灯时轨道电路不着灯,只是提示移频报警,此时需查找发送器的工作条件是否满足。
(一)发送器工作条件:1、+24 024有且只有一个,且极性正确;2、载频有且只有一个;3、选型有且只有一个;4、低频有且只有一个;5、发送功出不短路。
以上条件只要有一条不满足,发送灯灭灯,转+1FS(二)具体故障点现象1、发送器工作条件不满足,缺少一个或者出现双载频,双选型,双低频及功出短路。
现象:发送器工作灯灭灯,测试无功出电压,转+1FS2、FBJ-1FBJ-2短路或T1 T2短路现象:发送器灭灯,但功出电压正常。
3、发送电平底座接触不良或勾线断线现象:发送器工作灯正常点亮,轨道红光带,测试无功出电压。
二、接收器灭灯由于接收器是双机并用,所以,一般的接收器故障,只反映为该接收器工作灯灭灯,轨道电路不会着灯,不影响正常使用。
但有两种接收器故障会导致轨道电路着灯,第一种就是接收器输入端子(ZIN、GND 端子)内部短路,之后做叙述;另一种是XGJ、XGJH 对应的端子内部短路,在之后的小轨通道中会详细介绍。
接收器灭灯故障同发送器灭灯故障一样,从查找接收器的工作条件入手。
(一)接收器工作条件1、+24 024有且只有一个,且极性正确;2、载频有且只有一个;3、主轨选型(-1、-2)有且只有一个;4、小轨选型(X1、X2)有且只有一个;由于一个接收器分为两部分,且两部分互相独立,所以两个部分都要满足以上工作条件,即一个接收器需要满足8个条件,接收灯方能点亮,以上条件只要有一条不满足,接收灯灭灯,轨道不着灯(二)查找方法同发送器查找方法,只需测量8个工作条件是否缺少或多余,同时考虑器材与底座的接触是否良好。
zpw-2000a轨道电路故障判断和处理程序解析

ZPW-2000A 轨道电路故障判断和处理程序一、判断故障区段1.对分割区段,轨 2亮红时,影响轨 1也亮红,所以首先查轨 2,若轨 2恢复,轨 1仍然亮红,再查轨 1。
2. 对红灯转移区段,当通过信号机红灯灭灯且该信号机防护的区段亮红时,该信号机的前方区段也亮红,应先查信号机防护的区段。
3. 对站联区段,当发车线与邻站分界区段亮红时,应先判断邻站的站联条件是否送过来, 可先观察该区段组合的 GJ (邻、 DJ (邻是否吸起,若吸起,说明邻站已将站联条件送过来;若未吸起,再到区间综合柜零层相应端子测试电压是否送过来。
若条件未送过来, 故障在邻站, 需邻站查找。
二、判断室内外故障判断清楚故障区段后,再判断故障在室内还是室外。
在区间综合柜的电缆模拟网络盘上进行测试判断,先测试发送电缆模拟网络的“电缆”塞孔电压,再测试接收电缆模拟网络的“电缆”塞孔电压。
与正常测试数据进行对比, 若发送电压不正常,故障在室内发送电路。
若发送“电缆” 电压正常,接收电压不正常,故障在室外。
若发送电压和接收电压均正常,故障在室内接收电路。
三、室内故障判断处理1. 室内发送电路故障判断处理a. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压正常,而“电缆”电压不正常,则电缆模拟网络故障,更换电缆模拟网络即可。
b. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压不正常,故障点在发送器的发送输出 s1、 s2端子至发送模拟网络端子 1、 2间的电线及继电器接点条件上。
c. 衰耗盘测试发送功出电压、载频、低频不正常, “+ 1” 衰耗盘测试发送功出电压、载频、低频正常,此时,若仅移频报警,轨道电路不亮红,则更换发送器即可。
d. 发送器和“+1”发送器的发送功出电压、载频、低频都不正常,则发送器和“+1”的发送器故障,更换发送器即可。
e. 发送器和“+1”发送器的发送功出电压均为“ 0” V , 检查发送器工作电源良好,故障点在低频编码条件电路或选择载频电路。
ZPW-2000A型轨道电路故障分析及处理对策探讨

ZPW-2000A型轨道电路故障分析及处理对策探讨发布时间:2021-01-13T15:00:01.440Z 来源:《中国电业》2020年27期作者:吴琳琳[导读] 随着我国铁路事业的飞速发展,轨道系统在运行可靠性与安全性方面的要求越来越高吴琳琳中国铁路北京局集团有限公司石家庄电务段石家庄 050000摘要:随着我国铁路事业的飞速发展,轨道系统在运行可靠性与安全性方面的要求越来越高。
其中ZPW-2000A型轨道电路本身的可靠性与安全性都比较高,是现阶段国内大多数铁路干线建设中主要应用的轨道类型。
但是在日常使用过程中也容易出现一些故障问题,容易影响列车运行安全,加强相应的故障处理显得尤为重要。
本文以ZPW-2000A型轨道电路为研究对象,重点对其故障分析思路及处理对策进行了探讨,以期可以提高ZPW-2000A型轨道电路故障处理效率。
关键词:ZPW-2000A轨道电路;故障分析;处理对策在列车大提速时代,铁路信号系统在确保列车通行安全性方面的作用越发突出,尤其是轨道电路是构成铁路信号系统的重要组成部分,是影响列车行车安全性的一个重要因素。
但是在轨道电路运行中却非常容易出现故障问题,如果不及时处理,那么就会对其使用功能的发挥带来不利影响,进而会影响列车占用检查等列车运营管理工作的顺利开展,增加了其出现安全故障问题的概率,加强其故障的有效分析及处理研究具有重要的现实意义。
一、ZPW-2000A轨道电路构成及工作原理ZPW-2000A轨道电路主要包括室内部分和室外部分两大部分,二者共同构成了一个完整的轨道电路回路,可以实现全面监控列车实际运行情况的目标。
其中室内部分主要涉及到的设备包括发送器、衰耗盘、接收器、防雷设备以及电缆模拟网络等;室外部分涉及到的设备包括调谐区、补偿电容、机械绝缘节、传输电缆以及匹配变压器等。
这些相关设备的运行情况直接关乎整体轨道电路的运行可靠性与安全性,具体构成见图1。
与此同时,ZPW-2000A轨道电路主要涉及到主轨道电路与小轨道电路两个主要组成模块。
ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析

ZPW-2000A型无绝缘移频轨道电路室内设备故障处理分析ZPW-2000A型无绝缘移频轨道电路是铁路运输中常见的设备,它具有对列车进行移频轨道电路监测、使列车运行更加安全和便利的作用。
然而在使用过程中,设备可能会出现一些故障,为了保证设备的正常运行,我们需要及时对故障进行处理。
下面我们将就ZPW-2000A型无绝缘移频轨道电路室内设备故障处理进行分析,以便更好地理解和掌握处理故障的方法。
一、故障描述在进行故障处理之前,我们需要了解ZPW-2000A型无绝缘移频轨道电路室内设备可能会出现的故障情况。
常见的故障包括但不限于:供电异常、电源故障、线路短路、线路开路、信号干扰等。
这些故障都会对设备的正常运行造成影响,所以我们需要对这些故障进行及时的处理。
二、故障处理方法1. 供电异常如果发现ZPW-2000A型无绝缘移频轨道电路室内设备出现供电异常,首先需要检查电源线路是否连接正常,检查电源线路是否受潮或发生短路。
如果是因为电源线路故障导致的供电异常,需要及时更换电源线路并进行调试,以确保设备正常供电。
2. 电源故障3. 线路短路线路短路是ZPW-2000A型无绝缘移频轨道电路室内设备常见的故障之一,造成线路短路的原因可能是线路连接不良、线路受潮等。
对于线路短路,首先需要检查线路连接是否良好,如果发现线路连接不良,需要重新连接线路并进行测试。
如果线路受潮,需要将受潮部分进行清洁和烘干,并进行测试使用。
5. 信号干扰信号干扰是ZPW-2000A型无绝缘移频轨道电路室内设备可能遇到的故障之一,可能会受到外部干扰引起设备信号不稳定。
对于信号干扰,需要首先检查设备周围的环境情况,采取相应的屏蔽措施,确保设备的信号稳定。
ZPW-2000A轨道电路分析及故障处理

毕业设计(论文)任务书本任务书下达给: 2011 级自动化专业学生王胜设计(论文)题目:ZPW-2000A轨道电路分析及故障处理一、设计(论述)内容通过ZPW-2000A轨道电路分析研究,为故障进一步快速的判断、快速的定位做好准备。
本文通过对ZPW-2000A轨道电路的组成及组成各部件的的一些作用进行了相应的阐述,然后通过理论的掌握提出日常维护与检修工作。
还有一些在2014年陇海线改造过程中,所发生的一些故障现象和处理方法。
主要完成以下的任务:1.对ZPW-2000A轨道电路结构进行分析;2.如何做好ZPW-2000A轨道电路日常维护工作;3.如何减少ZPW-2000A轨道电路故障的发生;4.通过实验及发生的故障现象进行总结;二、基本要求1.查阅大量参考文献,熟悉设计内容,掌握设计方法;能够熟知系统的工作原理,系统的结构,掌握各个部件的功能,尤其对于小轨的条件和主轨条件的掌握。
2.查阅与本课题相关资料;另外对一些简单的ZPW-2000A轨道电路故障能够进行判别及处理。
3.按照论文撰写格式完成毕业论文,并参加论文答辩;三、重点研究的问题1. ZPW-2000A轨道电路结构的组成部分;2. ZPW-2000A轨道电路各部的功能;3. ZPW-2000A轨道电路的日常维护;4. 如何减少ZPW-2000A轨道电路故障的发生;四、主要技术指标1.无绝缘轨道技术;2.光电隔离技术;3.冗余技术;五、其他要说明的问题下达任务日期: 2014年 6 月 1 日要求完成日期: 2014年 8 月 20 日答辩日期: 2014 年 8 月 22 日指导教师:开题报告题目:ZPW-2000A轨道电路分析及故障处理报告人:王胜 2014年7月 14 日一、文献综述铁路运输是以机车车辆等移动设备和铁路线路、桥梁隧道、站场等固定设备为基本设备,以车站为运输生产基地的实现旅客和货物运输的庞大系统。
在这个系统中,必须有一套行车指挥系统,以指挥行车按运行计划,安全有效地运行。
ZPW—2000A型无绝缘轨道电路故障现象分析及处理

ZPW—2000A型无绝缘轨道电路故障现象分析及处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上改进而来,广泛的应用于我国的铁路闭塞系统,其正常工作是列车安全、高效运行的保证。
本文以现场实践为基础,对ZPW-2000A型无绝缘轨道电路在现场使用过程中的常见故障现象及处理方法进行总结,并对故障处理流程进行分析,总结其操作过程中需要注意的几点。
关键字:轨道电路调谐单元补偿电容故障处理ZPW-2000A型无绝缘轨道电路是在法国UM71无绝缘轨道电路技术基础上进行改进[1],在保证系统安全性、传输稳定性和可靠性的前提下,较大程度的提高其抗干扰能力,以适应我国复杂的气候环境。
ZPW-2000A型无绝缘轨道电路提高技术性能、降低工程造价,能够满足主体化机车信号和列车超速防护系统对轨道电路安全性和可靠性的要求,广泛的应用于我国的铁路闭塞系统。
在铁路系统中,轨道电路系统一直是铁路线路灾害防治和设备安全风险管理的重点。
根据近几年各铁路局信号设备故障统计数据,可发现轨道电路故障发生最为频繁,在采用约占信号故障总量的36%[2]。
1 ZPW2000A型轨道电路结构组成ZPW2000A型轨道电路,如图1所示,由主轨道电路和调谐区小轨道电路两部分组成,其中调谐区小队到電路可视为列车运行前方主轨道电路所属的延伸段。
电气绝缘节是轨道电路实现与相邻轨道电路间电气分隔的部件,包括两个调谐单元(BA1/BA2)、一个空心线圈(SA V)和29m的钢轨组成,在主轨道区段设置补偿电容C。
轨道电路工作时,发送端产生信号经由发送端设备传输至发送端轨面,然后分别向主轨道电路方向和小轨道电路方向传输,主轨道电路接受处理来自主轨道电路的信号,小轨道电路信号由运行前方相邻轨道电路接收器处理,并将小轨道电路继电器执行条件传输至本轨道电路接收器,作为轨道继电器励磁的必要检查条件。
2 ZPW-2000A型无绝缘轨道电路的室外故障现象及处理ZPW-2000A型轨道电路包括主轨道区段和小轨道区段,为了实现钢轨的无缝连接,取消了传统用于轨道电路绝缘的机械绝缘节,采用具有电气绝缘特性的电气绝缘节,ZPW-2000A型轨道电路电气绝缘节设计长度为29m,为了实现列车在该区域的占用检查,将去其构成一段小轨道电路,通过相邻区段轨道电路接收设备来检查该区段的占用与空闲。
ZPW―2000A型轨道电路故障分析及处理

ZPW―2000A型轨道电路故障分析及处理发表时间:2019-12-16T13:44:37.720Z 来源:《基层建设》2019年第26期作者:赵志峰[导读] 摘要:ZPW-2000A移频自动闭塞设备是高频电子设备构成的新型移频自动闭塞系统,从它的工作原理、器材特性到故障分析都与一般轨道电路有很大不同。
通号工程局集团有限公司武汉 430061摘要:ZPW-2000A移频自动闭塞设备是高频电子设备构成的新型移频自动闭塞系统,从它的工作原理、器材特性到故障分析都与一般轨道电路有很大不同。
在日常施工及维修中掌握的工作原理、器材特性及积累的故障案例对ZPW-2000A型轨道电路故障进行分析,并介绍了处理方法。
关键词:ZPW-2000A;轨道电路;故障处理;电气绝缘节;载频设置;模拟网络盘ZPW-2000A移频轨道电路在我国铁路建设中的普及显示了其安全性和可靠性,但在实际运行过程中,由于一些故障的处理经验积累不足,造成故障判断处理不及时,影响运输安全。
现就ZPW-2000A型无绝缘轨道电路区间常见故障进行分析,对施工及电务维修人员提供帮助和经验积累。
一、ZPW-2000A无绝缘轨道电路的构成ZPW-2000A无绝缘轨道电路由室内与室外两个部分组成。
室外部分包括调谐区、传输电缆、补偿电容、机械绝缘节、匹配变压器、调谐设备引接线和室外防雷,室内部分有发送器、接收器、衰耗器以及电缆模拟网络等构成。
1室外部分(1)补偿电容:保证了轨道电路的传输距离,保证接收端信号有效信干比。
(2)传输电缆:采用国产内屏蔽铁路信号数字电缆SPT,直径1.0毫米,总长度按10千米考虑。
(3)调谐区:用于实现两条轨道电路的电气隔离。
(4)调谐区设备引接线:用于SWA、BA等设备和钢轨之间的连接。
(5)机械绝缘节:设在进出站出口,由空芯线圈SWA与调谐单元并接而成。
(6)匹配变压器:实现轨道与SPT铁路数字信号电缆的匹配连接,获得最好的传输效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ZPW-2000A无绝缘轨道电路室内故障分析及处理
摘要: 介绍了ZPW-2000A 轨道电路室内故障的分析及处理方法,通过这些方法能够有效判断ZPW-2000A 室内设备故障发生的处所及可能原因。
关键词: ZPW-2000A轨道电路; 室内故障分析
ZPW-2000A无绝缘轨道电路室内主要有接收器、发送器、衰耗盘、模拟网络等设备组成。
按其故障发生处所可分为发送器故障,发送通道故障,接收通道故障,接收器故障及小轨通道故障五大部分。
常见故障现象可分为发送器表示灯灭灯,接收器表示灯灭灯及轨道电路红光带三种。
下面主要按故障现象分析故障范围。
一、发送器灭灯
发送器灭灯说明发送器故障,停止工作,但由于有+1的接替工作,发送器灭灯时轨道电路不着灯,只是提示移频报警,此时需查找发送器的工作条件是否满足。
(一)发送器工作条件:
1、+24 024有且只有一个,且极性正确;
2、载频有且只有一个;
3、选型有且只有一个;
4、低频有且只有一个;
5、发送功出不短路。
以上条件只要有一条不满足,发送灯灭灯,转+1FS
(二)具体故障点现象
1、发送器工作条件不满足,缺少一个或者出现双载频,双选型,双低频及功出短路。
现象:发送器工作灯灭灯,测试无功出电压,转+1FS
2、FBJ-1FBJ-2短路或T1 T2短路
现象:发送器灭灯,但功出电压正常。
3、发送电平底座接触不良或勾线断线
现象:发送器工作灯正常点亮,轨道红光带,测试无功出电压。
二、接收器灭灯
由于接收器是双机并用,所以,一般的接收器故障,只反映为该接收器工作灯灭灯,轨道电路不会着灯,不影响正常使用。
但有两种接收器故障会导致轨道电路着灯,第一种就是接收器输入端子(ZIN、GND端子)内部短路,之后做叙述;另一种是XGJ、XGJH对应的端子内部短路,在之后的小轨通道中会详细介绍。
接收器灭灯故障同发送器灭灯故障一样,从查找接收器的工作条件入手。
(一)接收器工作条件
1、+24 024有且只有一个,且极性正确;
2、载频有且只有一个;
3、主轨选型(-1、-2)有且只有一个;
4、小轨选型(X1、X2)有且只有一个;
由于一个接收器分为两部分,且两部分互相独立,所以两个部分都要满足以上工作条件,即一个接收器需要满足8个条件,接收灯方能点亮,以上条件只要有一条不满足,接收灯灭灯,轨道不着灯
(二)查找方法同发送器查找方法,只需测量8个工作条件是否缺少或多余,同时考虑器材与底座的接触是否良好。
由于8个工作条件一一测量耗时过多,所以测试时可以从衰耗器测试孔中先区分接收器上半部分与下半部分故障。
一个接收器可以一分为二,上半部分为本区段的主机,下半部分为与其互为主并的并机,两部分互相独立、互不影响。
如果主机的4个工作条件不满足,则主机无输出;如果并机的4个工作条件不满足,则并机无输出,根据这一特性,当接收等灭灯时,首先在测试孔测量主机和与其互为主并的并机的输出即可判断出是接收器上半部分故障还是下半部分故障,判断出来以后只需测量故障部分的工作条件哪个不满足即可。
三、轨道电路着红光带
由于轨道电路红光带影响行车,故此故障的处理力求迅速、准确。
室内部分
造成轨道电路红光带的原因主要有两个方面:主轨部分(包括发送通道故障、接收通道故障)及及小轨通道故障,查找时首先从模拟盘测量“轨入”及“XGJ”区分主轨部分故障及小轨部分故障。
(一)、若测得“轨入”无电压,而“XGJ”电压正常,则为主轨部分故障,查找从发送通道、接收通道两部分进行。
1、发送通道故障
1)发送器至模拟网络间故障
A、断线故障
查找方法:分线盘测试无发送电压,测试孔测功出电压正常,判断为发送通道故障。
测试发送模拟网络设备侧及电缆侧电压以缩小故障范围:若设备侧无电压,则判断为发送器至模拟网络间断线,若设备侧电压正常,电缆侧有电压且高于正常值,而分线盘无电压,则判断为模拟网络至分线盘间断线。
故障范围确定后用数字表或万用表顺序查找即可。
B、短路故障
分析:发送器至模拟网络间短路可分两段考虑。
(1)故障现象为发送灯灭灯,转+1FSQ工作,轨道不着灯,说明短路点在主发送器与+1FSQ非共用部分,即FBJ吸起接点至发送器间
(2)故障现象为,FSQ进入10s休眠状态,发送灯每隔10s闪一下,但轨道一直点亮红光带,说明短路点在主发送器与+1FSQ共用部分,即FBJ中接点之后。
测试时可用卡流钳,沿通道顺序卡流,有流和无流间即为短路点。
2)模拟网络故障
A、断线故障
从测试孔测试模拟网络设备侧及防雷侧电压均比正常值高,而电缆侧无电压,即可判断为模拟网络内部故障或勾线断线。
B、短路故障
模拟网络短路故障现象分两种:
(1)发送器进入10s休眠状态,每隔10s发送灯闪一下,轨道电路红光带。
该现象说明短路点在模拟网络防雷变压器二次侧之前,查找时需甩线或用卡流钳。
(2)故障现象仅表现为轨道电路红光带。
但测试模拟网络设备侧电压比正常电压值低,电缆侧无电压,甩线测量电缆侧仍无电压,说明模拟网络短路且故障点在防雷变压器二次侧之后。
3)模拟网络至分线盘间故障
A、断线故障
查找方法:测试模拟网络设备侧、电缆侧电压均升高,分线盘测试无功出电压,用数字表按图纸顺序查找,电压突变处即为故障点。
B、短路故障
查找方法:测试数据与模拟网络盘短路故障(2)相差无几,此时需甩线区分模拟网络盘内部短路与模拟网络盘至分线盘间短路。
若甩线后电压升高,则说明短路点在模拟网络与分线盘之间,按图顺序甩线查找即可。
2、接收通道故障
这里所指接收通道包括从分线盘接收端之衰耗盘对接收器的输出端,图可参考北京铁路局印发的《ZPW-2000A学习手册》
1)、分线盘接收端至模拟网络盘间
A、断线故障
查找:测试分线盘接收端电压升高,模拟网络电缆侧无压,按图纸顺序查找,电压突变处即为故障点。
B、短路故障
查找:测试分线盘发送端电压正常,接收端无压,分线盘甩线测试电缆侧接收电压正常,即可判断为接收端分线盘至模拟网络间短路,按图甩线查找即可。
2)模拟网络故障
A、断线故障
从测试孔测试模拟网络电缆侧比正常值高,设备侧无电压,即可判断为模拟网络内部故障或勾线断线。
B、短路故障
查找:模拟网络内部有阻值,所以由于短路点的不同,测试电缆侧电压值也不相同,短路点越靠近设备侧,电缆侧电压越接近正常值,如果短路点在防雷侧或设备侧时,电缆侧测试电压与正常值相差无几。
所以,但测试电缆侧无压或电压值比正常值小时,需甩线进一步确认。
甩线时需在模拟网络之前甩一次,甩得开,则为模拟网络盘或之后短路;然后在模拟网络盘之后再甩一次,甩不开,确认为模拟网络盘短路。
3)模拟网络至衰耗盘间
A、断线故障
从测试孔测试模拟网络设备侧正常值高,但衰耗器测试孔“轨入”却无电压,可判断为模拟网络至衰耗盘c1、c2间断线,按图查找,电压突变处即为故障点。
B、短路故障
查找:测试接收端模拟网络电缆侧电压正常,设备侧无电压,甩线进一步区分模拟盘内短路与模拟盘之后短路,甩开后电压升高,则为模拟盘至衰耗盘间短路。
查找甩线时可首先甩开衰耗盘c1、c2连线,
(1)若甩线后仍无电压,则为模拟网络至c1、c2间短路,按图顺序甩线查找即可。
(2)若甩线后电压升高,故障点在衰耗盘内部c1、c2至接收器ZIN、GND(包括主并机)之间,可以进一步甩开c5或b5进行判断。
注意:由于衰耗盘内部用于主轨调整的变压器阻抗较小,所有当主机或并机接收器的输入端器材内部短路(ZIN、GND端子)也反映为接收通道短路故障,查找甩线时一定要甩干净。
(二)、若测得“轨入”电压正常,而“XGJ”无电压,则为主轨部分正常,查找从小轨通道进行。
由于目前很多站小轨不纳入联锁,只参与报警,所以该部分只适应于小轨纳入联锁时适应。
小轨通道指运行前方区段XG、XGH至本区段XGJ、XGJH之间。
可以分两段考虑。
由于断线故障均反映为运行前方区段XG、XGH电压正常,本区段XGJ、XGJH无电压,本区段轨道着红光带,查找过程也是按图依次查找,电压突变处即为断电,在此不一一赘述。
着重介绍一下小轨通道短路现象的判断与查找。
1、运行前方区段XG、XGH至该区段衰耗盘c31、a31之间,具体说为衰耗盘内部隔离二极管之前,该故障现象和接收器器材内部对应XG、XGH端子短路相同,现象仅为该接收器接收灯灭灯,轨道不着灯,查找可结合接收器接收灯灭灯故障同时进行。
2、运行前方区段衰耗盘c31、a31至本区段XGJ、XGJH之间
现象:运行前方区段接收器接收灯灭灯,与该区段互为主并的接收器接收灯也灭灯,本区段轨道着红光带。
说明:该故障点由于在运行前方区段衰耗盘内部隔离二极管之后,所以该短路点将主机的小轨输出--即XG(Z)、XGH(Z)和并机的小轨输出--即XG(B)、XGH(B)同时短路掉,本区段无论主并机的XGJ、XGJH均无法接收到信号,所以本区段轨道着红光带,而运行前方区段由于互为主并接收器
的XG、XGH短路,所以两个接收器均灭灯。
查找时只需沿小轨通道甩线查找即可,为排除器材故障,看到此现象可首先更换着灯区段的接收器及与其互为主并机的接收器。